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Why Flavour is important

Classically, there are no flavour transitions with neutral 
currents: 

Flavour changing neutral currents probe the SM as a 
quantum field theory.
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mu

v
uR (v + h)

gives

Why Flavour is important

� ! v + h
Symmetry breaking:

b

s

Z, �, g, h



LSM 3 d̄L Yd dR�+ ūL Yu uR�̃
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µ + ūL g �µ uL Zµ + ūL g �µ dL Wµ
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This is why we look for New Physics there. The effects might be 
small, but still large relative to the SM.
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Flavour observables predicted the charm and the top.



Flavour also predicted no new physics at the TeV 
scale…

Historical Successes

21

the LHC depending on the actual value of tanβ. Finally, the reader should keep in mind the

possibility of accidental cancellations among the contribution of different operators, which

might weaken the bounds we obtained.

VI. CONCLUSIONS

We have presented bounds on the NP scale Λ obtained from an operator analysis of

∆F = 2 processes, using the most recent experimental measurements, the NLO formulae for

the RG evolution and the Lattice QCD results for the matrix elements. We have considered

four scenarios: MFV at small tan β, MFV at large tan β, NMFV and general NP with

arbitrary flavour structure. The lower bounds on the scale Λ of strongly-interacting NP for

NMFV and general NP scenarios (barring accidental cancellations) are reported in Fig. 7.

Taking the most stringent bound for each scenario, we obtain the bounds given in Table V.
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FIG. 7: Summary of the 95% probability lower bound on the NP scale Λ for strongly-interacting

NP in NMFV (left) and general NP (right) scenarios.

We conclude that any model with strongly interacting NP and/or tree-level contributions

is beyond the reach of direct searches at the LHC. Flavour and CP violation remain the

main tool to constrain (or detect) such NP models. Weakly-interacting extensions of the

SM can be accessible at the LHC provided that they enjoy a MFV-like suppression of

∆F = 2 processes, or at least a NMFV-like suppression with an additional depletion of the

NP contribution to ϵK .

[UTfit collaboration 2007]



Several measurements of rare transitions deviate from the 
SM prediction … a sign of new physics? 

• An intriguing pattern in                       transitions b ! sµ+µ�

• Lepton flavour non-universality in RK ,RK⇤

• Lepton flavour non-universality in R(D(⇤))

• The anomalous magnetic moment of the muon            
and of the electron 

(g � 2)µ
(g � 2)e

Future Successes ?

3.6�

4�

2.5�

4�

2.5�



A pattern in b → s transitions 


and


 Lepton Non-Universality in b→s
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A pattern in b → s transitions
In flavour physics the momentum transfer is small
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Example: Beta decay in Fermi theory

MNeutron ⇡ 1GeV ⌧ MW ⇡ 80GeV



A pattern in b → s transitions
Since B decays involve an on-shell B meson (~ 5 GeV), 
heavy SM particles can be integrated out 
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A pattern in b → s transitions
Since B decays involve an on-shell B meson (~ 5 GeV), 
heavy SM particles can be integrated out 
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RK and future b ! s`` BSM opportunities
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Flavor changing neutral current |�B| = |�S| = 1 processes are sensitive to possible new physics at
the electroweak scale and beyond, providing detailed information about flavor, chirality and Lorentz
structure. Recently the LHCb collaboration announced a 2.6� deviation in the measurement of
RK = B(B̄ ! K̄µµ)/B(B̄ ! K̄ee) from the standard model’s prediction of lepton universality.
We identify dimension six operators which could explain this deviation and study constraints from
other measurements. Vector and axial-vector four-fermion operators with flavor structure s̄b ¯̀̀ can
provide a good description of the data. Tensor operators cannot describe the data. Pseudo-scalar
and scalar operators only fit the data with some fine-tuning; they can be further probed with the
B̄ ! K̄ee angular distribution. The data appears to point towards CNPµ

9 = �CNPµ

10 < 0, an
SU(2)L invariant direction in parameter space supported by RK , the B̄ ! K̄⇤µµ forward-backward
asymmetry and the B̄s ! µµ branching ratio, which is currently allowed to be smaller than the
standard model prediction. We present two leptoquark models which can explain the FCNC data
and give predictions for the LHC and rare decays.

I. INTRODUCTION

At the tree level the Standard Model (SM) has only
flavor-universal gauge interactions, all flavor-dependent
interactions originate from the Yukawa couplings. The
LHCb collaboration recently determined the ratio of
branching ratios of B̄ ! K̄`` decays into dimuons over
dielectrons [1],

RK =
B(B̄ ! K̄µµ)

B(B̄ ! K̄ee)
, (1)

and obtained

R
LHCb

K
= 0.745±0.090

0.074 ±0.036 (2)

in the dilepton invariant mass squared bin 1GeV2  q
2
<

6GeV2 [2]. Adding statistical and systematic uncertain-
ties in quadrature, this corresponds to a 2.6� deviation
from the SM prediction RK = 1.0003 ± 0.0001 [3], in-
cluding ↵s and subleading 1/mb corrections. Previous
measurements [4, 5] had significantly larger uncertainties
and were consistent with unity. Taken at face value, (2)
points towards lepton-non-universal physics beyond the
Standard Model (BSM).
In this work we discuss model-independent interpreta-
tions of the LHCb result for RK , taking into account
all additional available information on b ! s`` transi-
tions. We also propose two viable models with lepto-
quarks which predict RK < 1 and point out which future
measurements may be used to distinguish between our
models and other possible new physics scenarios.
The plan of the paper is as follows: In Section II we
introduce the low energy Hamiltonian and relevant ob-
servables for b ! s`` transitions. In Section III we per-
form a model-independent analysis and identify higher

dimensional operators that can describe existing data.
In Section IV we discuss two models in which the flavor-
changing neutral current is mediated at tree-level with
the favored flavor, chirality and Dirac structure as deter-
mined by our model-independent analysis. We summa-
rize in Section V.

II. MODEL-INDEPENDENT ANALYSIS

To interpret the data we use the following e↵ective
|�B| = |�S| = 1 Hamiltonian

He↵ = �4GFp
2
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the CKM matrix elements and Fermi’s constant, respec-
tively. The complete set of dimension six s̄b`` operators
comprises V, A operators (referring to the lepton current)

O9 = [s̄�µPLb] [¯̀�
µ
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µ
�5`] , (4)
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OS = [s̄PRb] [ ¯̀̀ ] , OP = [s̄PRb] [¯̀�5`] , (5)

and tensors

OT = [s̄�µ⌫b] [¯̀�
µ⌫
`] , OT5 = [s̄�µ⌫b] [¯̀�

µ⌫
�5`] . (6)

Chirality-flipped operators O0 are obtained by inter-
changing the chiral projectors PL $ PR in the quark
currents.
Parity conservation of the strong interactions implies
that B̄s ! `` decays depend on the Wilson coe�cient
combinations C� ⌘ C � C
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models and other possible new physics scenarios.
The plan of the paper is as follows: In Section II we
introduce the low energy Hamiltonian and relevant ob-
servables for b ! s`` transitions. In Section III we per-
form a model-independent analysis and identify higher

dimensional operators that can describe existing data.
In Section IV we discuss two models in which the flavor-
changing neutral current is mediated at tree-level with
the favored flavor, chirality and Dirac structure as deter-
mined by our model-independent analysis. We summa-
rize in Section V.

II. MODEL-INDEPENDENT ANALYSIS

To interpret the data we use the following e↵ective
|�B| = |�S| = 1 Hamiltonian

He↵ = �4GFp
2

V
tb
V

⇤
ts

↵e

4⇡

X

i

Ci(µ)Oi(µ) , (3)

where ↵e, Vij and GF denote the fine structure constant,
the CKM matrix elements and Fermi’s constant, respec-
tively. The complete set of dimension six s̄b`` operators
comprises V, A operators (referring to the lepton current)

O9 = [s̄�µPLb] [¯̀�
µ
`] , O10 = [s̄�µPLb] [¯̀�

µ
�5`] , (4)

S, P operators

OS = [s̄PRb] [ ¯̀̀ ] , OP = [s̄PRb] [¯̀�5`] , (5)

and tensors

OT = [s̄�µ⌫b] [¯̀�
µ⌫
`] , OT5 = [s̄�µ⌫b] [¯̀�

µ⌫
�5`] . (6)

Chirality-flipped operators O0 are obtained by inter-
changing the chiral projectors PL $ PR in the quark
currents.
Parity conservation of the strong interactions implies
that B̄s ! `` decays depend on the Wilson coe�cient
combinations C� ⌘ C � C

0, whereas B̄ ! K̄`` decays
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Flavor changing neutral current |�B| = |�S| = 1 processes are sensitive to possible new physics at
the electroweak scale and beyond, providing detailed information about flavor, chirality and Lorentz
structure. Recently the LHCb collaboration announced a 2.6� deviation in the measurement of
RK = B(B̄ ! K̄µµ)/B(B̄ ! K̄ee) from the standard model’s prediction of lepton universality.
We identify dimension six operators which could explain this deviation and study constraints from
other measurements. Vector and axial-vector four-fermion operators with flavor structure s̄b ¯̀̀ can
provide a good description of the data. Tensor operators cannot describe the data. Pseudo-scalar
and scalar operators only fit the data with some fine-tuning; they can be further probed with the
B̄ ! K̄ee angular distribution. The data appears to point towards CNPµ

9 = �CNPµ

10 < 0, an
SU(2)L invariant direction in parameter space supported by RK , the B̄ ! K̄⇤µµ forward-backward
asymmetry and the B̄s ! µµ branching ratio, which is currently allowed to be smaller than the
standard model prediction. We present two leptoquark models which can explain the FCNC data
and give predictions for the LHC and rare decays.

I. INTRODUCTION

At the tree level the Standard Model (SM) has only
flavor-universal gauge interactions, all flavor-dependent
interactions originate from the Yukawa couplings. The
LHCb collaboration recently determined the ratio of
branching ratios of B̄ ! K̄`` decays into dimuons over
dielectrons [1],

RK =
B(B̄ ! K̄µµ)

B(B̄ ! K̄ee)
, (1)

and obtained

R
LHCb

K
= 0.745±0.090

0.074 ±0.036 (2)

in the dilepton invariant mass squared bin 1GeV2  q
2
<

6GeV2 [2]. Adding statistical and systematic uncertain-
ties in quadrature, this corresponds to a 2.6� deviation
from the SM prediction RK = 1.0003 ± 0.0001 [3], in-
cluding ↵s and subleading 1/mb corrections. Previous
measurements [4, 5] had significantly larger uncertainties
and were consistent with unity. Taken at face value, (2)
points towards lepton-non-universal physics beyond the
Standard Model (BSM).
In this work we discuss model-independent interpreta-
tions of the LHCb result for RK , taking into account
all additional available information on b ! s`` transi-
tions. We also propose two viable models with lepto-
quarks which predict RK < 1 and point out which future
measurements may be used to distinguish between our
models and other possible new physics scenarios.
The plan of the paper is as follows: In Section II we
introduce the low energy Hamiltonian and relevant ob-
servables for b ! s`` transitions. In Section III we per-
form a model-independent analysis and identify higher

dimensional operators that can describe existing data.
In Section IV we discuss two models in which the flavor-
changing neutral current is mediated at tree-level with
the favored flavor, chirality and Dirac structure as deter-
mined by our model-independent analysis. We summa-
rize in Section V.

II. MODEL-INDEPENDENT ANALYSIS

To interpret the data we use the following e↵ective
|�B| = |�S| = 1 Hamiltonian

He↵ = �4GFp
2

V
tb
V

⇤
ts

↵e

4⇡

X

i

Ci(µ)Oi(µ) , (3)

where ↵e, Vij and GF denote the fine structure constant,
the CKM matrix elements and Fermi’s constant, respec-
tively. The complete set of dimension six s̄b`` operators
comprises V, A operators (referring to the lepton current)

O9 = [s̄�µPLb] [¯̀�
µ
`] , O10 = [s̄�µPLb] [¯̀�

µ
�5`] , (4)

S, P operators

OS = [s̄PRb] [ ¯̀̀ ] , OP = [s̄PRb] [¯̀�5`] , (5)

and tensors

OT = [s̄�µ⌫b] [¯̀�
µ⌫
`] , OT5 = [s̄�µ⌫b] [¯̀�

µ⌫
�5`] . (6)

Chirality-flipped operators O0 are obtained by inter-
changing the chiral projectors PL $ PR in the quark
currents.
Parity conservation of the strong interactions implies
that B̄s ! `` decays depend on the Wilson coe�cient
combinations C� ⌘ C � C

0, whereas B̄ ! K̄`` decays
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A pattern in b → s transitions
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[Bobeth, Ewerth, Krüger, Urban 0104284]

FA = C10f+(q
2) FA = C9f+(q

2) + 2Ce↵
7 mb

fT (q2)

MB +MK

1

�

d2�

dq2d cos ✓
= �3/2(M2

B ,M
2
K , q2)

1

4
(1� cos2 ✓l)

h
|FA|2 + |FV |2

i

CSM
7 = �0.31CSM

9 = �CSM
10 ⇡ �4.2



b→sl+l‒ anomalies

The rare decay B0 ! K⇤0µ+µ�, where K⇤0

indicates the K⇤(892)0 ! K+⇡� decay, is a
flavor-changing neutral current process that
proceeds via loop and box amplitudes in the
Standard Model (SM). In extensions of the SM,
contributions from new particles can enter in
competing amplitudes and modify the angular
distributions of the decay products. This decay
has been widely studied from both theoreti-
cal [1–3] and experimental [4–7] perspectives.
Its angular distribution is described by three
angles (✓`, ✓K and �) and the dimuon invariant

mass squared, q2; ✓` is the angle between the
flight direction of the µ+ (µ�) and the B0 (B0)
meson in the dimuon rest frame; ✓K is the an-
gle between the flight direction of the charged
kaon and the B0 (B0) meson in the K⇤0 (K⇤0)
rest frame; and � is the angle between the de-
cay planes of the K⇤0 (K⇤0) and the dimuon
system in the B0 (B0) meson rest frame. A
formal definition of the angles can be found
in Ref. [7]. Using the definitions of Ref. [1]
and summing over B0 and B0 mesons, the dif-
ferential angular distribution can be written
as

1

d�/dq2
d4�

d cos ✓` d cos ✓K d� dq2
=

9

32⇡


3

4
(1� FL) sin

2 ✓K + FL cos
2 ✓K +

1

4
(1� FL) sin

2 ✓K cos 2✓`

� FL cos
2 ✓K cos 2✓` + S3 sin

2 ✓K sin2 ✓` cos 2�

+ S4 sin 2✓K sin 2✓` cos� + S5 sin 2✓K sin ✓` cos�

+ S6 sin
2 ✓K cos ✓` + S7 sin 2✓K sin ✓` sin�

+ S8 sin 2✓K sin 2✓` sin�+ S9 sin
2 ✓K sin2 ✓` sin 2�

i
,

(1)

where the q2 dependent observables FL and
Si are bilinear combinations of the K⇤0 decay
amplitudes. These in turn are functions of
the Wilson coe�cients, which contain infor-
mation about short distance e↵ects and are
sensitive to physics beyond the SM, and form-
factors, which depend on long distance e↵ects.
Combinations of FL and Si with reduced form-
factor uncertainties have been proposed inde-
pendently by several authors [2, 3, 8–10]. In
particular, in the large recoil limit (low-q2) the
observables denoted as P 0

4, P
0
5, P

0
6 and P 0

8 [11]
are largely free from form-factor uncertainties.
These observables are defined as

P 0
i=4,5,6,8 =

Sj=4,5,7,8p
FL(1� FL)

. (2)

This Letter presents the measurement of the
observables Sj and the respective observables
P 0
i . This is the first measurement of these quan-

tities by any experiment. Moreover, these ob-
servables provide complementary information
about physics beyond the SM with respect to
the angular observables previously measured in
this decay [4–7]. The data sample analyzed cor-
responds to an integrated luminosity of 1.0 fb�1

of pp collisions at a center-of-mass energy of 7
TeV collected by the LHCb experiment in 2011.
Charged conjugation is implied throughout this
Letter, unless otherwise stated.
The LHCb detector [12] is a single-arm for-

ward spectrometer covering the pseudorapidity
range 2 < ⌘ < 5, designed for the study of
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A pattern in b → s transitions
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LFU tests in bà sll transtions : what’s next ? 

à K(*) ee angular analyses  in the same q2 region 1-6 GeV2/c4 ? 

B0 à K*µµ angular analysis
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 arXiv:1612.05014-e+Belle e
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Marie-Hélène Schune, Moriond

Decay obs. q2 bin SM pred. measurement pull

B̄0
! K̄⇤0µ+µ� FL [2, 4.3] 0.81± 0.02 0.26± 0.19 ATLAS +2.9

B̄0
! K̄⇤0µ+µ� FL [4, 6] 0.74± 0.04 0.61± 0.06 LHCb +1.9

B̄0
! K̄⇤0µ+µ� S5 [4, 6] �0.33± 0.03 �0.15± 0.08 LHCb �2.2

B̄0
! K̄⇤0µ+µ� P 0

5 [1.1, 6] �0.44± 0.08 �0.05± 0.11 LHCb �2.9

B̄0
! K̄⇤0µ+µ� P 0

5 [4, 6] �0.77± 0.06 �0.30± 0.16 LHCb �2.8

B�
! K⇤�µ+µ� 107 dBR

dq2 [4, 6] 0.54± 0.08 0.26± 0.10 LHCb +2.1

B̄0
! K̄0µ+µ� 108 dBR

dq2 [0.1, 2] 2.71± 0.50 1.26± 0.56 LHCb +1.9

B̄0
! K̄0µ+µ� 108 dBR

dq2 [16, 23] 0.93± 0.12 0.37± 0.22 CDF +2.2

Bs ! �µ+µ� 107 dBR
dq2 [1, 6] 0.48± 0.06 0.23± 0.05 LHCb +3.1

Table 1: Observables where a single measurement deviates from the SM by 1.9� or more (cf. 15 for the B !
K

⇤
µ
+
µ
� predictions at low q

2).

one can construct a �2 function which quantifies, for a given value of the Wilson coe�cients,
the compatibility of the hypothesis with the experimental data. It reads

�2( ~CNP) =
h
~Oexp �

~Oth( ~C
NP)

iT
[Cexp + Cth]

�1
h
~Oexp �

~Oth( ~C
NP)

i
. (5)

where Oexp,th and Cexp,th are the experimental and theoretical central values and covariance
matrices, respectively. All dependence on NP is encoded in the NP contributions to the Wilson
coe�cients, CNP

i = Ci � CSM
i . The NP dependence of Cth is neglected, but all correlations

between theoretical uncertainties are retained. Including the theoretical error correlations and
also the experimental ones, which have been provided for the new angular analysis by the LHCb
collaboration, the fit is independent of the basis of observables chosen (e.g. P 0

i vs. Si observables).
In other words, the “optimization” 18 of observables is automatically built in.

In total, the �2 used for the fit contains 88 measurements of 76 di↵erent observables by 6
experiments (see the original publication4 for references). The observables include B ! K⇤µ+µ�

angular observables and branching ratios as well as branching ratios of B ! Kµ+µ�, B !

Xsµ+µ�, Bs ! �µ+µ�, B ! K⇤�, B ! Xs�, and Bs ! µ+µ�.

2.2 Compatibility of the SM with the data

Setting the Wilson coe�cients to their SM values, we find �2
SM ⌘ �2(~0) = 116.9 for 88 mea-

surements, corresponding to a p value of 2.1%. Including also b ! se+e� observablesc the �2

deteriorates to 125.8 for 91 measurements, corresponding to p = 0.91%. The observables with
the biggest individual tensions are listed in table 1. It should be noted that the observables
in this table are not independent. For instance, of the set (S5, FL, P 0

5), only the first two are
included in the fit as the last one can be expressed as a function of them18,d.

cWe have not yet included the recent measurement 19 of B ! K
⇤
e
+
e
� angular observables at very low q

2.
Although these observables are not sensitive to the violation of LFU, being dominated by the photon pole, they
can provide important constraints on the Wilson coe�cients C(0)

7 .
dIncluding the last two instead leads to equivalent results since we include correlations as mentioned above;

this has been checked explicitly.

Deviations in several observables

[Altmannshofer, Straub, 1503.06199]

A pattern in b → s transitions



1D scenarios

Coefficient Best fit 1� 3� PullSM
CNP
7 �0.02 [�0.04,�0.00] [�0.07, 0.04] 1.1

CNP
9 �1.11 [�1.32,�0.89] [�1.71,�0.40] 4.5

CNP
10 0.58 [0.34, 0.84] [�0.11, 1.41] 2.5

CNP
70 0.02 [�0.01, 0.04] [�0.05, 0.09] 0.7

CNP
90 0.49 [0.21, 0.77] [�0.33, 1.35] 1.8

CNP
100 �0.27 [�0.46,�0.08] [�0.84, 0.28] 1.4

CNP
9 = CNP

10 �0.21 [�0.40, 0.00] [�0.74, 0.55] 1.0

CNP
9 = �CNP

10 �0.69 [�0.88,�0.51] [�1.27,�0.18] 4.1

CNP
9 = �CNP

90 �1.09 [�1.28,�0.88] [�1.62,�0.42] 4.8

Large negative NP-contribution to C9 needed!
DHMV, 1510.04239
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Flavor changing neutral current |�B| = |�S| = 1 processes are sensitive to possible new physics at
the electroweak scale and beyond, providing detailed information about flavor, chirality and Lorentz
structure. Recently the LHCb collaboration announced a 2.6� deviation in the measurement of
RK = B(B̄ ! K̄µµ)/B(B̄ ! K̄ee) from the standard model’s prediction of lepton universality.
We identify dimension six operators which could explain this deviation and study constraints from
other measurements. Vector and axial-vector four-fermion operators with flavor structure s̄b ¯̀̀ can
provide a good description of the data. Tensor operators cannot describe the data. Pseudo-scalar
and scalar operators only fit the data with some fine-tuning; they can be further probed with the
B̄ ! K̄ee angular distribution. The data appears to point towards CNPµ

9 = �CNPµ

10 < 0, an
SU(2)L invariant direction in parameter space supported by RK , the B̄ ! K̄⇤µµ forward-backward
asymmetry and the B̄s ! µµ branching ratio, which is currently allowed to be smaller than the
standard model prediction. We present two leptoquark models which can explain the FCNC data
and give predictions for the LHC and rare decays.

I. INTRODUCTION

At the tree level the Standard Model (SM) has only
flavor-universal gauge interactions, all flavor-dependent
interactions originate from the Yukawa couplings. The
LHCb collaboration recently determined the ratio of
branching ratios of B̄ ! K̄`` decays into dimuons over
dielectrons [1],

RK =
B(B̄ ! K̄µµ)

B(B̄ ! K̄ee)
, (1)

and obtained

R
LHCb

K
= 0.745±0.090

0.074 ±0.036 (2)

in the dilepton invariant mass squared bin 1GeV2  q
2
<

6GeV2 [2]. Adding statistical and systematic uncertain-
ties in quadrature, this corresponds to a 2.6� deviation
from the SM prediction RK = 1.0003 ± 0.0001 [3], in-
cluding ↵s and subleading 1/mb corrections. Previous
measurements [4, 5] had significantly larger uncertainties
and were consistent with unity. Taken at face value, (2)
points towards lepton-non-universal physics beyond the
Standard Model (BSM).
In this work we discuss model-independent interpreta-
tions of the LHCb result for RK , taking into account
all additional available information on b ! s`` transi-
tions. We also propose two viable models with lepto-
quarks which predict RK < 1 and point out which future
measurements may be used to distinguish between our
models and other possible new physics scenarios.
The plan of the paper is as follows: In Section II we
introduce the low energy Hamiltonian and relevant ob-
servables for b ! s`` transitions. In Section III we per-
form a model-independent analysis and identify higher

dimensional operators that can describe existing data.
In Section IV we discuss two models in which the flavor-
changing neutral current is mediated at tree-level with
the favored flavor, chirality and Dirac structure as deter-
mined by our model-independent analysis. We summa-
rize in Section V.

II. MODEL-INDEPENDENT ANALYSIS

To interpret the data we use the following e↵ective
|�B| = |�S| = 1 Hamiltonian

He↵ = �4GFp
2

V
tb
V

⇤
ts

↵e

4⇡

X

i

Ci(µ)Oi(µ) , (3)

where ↵e, Vij and GF denote the fine structure constant,
the CKM matrix elements and Fermi’s constant, respec-
tively. The complete set of dimension six s̄b`` operators
comprises V, A operators (referring to the lepton current)

O9 = [s̄�µPLb] [¯̀�
µ
`] , O10 = [s̄�µPLb] [¯̀�

µ
�5`] , (4)

S, P operators

OS = [s̄PRb] [ ¯̀̀ ] , OP = [s̄PRb] [¯̀�5`] , (5)

and tensors

OT = [s̄�µ⌫b] [¯̀�
µ⌫
`] , OT5 = [s̄�µ⌫b] [¯̀�

µ⌫
�5`] . (6)

Chirality-flipped operators O0 are obtained by inter-
changing the chiral projectors PL $ PR in the quark
currents.
Parity conservation of the strong interactions implies
that B̄s ! `` decays depend on the Wilson coe�cient
combinations C� ⌘ C � C

0, whereas B̄ ! K̄`` decays
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[Altmannshofer, Straub, 1703.09189]
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Figure 1: Two-dimensional constraints in the plane of NP contributions to the real parts of
the Wilson coe�cients C9 and C10 (left) or C9 and C

0
9 (right), assuming all other

Wilson coe�cients to be SM-like. For the constraints from the B ! K
⇤
µ
+
µ
� and

Bs ! �µ
+
µ
� angular observables from individual experiments as well as for the

constraints from branching ratio measurements of all experiments (“BR only”), we
show the 1� (��2

⇡ 2.3) contours, while for the global fit (“all”), we show the 1, 2,
and 3� contours.

contours showing the constraints coming from the angular analyses of individual experiments,
as well as from branching ratio measurements of all experiments.

We observe that the individual constraints are all compatible with the global fit at the 1� or
2� level. While the CMS angular analysis shows good agreement with the SM expectations,
all other individual constraints show a deviation from the SM. In view of their precision,
the angular analysis and branching ratio measurements of LHCb still dominate the global fit
(cf. Figs. 5, 7, 6 and 8), leading to a similar allowed region as in previous analyses. We do not
find any significant preference for non-zero NP contributions in C10 or C

0
9 in these two simple

scenarios.
Similarly to our analysis of scenarios with NP in one Wilson coe�cient, we repeat the

fits doubling the form factor uncertainties and doubling the uncertainties of non-factorizable
corrections. For NP in C9 and C10, we find that the pull is reduced from 4.6� to 3.7� and 3.8�,
respectively. For NP in C9 and C

0
9 the pull is reduced from 4.9� to 4.1� and 4.2�, respectively.

The impact of the inflated uncertainties is also illustrated in Fig. 2. Doubling the hadronic
uncertainties is not su�cient to achieve agreement between data and SM predictions at the 3�
level.

3.3. New physics or hadronic e↵ects?

It is conceivable that hadronic e↵ects that are largely underestimated could mimic new physics
in the Wilson coe�cient C9 [25]. As first quantified in [61] and later considered in [24,26,27,34],
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Large negative NP-contribution to C9 needed!
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as well as from branching ratio measurements of all experiments.

We observe that the individual constraints are all compatible with the global fit at the 1� or
2� level. While the CMS angular analysis shows good agreement with the SM expectations,
all other individual constraints show a deviation from the SM. In view of their precision,
the angular analysis and branching ratio measurements of LHCb still dominate the global fit
(cf. Figs. 5, 7, 6 and 8), leading to a similar allowed region as in previous analyses. We do not
find any significant preference for non-zero NP contributions in C10 or C
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9 in these two simple

scenarios.
Similarly to our analysis of scenarios with NP in one Wilson coe�cient, we repeat the

fits doubling the form factor uncertainties and doubling the uncertainties of non-factorizable
corrections. For NP in C9 and C10, we find that the pull is reduced from 4.6� to 3.7� and 3.8�,
respectively. For NP in C9 and C

0
9 the pull is reduced from 4.9� to 4.1� and 4.2�, respectively.

The impact of the inflated uncertainties is also illustrated in Fig. 2. Doubling the hadronic
uncertainties is not su�cient to achieve agreement between data and SM predictions at the 3�
level.
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A pattern in b → s transitions

…an 
enhanced SM 
contribution 
would have 
the right 
structure to 
explain this 
as well…
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• Error budget of P5 in [4, 6] GeV2 bin:

B → K∗µ+µ- anomaly: Errors
ʹ

[Matias, talk at Moriond EW 2015]

�0.82+0.01
�0.01

+0.02
�0.02

+0.03
�0.06

+0.06
�0.06

+0.07
�0.08

parametric non-factorizable power corrections

form factors

factorizable power corrections

long-distance cc effects

15/58

A pattern in b → s transitions

[from Haisch 2016]



• Dominant uncertainties of theoretical origin. What to do? 

B → K∗µ+µ- anomaly: Errors

�0.82+0.01
�0.01

+0.02
�0.02

+0.03
�0.06

+0.06
�0.06

+0.07
�0.08

�0.82 (1± 13%) �0.82 (1± 26%)

all errors are 
Gaussian

maybe 
better to 
add errors 
linearly

• Largest individual uncertainty due to long-distance cc effects. 
What is the problem & what does this mean for the error?

16/58

A pattern in b → s transitions

[from Haisch 2016]
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[from Haisch 2016]
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… in reality 
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A pattern in b → s transitions



Breakdown of factorization

�
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J/ , J/ 0, ...

b s

g

J/ , J/ 0, ...
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e� e�

e+ e+

• Factorizable effects can be related to (full non-perturbative) 
charm vacuum polarization via a standard dispersion relation 
& extracted from BESII data on e+e− → hadrons

u, d
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[from Haisch 2016]
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• Unfortunately, there are other 
contributions which cannot be 
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A pattern in b → s transitions

How bad is it?

Breakdown of factorization
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[Lyon, Zwicky  1406.0566]

Quark-hadron 
duality is broken 
globally!

Beautiful toy model in 
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FIG. 3: B ! K`` rate for high E ⌘
p

q2 just above the  (3770)-resonance up to the kinematic endpoint. The 40 LHCb bins [1, 13] are
shown with grey crosses. The solid blue line corresponds to our SM prediction using FA (the non-factorisable corrections are discussed in
chapter V). The cyan band is the theory error band. The mismatch between FA and the data is apparent to the eye.

b) Prefactor of hc(q2), (18 = 2⌘B,⌘c + 16res fit parameters, ⌫ = 117 � 18 � 1 = 98)
In addition to the normalisation, we fit for a scale factor ⌘c in front of the factorisable charm-loop hc(q2). More precisely:

HV = Ce↵
9

(mB + mK)

2mb

f+(q2) + Ce↵
7 fT (q2) ,

Ce↵
9 = (C9 + ⌘cafachc(q

2) + ...) (15)

where C9(µ) ' 4, Ce↵
7 (µ) ' �0.3, afac(µ) ' 0.6 at µ ' mb and hc(q2) is shown in Fig. 1. The dots stand for quark

loops of other flavours.

In a next step we probe for non-factorisable corrections by letting the fit residues of the LHCb data take on arbitrary real
(fit-c) and complex (fit-d) numbers. We would like to emphasise that in addition to non-factorisable effects new operators with
JPC [c̄�c] = 1��, other than the vector current, can also lead to such effects. More discussion can be found later on.

For the charm vacuum polarisation the discontinuity Disc[hc] is necessarily positive Eq. (8,2) and its relation to physical
quantities is given (5). Hence we can test for physics beyond SM FA by the following replacement

|
X

r

T r!f (s)|2 ! (
X

r

⇢rT
r!f (s))(

X

r

T r!f (s))⇤ . (16)

The scale factor ⇢r roughly corresponds to A(B ! K )/fB!K

+ (q2) and replaces A( ! ``) in (5).
For the fits c) and d) we are not going to put any background model to the LHCb-fit since with the current precision of the

LHCb data it seems difficult to crosscheck for the correctness of any model. The background is essentially zero at the D̄D-
threshold and is expected to raise smoothly with kinks at the thresholds of various DD̄-thresholds (with the two D’s being any
of D, D⇤, Ds, D⇤, D1, . . . ) into the region where perturbation theory becomes accurate. In fact this is the essence behind the
model ansatz (4). The branching fraction has just got the opposite behaviour to the background and this is the reason why it
seems difficult to extract the background from the data. More data could, of course, improve the situation.

c) Variable residues ⇢r 2 R, (22 = 1⌘B + 5⇢r + 16res fit parameters, ⌫ = 117 � 32 � 1 = 94)
We choose to keep ⌘B ⌘ 1 and parameterise ⇢ (2S) instead which is an equivalent procedure. The five parameters ⇢r are
constrained to be real.

d) Variable residues ⇢r 2 C, (27 = 1⌘B + 10⇢r + 16res fit parameters, ⌫ = 117 � 27 � 1 = 89)
Idem but with ⇢r 2 C allowing for dynamical phases, therefore introducing 5 new fit parameters.

d�(B ! ⇡⇡)

dq2
/ Im⇧(q2)

d�(B ! Xs`+`�)

dq2
/ |⇧(q2)|2

�
Im⇧(q2)

�2

[Beneke, Buchalla, Neubert, Sachrajda, 0902.4446]



A pattern in b → s transitions
Largest deviations are expected close to the J/Psi 
resonance, which is exactly where the anomaly sits. 

11

LFU tests in bà sll transtions : what’s next ? 

à K(*) ee angular analyses  in the same q2 region 1-6 GeV2/c4 ? 

B0 à K*µµ angular analysis
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[Ciuchini et.al. 1809.03789]
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Fig. 6. Angular observables P1 (left) and P
0
5

(right) of B
0 ! K

⇤0
µ
+
µ
� decays depending

on q
2 compared to the LHCb50 and Belle51 measurements and with theory predictions overlaid

(DHMV,45,52 HEPfit53,54). The inner bars represent the statistical uncertainty, and the total
uncertainty is illustrated by the outer vertical bars. The bin widths are indicated by the horizontal
bars. Figures from.48

charged muon in both B0 and B0 decays, the angular distributions between theory
and experiment di↵er. A translation scheme between the two conventions is given
in.24 More common than expressing the di↵erential decay rates as functions of Ii and
Īi is using the CP -averaged and CP -asymmetric observables Si and Ai as introduced
in.30

Si = (Ii + Īi) /

✓
d�

dq2
+

d�̄

dq2

◆
, (18)

Ai = (Ii � Īi) /

✓
d�

dq2
+

d�̄

dq2

◆
. (19)

One can construct a complete set of observables P (0)
i

with a reduced B0! K⇤ form-
factor dependence45–47 in the large energy limit. They emerge from combinations
of FL and S3 � S9, where P 0

5
= S5/

p
FL(1 � FL) is the most notable and hence

relevant for further discussions in this review.

In the angular analysis of B0 ! K⇤0µ+µ� decays by the CMS collaboration
on a dataset of 20.5 fb�1 recorded in 2012, both P 0

5
and P1 = 2S3/(1 � FL) were

determined,48 by using a folded di↵erential decay rate - an approach originally
developed by the LHCb collaboration.37,49 After the folding, a multi-dimensional
fit is performed, with the parameters of interest P1 , P 0

5
and A5

S
along with signal

and background yields, whereas the values of the longitudinal polarisation of the
K⇤ meson, FL, FS and and the interference between S- and P-wave, AS, have been
fixed to values determined in a previous analysis performed on the same dataset.39

The results of P1 and P 0
5

are shown in Fig. 6 and are consistent with the SM
predictions and previous measurements.

The aforementioned folding technique has also been employed by the Belle col-
laboration to extract P 0

5
and P 0

4
= S4/

p
FL(1 � FL) from the full dataset for both

B0 ! K⇤0µ+µ� and B0 ! K⇤0e+e� decays, as well as the combination of both

[Albrecht, Reicher, van Dyk, 1806.05010]



A pattern in b → s transitions

How can we know whether is is new physics?



Figure 2: Allowed regions in the Re(CNP
9 )-Re(CNP

10 ) plane (left) and the Re(CNP
9 )-Re(C 0

9) plane
(right). In red the 1�, 2�, and 3� best fit regions with nominal hadronic uncertainties.
The green dashed and blue short-dashed contours correspond to the 3� regions in
scenarios with doubled uncertainties from non-factorizable corrections and doubled
form factor uncertainties, respectively.
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Figure 3: Left: preferred 1� ranges for a new physics contribution to C9 from fits in di↵erent
q
2 bins. Right: preferred 1� ranges for helicity dependent contributions to C9 from

fits in di↵erent q
2 bins. The dashed diagonal line corresponds to a helicity universal

contribution, as predicted by new physics.

7

The fit is flat in q2 and prefers no helicity amplitude at 1 
sigma…

[Altmannshofer, Straub, 1703.09189]

A pattern in b → s transitions



Much better: Measure ratios free from hadronic 
uncertainties

Lepton Non-Universality in b→s

Breakdown of factorization
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• Unfortunately, there are other 
contributions which cannot be 
related to vacuum polarization. 
Such effects break factorization 
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RK =
�(B̄ ! K̄µ+µ�)

�(B̄ ! K̄e+e�)
= 0.745+0.090

�0.074 ± 0.036



Theoretically very clean, QED 
corrections ~ 1%


[Simone Bifani CERN Seminar]  
[LHCb,1705.05802]

Results − II

› The compatibility of the result in the low-q2 with respect to the SM
prediction(s) is of 2.2-2.4 standard deviations
› The compatibility of the result in the central-q2with respect to the SM
prediction(s) is of 2.4-2.5 standard deviations

Simone Bifani 33CERN Seminar
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Maybe RK not alone

[http://belle.kek.jp/belle/theses/doctor/2009/Nakayama.pdf]

RXs =

� 6 GeV2

1 GeV2
dq2 d� (B � Xsµ+µ�)

dq2

� 6 GeV2

1 GeV2
dq2 d� (B � Xse+e�)

dq2

= 0.34± 0.16

RSM
Xs

= 1� 4.3% 3.9σ

29/58

What about the inclusive rate?
Hard to do at the LHC, because the 
second B meson cannot be 
reconstructed.

Belle:

[from Haisch 2016]
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FIG. 3. The LFU ratios RK(⇤) in the SM and two NP benchmark models as function of q2. Conerning the error bands, the
same comments as for Fig. 2 apply.

In Fig. 3 we show RK(⇤) as functions of q
2 in the SM and

in the same NP scenarios as in Fig. 2. In the SM, RK(⇤)

are to an excellent approximation q
2 independent. For

very low q
2 ' 4m

2
µ they drop to zero, due to phase space

e↵ects. NP contact interactions lead to an approximately
constant shift in RK . The ratio RK⇤ , on the other hand,
shows a non-trivial q

2 dependence in the presence of NP.
In contrast to B ! K``, the B ! K

⇤
`` decays at low q

2

are dominated by the photon pole, which gives a lepton
flavor universal contribution. The e↵ect of NP is there-
fore diluted at low q

2. Given the current experimental
uncertainties, the measured q

2 shape of RK⇤ is compati-
ble with NP in form of a contact interaction. Significant
discrepancies from the shapes shown in Fig. 3 would im-
ply the existence of light NP degrees of freedom around
or below the scale set by q

2 and a breakdown of the ef-
fective Hamiltonian framework.

Assuming that the description in terms of contact
interactions holds, we translate the best fit values of
the Wilson coe�cients into a generic NP scale. Repa-
rameterizing the e↵ective Hamiltonian (5) as HNP

e↵ =
�
P

i Oi/⇤2
i , one gets

⇤i =
4⇡

e

1p
|VtbV

⇤
ts|

1p
|Ci|

vp
2

' 35 TeVp
|Ci|

. (11)

Based on perturbative unitarity we therefore predict the
existence of NP degrees of freedom below a scale of
⇤NP ⇠

p
4⇡ ⇥ 35 TeV/

p
|Ci| ⇠ 100 TeV.

Compatibility with other rare B decay anomalies. It is
natural to connect the discrepancies in RK(⇤) to the other
existing anomalies in rare decays based on the b ! sµµ

transition. In the plots of Fig. 1 we show in dotted gray
the 1, 2, and 3� contours from our global b ! sµµ fit that
does not take into account the measurements of the LFU
observables RK(⇤) and DP 0

4,5
[6]. We observe that the

blue regions prefered by the LFU observables are fully

compatible with the b ! sµµ fit. We have also per-
formed a full fit, taking into account all the observables
from the b ! sµµ fit, the branching ratio of Bs ! µ

+
µ

�

(assuming it not to be a↵ected by scalar NP contribu-
tions), and the BaBar measurement of the B ! Xse

+
e
�

branching ratio [57]. This fit, shown in red, points to
a non-standard C

µ
9 ' �1.2 with very high singificance.

Wilson coe�cients other than C
µ
9 are constrained by the

global fit.

Compared to the LFU observables, the global b ! sµµ

fit depends more strongly on estimates of hadronic uncer-
tainties in the b ! s`` transitions. To illustrate the im-
pact of a hypothetical, drastic underestimation of these
uncertainties, we also show results of a global fit where
uncertainties of non-factorisable hadronic contributions
are inflated by a factor of 5 with respect to our nominal
estimates. In this case, the global fit becomes dominated
by the LFU observables, but the b ! sµµ observables
still lead to relevant constraints. For instance, the best-
fit value for C

µ
10 in Tab. I would imply a 50% suppresion

of the Bs ! µ
+
µ

� branching ratio, which is already in
tension with current measurements [47], barring cancel-
lations with scalar NP contributions.

Conclusions. The discrepancies between SM predic-
tions and experimental results in the LFU ratios RK and
RK⇤ can be explained by NP four-fermion contact inter-
actions (s̄b)(¯̀̀ ) with left-handed quark currents. Future
measurements of LFU di↵erences of B ! K

⇤
`
+
`
� angu-

lar observables can help to identify the chirality struc-
ture of the lepton currents. If the hints for LFU vio-
lation in rare B decays are first signs of NP, perturba-
tive unitarity implies new degrees of freedom below a
scale of ⇤NP ⇠ 100 TeV. These results are robust, i.e.
they depend very mildly on assumptions about the size
of hadronic uncertainties in the B ! K

(⇤)
`
+
`
� decays.

Intriguingly, the measured values of RK and RK⇤ are

[Altmannshofer et al.  1704.05435]
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�(B̄ ! K̄µ+µ�)

�(B̄ ! K̄e+e�)
= 0.745+0.090

�0.074 ± 0.036

Lepton flavour non-universality in RK ,

=

(
0.660+0.110

�0.070 ± 0.024

0.685+0.113
�0.069 ± 0.047

[Hiller, Schmaltz  1411.4773]

RK⇤

RK⇤RK ,

1D scenarios

Coefficient Best fit 1� 3� PullSM
CNP
7 �0.02 [�0.04,�0.00] [�0.07, 0.04] 1.1

CNP
9 �1.11 [�1.32,�0.89] [�1.71,�0.40] 4.5

CNP
10 0.58 [0.34, 0.84] [�0.11, 1.41] 2.5

CNP
70 0.02 [�0.01, 0.04] [�0.05, 0.09] 0.7

CNP
90 0.49 [0.21, 0.77] [�0.33, 1.35] 1.8

CNP
100 �0.27 [�0.46,�0.08] [�0.84, 0.28] 1.4

CNP
9 = CNP

10 �0.21 [�0.40, 0.00] [�0.74, 0.55] 1.0

CNP
9 = �CNP

10 �0.69 [�0.88,�0.51] [�1.27,�0.18] 4.1

CNP
9 = �CNP

90 �1.09 [�1.28,�0.88] [�1.62,�0.42] 4.8

Large negative NP-contribution to C9 needed!DHMV, 1510.04239

killed by RK*

RK⇤

RK
⇡ 1 ) C 0 = 0

RK⇤ / 1 + Re(C + C 0)� 2Re(C 0)

RK / 1 + Re(C + C 0)

RXs / 1 + Re(C)

RXs = 0.34± 0.16

C ⌘ Cµ � Ce
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So… New Physics either in  

C9

C9 = �C10

or

?
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FIG. 3. The LFU ratios RK(⇤) in the SM and two NP benchmark models as function of q2. Conerning the error bands, the
same comments as for Fig. 2 apply.

In Fig. 3 we show RK(⇤) as functions of q
2 in the SM and

in the same NP scenarios as in Fig. 2. In the SM, RK(⇤)

are to an excellent approximation q
2 independent. For

very low q
2 ' 4m

2
µ they drop to zero, due to phase space

e↵ects. NP contact interactions lead to an approximately
constant shift in RK . The ratio RK⇤ , on the other hand,
shows a non-trivial q

2 dependence in the presence of NP.
In contrast to B ! K``, the B ! K

⇤
`` decays at low q

2

are dominated by the photon pole, which gives a lepton
flavor universal contribution. The e↵ect of NP is there-
fore diluted at low q

2. Given the current experimental
uncertainties, the measured q

2 shape of RK⇤ is compati-
ble with NP in form of a contact interaction. Significant
discrepancies from the shapes shown in Fig. 3 would im-
ply the existence of light NP degrees of freedom around
or below the scale set by q

2 and a breakdown of the ef-
fective Hamiltonian framework.

Assuming that the description in terms of contact
interactions holds, we translate the best fit values of
the Wilson coe�cients into a generic NP scale. Repa-
rameterizing the e↵ective Hamiltonian (5) as HNP

e↵ =
�
P

i Oi/⇤2
i , one gets

⇤i =
4⇡

e

1p
|VtbV

⇤
ts|

1p
|Ci|

vp
2

' 35 TeVp
|Ci|

. (11)

Based on perturbative unitarity we therefore predict the
existence of NP degrees of freedom below a scale of
⇤NP ⇠

p
4⇡ ⇥ 35 TeV/

p
|Ci| ⇠ 100 TeV.

Compatibility with other rare B decay anomalies. It is
natural to connect the discrepancies in RK(⇤) to the other
existing anomalies in rare decays based on the b ! sµµ

transition. In the plots of Fig. 1 we show in dotted gray
the 1, 2, and 3� contours from our global b ! sµµ fit that
does not take into account the measurements of the LFU
observables RK(⇤) and DP 0

4,5
[6]. We observe that the

blue regions prefered by the LFU observables are fully

compatible with the b ! sµµ fit. We have also per-
formed a full fit, taking into account all the observables
from the b ! sµµ fit, the branching ratio of Bs ! µ

+
µ

�

(assuming it not to be a↵ected by scalar NP contribu-
tions), and the BaBar measurement of the B ! Xse

+
e
�

branching ratio [57]. This fit, shown in red, points to
a non-standard C

µ
9 ' �1.2 with very high singificance.

Wilson coe�cients other than C
µ
9 are constrained by the

global fit.

Compared to the LFU observables, the global b ! sµµ

fit depends more strongly on estimates of hadronic uncer-
tainties in the b ! s`` transitions. To illustrate the im-
pact of a hypothetical, drastic underestimation of these
uncertainties, we also show results of a global fit where
uncertainties of non-factorisable hadronic contributions
are inflated by a factor of 5 with respect to our nominal
estimates. In this case, the global fit becomes dominated
by the LFU observables, but the b ! sµµ observables
still lead to relevant constraints. For instance, the best-
fit value for C

µ
10 in Tab. I would imply a 50% suppresion

of the Bs ! µ
+
µ

� branching ratio, which is already in
tension with current measurements [47], barring cancel-
lations with scalar NP contributions.

Conclusions. The discrepancies between SM predic-
tions and experimental results in the LFU ratios RK and
RK⇤ can be explained by NP four-fermion contact inter-
actions (s̄b)(¯̀̀ ) with left-handed quark currents. Future
measurements of LFU di↵erences of B ! K

⇤
`
+
`
� angu-

lar observables can help to identify the chirality struc-
ture of the lepton currents. If the hints for LFU vio-
lation in rare B decays are first signs of NP, perturba-
tive unitarity implies new degrees of freedom below a
scale of ⇤NP ⇠ 100 TeV. These results are robust, i.e.
they depend very mildly on assumptions about the size
of hadronic uncertainties in the B ! K

(⇤)
`
+
`
� decays.

Intriguingly, the measured values of RK and RK⇤ are

[Altmannshofer et al.  1704.05435]

µ µ?b s ?b s

�0

µ µ

or

Lepton Non-Universality in b→s



0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14

q2 [GeV2]

10�7

10�6

10�5

dB
R

(B
!

K
⇤ e

+
e�

)/
dq

2
[G

eV
�

2
]

BR(B ! K⇤X) = 1.2 · 10�7

BR(X ! e+e�) = 100%

mX = 208 MeV and  = 0

SM

SM+X

Figure 3: The di↵erential branching ratio dBR(B ! K⇤e+e�)/dq2 in the SM (dashed
black) and in the presence of a resonance with the best-fit values for its mass and
BR(B ! K⇤X) (solid red). We also show the binned predictions together with the
LHCb measurements from ref. [19]. The vertical line indicates the lower boundary of
the low-q2 bin in the RK⇤ measurement.

corresponds to the case of the dark-photon scenario discussed above. In the right panel,
we vary BR(B ! K⇤X) and , fixing y = 0 corresponding to BR(X ! µ+µ�) = 0. As
in the case of the dark photon, a large invisible branching ratio is allowed.
We see that for mX = 220 MeV, the minimum of the total �2 is significantly larger

than for the dark-photon case above (�2

min
= 12.2 and 5.2, respectively) and corresponds

to BR(B ! K⇤X) = 3.5 · 10�8 and y = 0 in the case of  = 0, and to BR(B ! K⇤X) =
3.5 ·10�8 and  = 0 in the case of y = 0 (red crosses in fig. 2). This is predominantly due
to the tension between the low-q2 bin in RK⇤ and the B ! K⇤e+e� constraint for this
choice of mX . If we increase the X mass to values above 220 MeV, the constraint from
the B ! K⇤e+e� spectrum becomes stronger excluding an explanation of the low-q2

anomaly in RK⇤ .

2.2.3 Model-independent predictions

As discussed above, any on-shell explanation of the low-q2 bin of RK⇤ requires a reso-
nance close to the di-muon threshold decaying preferentially into electrons.6 A model-

6
In the past, a new particle in a very similar mass range had been proposed in connection with flavor

physics. A light unspecified resonance was invoked as an explanation for the anomalous clustering

of events with di-muon mass at 214.3 ± 0.5MeV in the ⌃
+

! pµ
+
µ
�

decay by the HyperCP

collaboration [33]. Recent LHCb measurements of the same decay mode do not lend further support

to a hypothesis of a new 214MeV particle [34]. A translation of these results to the B-meson case

10

[Altmannshofer, Baker et al. 1711.07494]
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Figure 1: Preferred regions of parameter space for a dark-photon explanation of the
low-q2 bin of RK⇤. In the left plot, the dark photon is assumed to decay 100% to
electrons and muons; the dark-photon mass and BR(B ! K⇤A0) are varied. In the
right plot, the dark-photon mass is fixed to mA0 = 208 MeV; the BR(B ! K⇤A0) and
the invisible width (parameterized by , see text) are varied. The red cross at BR(B !

K⇤A0) = 1.2 · 10�7 and mA0 = 208MeV (left), and BR(B ! K⇤A0) = 1.2 · 10�7 and
 = 0 (right) are the best-fit values in each case.

the discrepancy in the low-q2 bin of RK⇤ can only be addressed in a very restricted range
of NP parameter space. We first illustrate this in a simple benchmark scenario, in which
we identify the resonance with a dark photon, i.e., X ) A0. We then discuss the viable
parameter space in the case of a generic resonance.

2.2.1 Dark photon – LFU violation without LFU violation

If the resonance is a dark photon, A0, its branching ratios to electrons and muons are
fixed by the dark-photon mass, mA0 , its total width, �A0

tot
, and either the kinetic-mixing

parameter ✏ or equivalently the dark-photon partial width to non-SM particles, �A0
other

.
In the mass range we consider, the total width is given by

�A0

tot
= �A0

ee + �A0

µµ + �A0

other
, (2.5)

with

�A0

`` = ✏2
e2

12⇡
mA0

✓
1 + 2

m2

`

m2

A0

◆s

1� 4
m2

`

m2

A0
✓(m2

A0 � 4m2

`) . (2.6)

We find it convenient to parameterize �A0
other

= (�A0
ee + �A0

µµ). In this parametrization,
the dark-photon branching ratios to electrons and muons are independent of ✏. A dark-

7

Any enhancement of the photon penguin is excluded 
by                and              .
It cannot be an off-shell effect

2 Model-Independent Analysis

In this section, we discuss the impact of a light, new resonance, X, in RK⇤ , keeping the
discussion as model independent as possible.

2.1 O↵-shell e↵ect of a light resonance

The o↵-shell exchange of a resonance far below the di-muon threshold can in principle
contribute to the B ! K⇤`+`� rate in the low-q2 bin. The propagator is approximately
proportional to 1/q2, which enhances the o↵-shell contribution at low q2 (like the SM
photon). We thus expect such o↵-shell exchanges to have a high impact on measurements
at low q2, which could account for the anomaly in the low-q2 bin of RK⇤ . However, we
show here that such a setup is unlikely to satisfy existing experimental constraints.
To illustrate this point, we consider a very light resonance, X, with a mass far below

the low-q2 bin of RK⇤ , i.e., m2

X ⌧ 0.045GeV2, that couples to leptons (with coupling g`,
` = µ, e) and o↵-diagonally to bottom and strange quarks. If the o↵-shell exchange of
X produces a visible e↵ect in RK⇤ , then this would typically imply a two-body inclusive
B ! XsX width that exceeds the total B width. For example, if we assume that X has
a flavor changing dipole interaction1, we estimate that

�(B ! XsX)

�SM

B,tot

⇠
e2

4g2`
(�RK⇤)2 ⇥ BR(B ! Xs�) ' 800%⇥

✓
0.3 · 10�3

g`

◆2 ✓�RK⇤

0.3

◆2

,

(2.1)
where �SM

B,tot is the total width of the B meson in the SM, �RK⇤ ⌘ RSM

K⇤ � RK⇤ (in
the low-q2 bin), and where we have used BR(B ! Xs�) = (3.32 ± 0.15) · 10�4 [21].
Given that the coupling of light (⇠ 10’s of MeV) new degrees of freedom to electrons
and muons are constrained to be . 10�3 (see fig. 7 in appendix A), the B ! XsX
decay width typically exceeds the experimentally determined total B width by a factor
of a few, which excludes such a scenario. For the derivation of eq. (2.1) we assumed
that the resonance couples only to one type of lepton. Barring cancellations, the same
argument leads to even more stringent constraints if we assume couplings to both muons
and electrons. We quantify our argument in detail for a vector resonance in appendix A.

2.2 On-shell production of a light resonance

Having argued that the o↵-shell exchange of a light resonance cannot a↵ect the low-q2

bin of RK⇤ in an appreciable way, we now discuss scenarios in which on-shell production
of the resonance (B ! K⇤X with X ! `+`�) a↵ects the low-q2 bin. In the case of
a narrow resonance, this is possible as long as the mass of the resonance is inside the
[0.045, 1.1] GeV2 bin, up to experimental resolution e↵ects. In the on-shell approxima-
tion there is no interference with the SM b ! s`` amplitudes, so the resonance can only
enhance the B ! K⇤`+`� rates. Therefore, in order to explain RK⇤ in this scenario, the

1
The qualitative conclusions remain the same for di↵erent choices of the particle X and its interactions

with fermions.

4

B ! K⇤� B ! Xs�

Needs an (additional) new on-shell  resonance.
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What kind of new physics?
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Can we differentiate between leptoquarks and new Z’ 
gauge bosons?

Introduction Anomalies LFU violation Outlook Flavour: Outlook
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Can we differentiate between leptoquarks and new Z’ 
gauge bosons?

[di Luzio, Kirk, Lenz, 1712.06572]

4

Here we consider the case of a real coupling �
Q

23, so that
C

LL

bs
> 0 and �C

µ

9 = ��C
µ

10 is also real. This assumption
is consistent with the fact that nearly all the groups per-
forming global fits [12–23] (see however [82] for an excep-
tion) assumed so far real Wilson coe�cients in Eq. (17)
and also follows the standard approach adopted in the
literature for the Z

0 models aiming at an explanation of
the b ! sµ

+
µ
� anomalies (for an incomplete list, see [35–

64]). In fact, complex Z
0 couplings can arise via fermion

mixing, but are subject to additional constraints from
CP-violating observables (cf. Section III B).

FIG. 2. Bounds from Bs-mixing on the parameter space of
the simplified Z0 model of Eq. (20), for real �Q

23 and �L
22 = 1.

The blue and red shaded areas correspond respectively to the
2� exclusions from �MSM, 2015

s and �MSM, 2017
s , while the

solid (dashed) black curves encompass the 1� (2�) best-fit
region from RK(⇤) .

The impact of the improved SM calculation of Bs-mixing
on the parameter space of the Z

0 explanation of RK(⇤) is
displayed in Fig. 2, for the reference value �L

22 = 1.4 Note
that the old SM determination, �M

SM, 2015
s

, allowed for
M

0
Z

as heavy as ⇡ 10 TeV in order to explain RK(⇤) at
1�. In contrast, �M

SM, 2017
s

implies now M
0
Z
. 2 TeV.

Remarkably, even for �
L

22 =
p
4⇡, which saturates the

perturbative unitarity bound [85, 86], we find that the
updated limit from Bs-mixing requires M 0

Z
. 8 TeV for

the 1� explanation of RK(⇤) . Whether a few TeV Z
0

is ruled out or not by direct searches at LHC depends
however on the details of the Z

0 model. For instance,
the stringent constraints from di-lepton searches [87] are

4
For mZ0 . 1 TeV the coupling �L

22 is bounded by the Z ! 4µ
measurement at LHC and by neutrino trident production [83].

See for instance Fig. 1 in [84] for a recent analysis.

tamed in models where the Z 0 couples mainly third gener-
ation fermions (as e.g. in [63]). This notwithstanding, the
updated limit from Bs-mixing cuts dramatically into the
parameter space of the Z 0 explanation of the b ! sµ

+
µ
�

anomalies, with important implications for LHC direct
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2. Leptoquarks
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+
µ
� anoma-

lies consists in leptoquark mediators (see e.g. [89–106]).
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S3 ⇠ (3̄, 3, 1/3),6 with the Lagrangian
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)T doublet representations (V being the
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while that to Bs–mixing in Eq. (14) is induced at one
loop [110]
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where the sum over the leptonic index ↵ = 1, 2, 3 is un-
derstood. In order to compare the two observables we
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y
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32 y
QL⇤
22 (namely those directly connected to RK(⇤)) con-

tribute to Bs-mixing and further assume real couplings,
so that we can use the results of global fits which apply
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9 = ��C
µ

10.
The bound on MS3 from Bs-mixing is strengthened by a
factor 5 thanks to the new determination of �Ms, which
yields MS3 . 22 TeV, in order to explain RK(⇤) at 1�
(cf. Fig. 3). On the other hand, in flavour models predict-
ing a hierarchical structure for the leptoquark couplings

5
The scalar leptoquark model proposed in Ref. [101] is a notable

exception.
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Similar considerations apply to the vector leptoquarks Uµ

1 ⇠
(3, 1, 2/3) and Uµ

3 ⇠ (3, 3, 2/3), which also provide a good fit

for RK(⇤) . The case of massive vectors is however subtler, since

the calculability of loop observables depends upon the UV com-

pletion (for a recent discussion, see e.g. [109]).
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FIG. 3. Bounds from Bs-mixing on the parameter space
of the scalar leptoquark model of Eq. (24), for real yQL
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couplings. Meaning of shaded areas and curves as in Fig. 2.
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23 . For example,
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latter can then easily approach the limits from LHC di-
rect searches which imply MS3 & 900 GeV, e.g. for a
QCD pair-produced S3 dominantly coupled to third gen-
eration fermions [111].

3. Combined RK(⇤) and RD(⇤) explanations

Another set of intriguing anomalies in B-physics data is
that related to the LFU violating ratios RD(⇤) ⌘ B(B !
D

(⇤)
⌧ ⌫̄)/B(B ! D

(⇤)
`⌫̄) (here, ` = e, µ), which turn out

to be larger than the SM [112–114]. Notably, in this case
NP must compete with a tree-level SM charged current,
thus requiring a sizeably larger e↵ect compared to neutral
current anomalies. The conditions under which a com-
bined explanation of RK(⇤) and RD(⇤) can be obtained,
compatibly with a plethora of other indirect constraints
(as e.g. those pointed out in [115, 116]), have been re-
cently reassessed at the EFT level in Ref. [117]. Regard-
ing Bs-mixing, dimensional analysis (see e.g. Eq. (6) in
[117]) shows that models without some additional dy-
namical suppression (compared to semi-leptonic opera-
tors) are severely constrained already with the old �Ms

value. For instance, solutions based on a vector triplet
V

0 ⇠ (1, 3, 0) [118], where Bs-mixing arises at tree level,
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The updated value of �Ms in Eq. (10) makes the tuning
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µ

1 ⇠ (3, 1, 2/3))
comply better with the bound due to the fact that Bs-
mixing arises at one loop, but the contribution to �Ms

should be actually addressed in specific UV models when-
ever calculable [104].

B. Model building directions for �MNP
s < 0

Given the fact that �M
SM
s

> �M
exp
s

at about 2�, it is
interesting to speculate about possible ways to obtain a
negative NP contribution to �Ms, thus relaxing the ten-
sion between the SM and the experimental measurement.
Sticking to the simplified models of Section IIIA (Z 0 and
leptoquarks coupled only to LH currents), an obvious so-
lution in order to achieve CLL

bs
< 0 is to allow for complex

couplings (cf. Eq. (23) and Eq. (26)). For instance, in
Z

0 models this could happen as a consequence of fermion
mixing if the Z 0 does not couple universally in the gauge-
current basis. A similar mechanism could be at play for
vector leptoquarks arising from a spontaneously broken
gauge theory, while scalar-leptoquark couplings to SM
fermions are in general complex even before going in the
mass basis.
Extra phases in the couplings are constrained by CP-
violating observables, that we discuss in turn. In order
to quantify the allowed parameter space for a generic,
complex coe�cient CLL

bs
in Eq. (14), we parametrise NP

e↵ects in Bs-mixing via

M
SM+NP
12

MSM
12

⌘ |�| ei�� , (27)

where

|�| =

�����1 +
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bs

R
loop
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R
loop
SM

!
. (28)

The former is constrained by �M
Exp
s

/�M
SM
s

= |�|,
while the latter by the mixing-induced CP asymmetry
[65, 119]7

A
mix
CP (Bs ! J/ �) = sin (�� � 2�s) , (29)

where Amix
CP = �0.021±0.031 [71], �s = 0.01852±0.00032

[120], and we neglected penguin contributions [65]. The
combined 2� constraints on the Wilson coe�cient C

LL

bs

are displayed in Fig. (4).
For Arg(CLL

bs
) = 0 we recover the 2� bound��CLL

bs

�� /Rloop
SM . 0.014, which basically corresponds to the

case discussed in Section IIIA where we assumed a nearly

7
The semi-leptonic CP asymmetries for flavour-specific decays,

assl, do not pose serious constraints since the experimental errors

are still too large [65].
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The hadronic matrix element of this operator is
parametrised in terms of a decay constant fBs and a bag
parameter B:

hQi ⌘ hB0
s
|Q|B̄0

s
i = 8

3
M

2
Bs

f
2
Bs

B(µ) , (4)

We also indicated the renormalisation scale dependence
of the bag parameter; in our analysis we take µ =
m̄b(m̄b).
Sometimes a di↵erent notation for the QCD corrections
and the bag parameter is used in the literature (e.g. by
FLAG: [70]), (⌘B , B̂) instead of (⌘̂B , B) with

⌘̂BB ⌘ ⌘BB̂ = ⌘B↵s(µ)
� 6

23


1 +

↵s(µ)

4⇡

5165

3174

�
B , (5)

B̂ = 1.51926B . (6)

The parameter B̂ has the advantage of being renormali-
sation scale and scheme independent.
A commonly used SM prediction of �Ms was given by
[65, 66]

�M
SM, 2011
s

= (17.3± 2.6) ps�1
, (7)

�M
SM, 2015
s

= (18.3± 2.7) ps�1
. (8)

Both predictions agreed very well with the experimental
measurement [71]

�M
Exp
s

= (17.757± 0.021) ps�1
. (9)

In 2016 Fermilab/MILC presented a new calculation
[72], which gave considerably larger values for the non-
perturbative parameter, resulting in values around 20
ps�1 for the mass di↵erence [72–76] and being thus larger
than experiment. An independent confirmation of these
large values would of course be desirable; a first step
in that direction has been done by the HQET sum rule
calculation of [77] which is in agreement with Fermi-
lab/MILC for the bag parameters.
Using the most recent numerical inputs listed in Ap-
pendix A we predict the mass di↵erence of the neutral
Bs mesons to be1

�M
SM, 2017
s

= (20.01± 1.25) ps�1
. (10)

Here the dominant uncertainty still comes from the lat-
tice predictions for the non-perturbative parameters B

and fBs , giving a relative error of 5.8%. The uncertainty
in the CKM elements contributes 2.1% to the error bud-
get. The CKM parameters were determined assuming
unitarity of the 3 ⇥ 3 CKM matrix. The uncertainties
due to mt, mb and ↵s can be safely neglected at the

1
A more conservative determination of the SM value of the mass

di↵erence using only tree-level inputs for the CKM parameters

can be found in Eq. (D10).

current stage. A detailed discussion of the input param-
eters and the error budget is given in Appendix A and
Appendix B, respectively. The new central value for the
mass di↵erence in Eq. (10) is 1.8 � above the experimen-
tal one given in Eq. (9). This di↵erence has profound
implications for NP models that predict sizeable posi-
tive contributions to Bs-mixing. The new value for the
SM prediction depends strongly on the non-perturbative
input as well as the values of the CKM elements. We
use the averages that are provided by the lattice commu-
nity (FLAG) and by one of the two leading CKM fitting
groups (CKMfitter) – see Appendix C and Appendix D
for a further discussion of these inputs.

III. Bs-MIXING BEYOND THE SM

To determine the allowed space for NP e↵ects in Bs-
mixing we compare the experimental measurement of the
mass di↵erence with the prediction in the SM plus NP:
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For this equation we will use in the SM part the CKM
elements, which have been determined assuming the va-
lidity of the SM. In the presence of BSM e↵ects the CKM
elements used in the prediction of MSM

12 could in general
di↵er from the ones we use – see e.g. the case of a fourth
chiral fermion generation [78]. In the following, we will
assume that NP e↵ects do not involve sizeable shifts in
the CKM elements.
A simple estimate shows that the improvement of the
SM prediction from Eqs. (7)–(8) to Eq. (10) can have a
drastic impact on the size of the allowed BSM e↵ects on
Bs-mixing. For a generic NP model we can parametrise
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where ⇤NP denotes the mass scale of the NP mediator
and  is a dimensionful quantity which encodes NP cou-
plings and the SM contribution. If  > 0, which is often
the case in many BSM scenarios for B-anomalies consid-
ered in the literature, and since �M
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where ��M
SM
s

denotes the 1� error of the SM prediction.
Hence, in models where  > 0, the limit on the mass of
the NP mediators is strengthened by a factor 5. On the
other hand, if the tension between the SM prediction and
�M

Exp
s

increases in the future, a NP contribution with
 < 0 would be required in order to accommodate the
discrepancy.
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[72], which gave considerably larger values for the non-
perturbative parameter, resulting in values around 20
ps�1 for the mass di↵erence [72–76] and being thus larger
than experiment. An independent confirmation of these
large values would of course be desirable; a first step
in that direction has been done by the HQET sum rule
calculation of [77] which is in agreement with Fermi-
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Using the most recent numerical inputs listed in Ap-
pendix A we predict the mass di↵erence of the neutral
Bs mesons to be1
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and fBs , giving a relative error of 5.8%. The uncertainty
in the CKM elements contributes 2.1% to the error bud-
get. The CKM parameters were determined assuming
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current stage. A detailed discussion of the input param-
eters and the error budget is given in Appendix A and
Appendix B, respectively. The new central value for the
mass di↵erence in Eq. (10) is 1.8 � above the experimen-
tal one given in Eq. (9). This di↵erence has profound
implications for NP models that predict sizeable posi-
tive contributions to Bs-mixing. The new value for the
SM prediction depends strongly on the non-perturbative
input as well as the values of the CKM elements. We
use the averages that are provided by the lattice commu-
nity (FLAG) and by one of the two leading CKM fitting
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Both predictions agreed very well with the experimental
measurement [71]
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Exp
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= (17.757± 0.021) ps�1
. (9)

In 2016 Fermilab/MILC presented a new calculation
[72], which gave considerably larger values for the non-
perturbative parameter, resulting in values around 20
ps�1 for the mass di↵erence [72–76] and being thus larger
than experiment. An independent confirmation of these
large values would of course be desirable; a first step
in that direction has been done by the HQET sum rule
calculation of [77] which is in agreement with Fermi-
lab/MILC for the bag parameters.
Using the most recent numerical inputs listed in Ap-
pendix A we predict the mass di↵erence of the neutral
Bs mesons to be1

�M
SM, 2017
s

= (20.01± 1.25) ps�1
. (10)

Here the dominant uncertainty still comes from the lat-
tice predictions for the non-perturbative parameters B

and fBs , giving a relative error of 5.8%. The uncertainty
in the CKM elements contributes 2.1% to the error bud-
get. The CKM parameters were determined assuming
unitarity of the 3 ⇥ 3 CKM matrix. The uncertainties
due to mt, mb and ↵s can be safely neglected at the

1
A more conservative determination of the SM value of the mass

di↵erence using only tree-level inputs for the CKM parameters

can be found in Eq. (D10).

current stage. A detailed discussion of the input param-
eters and the error budget is given in Appendix A and
Appendix B, respectively. The new central value for the
mass di↵erence in Eq. (10) is 1.8 � above the experimen-
tal one given in Eq. (9). This di↵erence has profound
implications for NP models that predict sizeable posi-
tive contributions to Bs-mixing. The new value for the
SM prediction depends strongly on the non-perturbative
input as well as the values of the CKM elements. We
use the averages that are provided by the lattice commu-
nity (FLAG) and by one of the two leading CKM fitting
groups (CKMfitter) – see Appendix C and Appendix D
for a further discussion of these inputs.
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increases in the future, a NP contribution with
 < 0 would be required in order to accommodate the
discrepancy.

2

The hadronic matrix element of this operator is
parametrised in terms of a decay constant fBs and a bag
parameter B:

hQi ⌘ hB0
s
|Q|B̄0

s
i = 8

3
M

2
Bs

f
2
Bs

B(µ) , (4)

We also indicated the renormalisation scale dependence
of the bag parameter; in our analysis we take µ =
m̄b(m̄b).
Sometimes a di↵erent notation for the QCD corrections
and the bag parameter is used in the literature (e.g. by
FLAG: [70]), (⌘B , B̂) instead of (⌘̂B , B) with

⌘̂BB ⌘ ⌘BB̂ = ⌘B↵s(µ)
� 6

23


1 +

↵s(µ)

4⇡

5165

3174

�
B , (5)

B̂ = 1.51926B . (6)

The parameter B̂ has the advantage of being renormali-
sation scale and scheme independent.
A commonly used SM prediction of �Ms was given by
[65, 66]

�M
SM, 2011
s

= (17.3± 2.6) ps�1
, (7)

�M
SM, 2015
s

= (18.3± 2.7) ps�1
. (8)

Both predictions agreed very well with the experimental
measurement [71]

�M
Exp
s

= (17.757± 0.021) ps�1
. (9)

In 2016 Fermilab/MILC presented a new calculation
[72], which gave considerably larger values for the non-
perturbative parameter, resulting in values around 20
ps�1 for the mass di↵erence [72–76] and being thus larger
than experiment. An independent confirmation of these
large values would of course be desirable; a first step
in that direction has been done by the HQET sum rule
calculation of [77] which is in agreement with Fermi-
lab/MILC for the bag parameters.
Using the most recent numerical inputs listed in Ap-
pendix A we predict the mass di↵erence of the neutral
Bs mesons to be1

�M
SM, 2017
s

= (20.01± 1.25) ps�1
. (10)

Here the dominant uncertainty still comes from the lat-
tice predictions for the non-perturbative parameters B

and fBs , giving a relative error of 5.8%. The uncertainty
in the CKM elements contributes 2.1% to the error bud-
get. The CKM parameters were determined assuming
unitarity of the 3 ⇥ 3 CKM matrix. The uncertainties
due to mt, mb and ↵s can be safely neglected at the

1
A more conservative determination of the SM value of the mass

di↵erence using only tree-level inputs for the CKM parameters

can be found in Eq. (D10).

current stage. A detailed discussion of the input param-
eters and the error budget is given in Appendix A and
Appendix B, respectively. The new central value for the
mass di↵erence in Eq. (10) is 1.8 � above the experimen-
tal one given in Eq. (9). This di↵erence has profound
implications for NP models that predict sizeable posi-
tive contributions to Bs-mixing. The new value for the
SM prediction depends strongly on the non-perturbative
input as well as the values of the CKM elements. We
use the averages that are provided by the lattice commu-
nity (FLAG) and by one of the two leading CKM fitting
groups (CKMfitter) – see Appendix C and Appendix D
for a further discussion of these inputs.

III. Bs-MIXING BEYOND THE SM

To determine the allowed space for NP e↵ects in Bs-
mixing we compare the experimental measurement of the
mass di↵erence with the prediction in the SM plus NP:

�M
Exp
s

= 2
��MSM

12 +M
NP
12

�� = �M
SM
s

����1 +
M

NP
12

MSM
12

���� .

(11)
For this equation we will use in the SM part the CKM
elements, which have been determined assuming the va-
lidity of the SM. In the presence of BSM e↵ects the CKM
elements used in the prediction of MSM

12 could in general
di↵er from the ones we use – see e.g. the case of a fourth
chiral fermion generation [78]. In the following, we will
assume that NP e↵ects do not involve sizeable shifts in
the CKM elements.
A simple estimate shows that the improvement of the
SM prediction from Eqs. (7)–(8) to Eq. (10) can have a
drastic impact on the size of the allowed BSM e↵ects on
Bs-mixing. For a generic NP model we can parametrise

�M
Exp
s

�MSM
s

=

����1 +


⇤2
NP

���� , (12)

where ⇤NP denotes the mass scale of the NP mediator
and  is a dimensionful quantity which encodes NP cou-
plings and the SM contribution. If  > 0, which is often
the case in many BSM scenarios for B-anomalies consid-
ered in the literature, and since �M

SM
s

> �M
Exp
s

, the
2� bound on ⇤NP scales like

⇤2017
NP

⇤2015
NP

=

vuuut
�M

Exp
s

(�MSM
s �2��MSM

s )2015
� 1

�M
Exp
s

(�MSM
s �2��MSM

s )2017
� 1

' 5.2 , (13)

where ��M
SM
s

denotes the 1� error of the SM prediction.
Hence, in models where  > 0, the limit on the mass of
the NP mediators is strengthened by a factor 5. On the
other hand, if the tension between the SM prediction and
�M

Exp
s

increases in the future, a NP contribution with
 < 0 would be required in order to accommodate the
discrepancy.

2

The hadronic matrix element of this operator is
parametrised in terms of a decay constant fBs and a bag
parameter B:

hQi ⌘ hB0
s
|Q|B̄0

s
i = 8

3
M

2
Bs

f
2
Bs

B(µ) , (4)

We also indicated the renormalisation scale dependence
of the bag parameter; in our analysis we take µ =
m̄b(m̄b).
Sometimes a di↵erent notation for the QCD corrections
and the bag parameter is used in the literature (e.g. by
FLAG: [70]), (⌘B , B̂) instead of (⌘̂B , B) with

⌘̂BB ⌘ ⌘BB̂ = ⌘B↵s(µ)
� 6

23


1 +

↵s(µ)

4⇡

5165

3174

�
B , (5)

B̂ = 1.51926B . (6)

The parameter B̂ has the advantage of being renormali-
sation scale and scheme independent.
A commonly used SM prediction of �Ms was given by
[65, 66]

�M
SM, 2011
s

= (17.3± 2.6) ps�1
, (7)

�M
SM, 2015
s

= (18.3± 2.7) ps�1
. (8)

Both predictions agreed very well with the experimental
measurement [71]

�M
Exp
s

= (17.757± 0.021) ps�1
. (9)

In 2016 Fermilab/MILC presented a new calculation
[72], which gave considerably larger values for the non-
perturbative parameter, resulting in values around 20
ps�1 for the mass di↵erence [72–76] and being thus larger
than experiment. An independent confirmation of these
large values would of course be desirable; a first step
in that direction has been done by the HQET sum rule
calculation of [77] which is in agreement with Fermi-
lab/MILC for the bag parameters.
Using the most recent numerical inputs listed in Ap-
pendix A we predict the mass di↵erence of the neutral
Bs mesons to be1

�M
SM, 2017
s

= (20.01± 1.25) ps�1
. (10)

Here the dominant uncertainty still comes from the lat-
tice predictions for the non-perturbative parameters B

and fBs , giving a relative error of 5.8%. The uncertainty
in the CKM elements contributes 2.1% to the error bud-
get. The CKM parameters were determined assuming
unitarity of the 3 ⇥ 3 CKM matrix. The uncertainties
due to mt, mb and ↵s can be safely neglected at the

1
A more conservative determination of the SM value of the mass

di↵erence using only tree-level inputs for the CKM parameters

can be found in Eq. (D10).

current stage. A detailed discussion of the input param-
eters and the error budget is given in Appendix A and
Appendix B, respectively. The new central value for the
mass di↵erence in Eq. (10) is 1.8 � above the experimen-
tal one given in Eq. (9). This di↵erence has profound
implications for NP models that predict sizeable posi-
tive contributions to Bs-mixing. The new value for the
SM prediction depends strongly on the non-perturbative
input as well as the values of the CKM elements. We
use the averages that are provided by the lattice commu-
nity (FLAG) and by one of the two leading CKM fitting
groups (CKMfitter) – see Appendix C and Appendix D
for a further discussion of these inputs.

III. Bs-MIXING BEYOND THE SM

To determine the allowed space for NP e↵ects in Bs-
mixing we compare the experimental measurement of the
mass di↵erence with the prediction in the SM plus NP:

�M
Exp
s

= 2
��MSM

12 +M
NP
12

�� = �M
SM
s

����1 +
M

NP
12

MSM
12

���� .

(11)
For this equation we will use in the SM part the CKM
elements, which have been determined assuming the va-
lidity of the SM. In the presence of BSM e↵ects the CKM
elements used in the prediction of MSM

12 could in general
di↵er from the ones we use – see e.g. the case of a fourth
chiral fermion generation [78]. In the following, we will
assume that NP e↵ects do not involve sizeable shifts in
the CKM elements.
A simple estimate shows that the improvement of the
SM prediction from Eqs. (7)–(8) to Eq. (10) can have a
drastic impact on the size of the allowed BSM e↵ects on
Bs-mixing. For a generic NP model we can parametrise

�M
Exp
s

�MSM
s

=

����1 +


⇤2
NP

���� , (12)

where ⇤NP denotes the mass scale of the NP mediator
and  is a dimensionful quantity which encodes NP cou-
plings and the SM contribution. If  > 0, which is often
the case in many BSM scenarios for B-anomalies consid-
ered in the literature, and since �M

SM
s

> �M
Exp
s

, the
2� bound on ⇤NP scales like

⇤2017
NP

⇤2015
NP

=

vuuut
�M

Exp
s

(�MSM
s �2��MSM

s )2015
� 1

�M
Exp
s

(�MSM
s �2��MSM

s )2017
� 1

' 5.2 , (13)

where ��M
SM
s

denotes the 1� error of the SM prediction.
Hence, in models where  > 0, the limit on the mass of
the NP mediators is strengthened by a factor 5. On the
other hand, if the tension between the SM prediction and
�M

Exp
s

increases in the future, a NP contribution with
 < 0 would be required in order to accommodate the
discrepancy.

�0.08 �0.06 �0.04 �0.02 0.00

Re �
Q
23

�0.100

�0.075

�0.050

�0.025

0.000

0.025

0.050

0.075

0.100

Im
�

Q 23

flavio

MZ0 = 5 TeV, �
L

22 = 1

b ! s``
�Ms

Amix
CP

Figure 4: Fit to complex Z 0
couplings. The darker (lighter) shaded regions show the 1�

(2�) allowed regions respectively.

Including this extra observable in our fit, we display our results in Fig. 4, for
the reference values M

0
Z

= 5 TeV and �
L

22 = 1. While there are regions in
which both b ! s`` and �Ms can be accommodated at 1�, the additional
constraint from A

mix
CP precludes this possibility by setting a strong a limit on

the imaginary part of the Z
0 coupling.

4.2. Fit with RH quark coupling

As discussed above, if we extend the minimal model to include both LH
and RH down-quark currents, there arises an interference term in �Ms with
arbitrary sign. Moreover, since this term gets enhanced by renormalisation-
group e↵ects compared to LL and RR vector operators [55], it can easily
dominate the contribution to �M

NP
s

. However, while there are no extra
constraints to be taken into account as for the case of a complex coupling,
this scenario brings in its own problem – namely that the contribution to
R

K(⇤) via RH quark currents must be sizable. Current global fits disfavour a
purely RH quark current, as this breaks the experimentally observed relation

11

RK ⇡ RK⇤ (see e.g. [36] for further details). The question then is whether a
combined explanation of R

K(⇤) and �Ms is possible within the framework of
current experimental results.
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Our results are shown in Fig. 5 – while a negative contribution to �Ms

favours the LH and RH quark couplings to have the same sign,4 the small
region favoured by the semi-leptonic B anomalies has no overlap with the
�Ms region at 1�.

5. Conclusions

In this note, we have restated our update [1] of the SM prediction for the Bs-
mixing observable �Ms (Eq. (7)) using the most recent values for the input
parameters, in particular the latest lattice results from FLAG. Our update
shifts the central value of the SM theory prediction upwards and implies a
1.8� discrepancy from the SM.

4
Note that the matrix element of the vector LR operator is negative, while that of the

LL and RR operators is positive.
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Figure 15: Experimental results on RD and RD⇤ and comparison with the SM prediction. Taken
from Ref. [17] (online update).

additional form factors).
The expressions of the di↵erential decay rates (including the angular dependence)

have been known for some time [86]. In the case of B! D⇤, it is possible to include the
subsequent decay D⇤ ! D⇡, which adds further kinematics variables (in particular the
angle between the D and D⇤ mesons – the corresponding expressions can be found in
Refs. [87–89]).

The decay rates for the heavy ⌧ lepton and the light e and µ leptons di↵er by terms
proportional to m⌧ , meaning that the ratios testing LU with these modes will involve
specific ratios of form factors (e.g. f0/f+ for the D meson, A0/V for the D⇤ meson). This
implies that the SM predictions for the ratios RD, RD⇤ and RJ/ will not be equal to 1,
and that they will rely on information concerning ratios of form factors.

• For B! D`�⌫`, the form factors were evaluated by two di↵erent lattice collabora-
tions, MILC and HPQCD [48,90]. In Ref. [91], the results were combined together
with experimental information from B factories on f+ (assuming no NP in decays
involving light leptons) that leads to very similar results for RD (but not for other
quantities like |Vcb|).

• For B! D⇤`�⌫`, the strong decay of the D⇤ meson makes the theoretical evaluations
of the form factors more complicated. In Ref. [92], these form factors were expressed
using the Heavy-Quark Expansion (HQE) supplemented with estimates of higher-
order corrections and combined with experimental results on B ! D⇤e�⌫e and
B ! D⇤µ�⌫µ, assuming that no NP is present in decays involving light leptons.
Concerns have been raised recently about HQE-based parameterisations of the
B! D(⇤)`�⌫` form factors, potentially a↵ecting the extraction of |Vcb| [93]. However,
fits using di↵erent HQE-inspired parameterisations and combining experimental
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R(D(⇤)) =
Br(B̄ ! D(⇤)⌧⌫)

Br(B̄ ! D(⇤)`⌫)

1 Introduction

The Standard Model (SM) of particle physics has been remarkably successful in ex-

plaining almost all the measurements made till date in accelerator-based experiments,

ranging from a few GeV in centre-of-mass energy to a few hundred GeV. However, de-

viations from the SM expectations approximately at the 2� � 4� level have shown up

in a number of recent measurements involving semi-leptonic B-meson decays, both in

charged current and neutral current channels.

In this work, we focus mainly on the analysis of the charged current anomalies1, namely

RD and RD⇤ defined in the following way

RD(⇤) =
B
�
B ! D

(⇤)
⌧ ⌫

�

B (B ! D(⇤)
0̀ ⌫)

, (1.1)

where the 0̀ stands for either e or µ. The experimental results as well as the SM predic-

tions for RD and RD⇤ are summarised in table 1. We also show two other relevant recent

Observable SM prediction Measurement

0.300± 0.008 [1]

RD 0.299± 0.011 [2] 0.407± 0.046 [3]

0.299± 0.003 [4]

RD⇤ 0.252± 0.003 [5] 0.304± 0.015 [3]

0.260± 0.008 [6]

P⌧ (D⇤) �0.47± 0.04 [6] �0.38± 0.51(stat.) +0.21
�0.16(syst.) [7, 8]

RJ/ 0.290 0.71± 0.25 [9]

Table 1: Observables, their SM predictions and the experimentally measured values. The

experimental averages for RD and RD⇤ shown in the third column are based on [7, 10–15].

The SM prediction of RJ/ is based on the form-factors given in [16], see appendix-B for

more details. As the Bc ! J/ form-factors are not very reliably known, we do not show

any uncertainty for RJ/ . However, it is expected to be similar to that of RD⇤ .

measurements, which are however rather imprecise at the moment – the ⌧ polarisation,

P⌧ (D⇤), in the decay B ! D
(⇤)
⌧ ⌫, and RJ/ , a ratio similar to Eq. 1.1 for the decay

Bc ! J/ ⌧ ⌫. It can be seen from Table 1 that a successful explanation of the RD,D⇤

anomalies requires a new physics (NP) contribution of the order of at least 10 - 20%

of the SM contribution to the branching ratio. As the SM contribution is generated at

1While the statistical significance of these experimental results is not yet large enough to claim a

discovery, we will call them ‘anomalies’ by common usage of the word.
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Figure 1: The vertical red band corresponds to the values of C⌧
VL that satisfy the experimental

measurement of RD within 1�. Similarly, the green (blue) region corresponds to the values

of C⌧
VL and C

⌧
AL that satisfy the experimental measurement of RD⇤ (RJ/ ) within 1�. All

the WCs are defines at the mb scale. The oblique dashed line is the locus of the equation

C
⌧
VL = �C

⌧
AL.

In Fig. 1, we show the regions in the C⌧
VL - C⌧

AL plane that satisfy the experimental data

on RD, RD⇤ and RJ/ within 1�. Note that the uncertainties in the form-factors have

been carefully taken into account in obtaining the various allowed regions. However,

the semi-numerical formulas given in the previous section can be used to qualitatively

understand the results. It can be seen that there is an overlap region (the overlap

between the red and green bands) that successfully explains both RD and RD⇤ . This

overlap region is outside the 1� experimental measurement of RJ/ , but consistent with

RJ/ at ⇡ 1.5 �.

It is interesting that C
⌧
VL = �C

⌧
AL ⇡ 1.1 falls in the overlap region mentioned above.

As we will see in the next section, the relation C
⌧
VL = �C

⌧
AL is expected if SU(2)L ⇥

U(1)Y gauge invariance in linearly realised at the dimension-6 level. Note that the vector

and axial-vector operators do not have anomalous dimensions if only QCD interactions

are considered (see, for example, appendix-E of [51] and also [52]). Hence, we take

C
⌧
VL,AL(⇤) = C

⌧
VL,AL(mb).
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A new TeV-scale scalar?

3.2 Scalar and Pseudo-scalar operators

Here we consider the scalar and pseudo-scalar operators, O⌧
SL and O⌧

PL respectively. In

the left panel of Fig. 2, we show the parameter space that satisfies the individual exper-

imental data on RD, RD⇤ and RJ/ within 1�. As discussed before, while the operator

O⌧
SL contributes to RD only, the operator O⌧

PL contributes only to RD⇤ . This explains

the vertical and horizontal nature of the allowed regions for RD and RD⇤ respectively.

Br(Bc⟶τν)<30%

Br(Bc⟶τν)<10%
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Figure 2: Left panel : the red and green (blue) bands correspond to the values of C⌧
SL and

C
⌧
PL that satisfy the experimental measurement ofRD and RD⇤ (RJ/ ) within 1� respectively.

The values of C⌧
PL that correspond to Br(Bc ! ⌧⌫) < 30% and < 10% are also shown.

Right panel : renormalisation group running of the WCs C⌧
SL and C

⌧
PL.

Note that the operator O⌧
PL directly contributes to the decay Bc ! ⌧⌫ also (refer to

appendix-A for more details). The regions below the two horizontal dashed lines cor-

respond to Br(Bc ! ⌧⌫) < 30% and < 10%, which were claimed to be the indirect

experimental upper bounds by the authors of [53] and [54] respectively. Thus, an ex-

planation of RD⇤ by the operator O⌧
PL is in serious tension with the upper bound on

Br(Bc ! ⌧⌫).

The right panel of Fig. 2 shows the renormalisation group (RG) running (considering

only QCD interactions) of the WCs C⌧
SL and C

⌧
PL from the mb scale to 5 TeV using the

following equation [51],

C(mb) =


↵s(mt)

↵s(mb)

� �

2�
(5)
0


↵s(⇤)

↵s(mt)

� �

2�
(6)
0

C(⇤) , (3.2)

where, � = �8. The values at the mb scale are taken from the allowed bands in the left

panel.
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Figure 3: Left: Likelihood contours in the space of the b ! c⌧⌫⌧ WET scalar operators from

RD and RD⇤ (blue), the combination of Bc ! ⌧⌫, B ! D
(⇤)

⌧⌫ di↵erential rates and
FL(B ! D

⇤
⌧⌫) (green) and the global likelihood (red). Right: Likelihood contours

for the SMEFT Wilson coe�cients matching onto the WET scalar operators for two
choices of flavour indices, choosing the relation between coe�cients that evades the
Bc ! ⌧⌫ constraint. The purple region is allowed by Bs ! ⌧

+
⌧
� and B

+ ! ⌧⌫.

down-type sector. Here the Wilson coe�cient [C(3)
lequ]3332 is defined by the operator

[O(3)
lequ]3332 = (¯̀j3�µ⌫e3)✏jk(q̄

k
3�

µ⌫
u2) . (11)

Consequently, the constraints are qualitatively similar as for WET, as shown in fig. 4 right.
Note that we have included the anomalous magnetic muon and tau in our likelihood, but do
not find a relevant constraint for this simple scenario (cf. [67]).

4.4. B anomalies from new physics in top

A new physics e↵ect in the semi-leptonic SMEFT operator [Ceu]2233 involving two right-handed
muons and two right-handed top quarks was suggested in [64] as a solution to the neutral-
current B anomalies, as it induces a b ! sµµ transition at low-energies via electroweak renor-
malization e↵ects. This e↵ect can be realized in Z

0 models [74]. It was subsequently shown
however that the e↵ect is strongly constrained by the e↵ects it induces in Z ! µ

+
µ
� [75],

which can be cancelled by a simultaneous contribution to [Clu]2233. The result obtained there
can be reproduced with our likelihood by plotting likelihood contours in the plane of these
two Wilson coe�cients at 1 TeV, see fig. 5 left. Here the operators for the Wilson coe�cients
[Ceu]2233 and [Clu]2233 are given by

[Oeu]2233 = (ē2�µe2)(ū3�
µ
u3) , [Olu]2233 = (¯̀2�µ`2)(ū3�

µ
u3) . (12)

At 2�, the two constraints cannot be brought into agreement and the global likelihood is
optimized at an intermediate point.
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Figure 4: Left: Likelihood contours in the space of b ! c⌧⌫⌧ WET scalar and tensor operator

from RD and RD⇤ (blue), the combination of Bc ! ⌧⌫, B ! D
(⇤)

⌧⌫ di↵erential
rates and FL(B ! D

⇤
⌧⌫) (green) and the global likelihood (red). Right: Likelihood

contours for the SMEFT Wilson coe�cients matching onto the WET scalar and
tensor operators.

Figure 5: Left: Likelihood contours in the plane of the SMEFT Wilson coe�cients [Clu]2233 and
[Ceu]2233 at 1 TeV. Right: Likelihood contours in the plane of the SMEFT Wilson

coe�cients [C(1)
lq ]3323 and [C(3)

lq ]3323 at 1 TeV.
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3.4 Combination of Tensor, Scalar and Pseudo-scalar operators

In this section, we consider the scenario in which the scalar, pseudo-scalar and tensor

operators are present simultaneously3. In the upper left panel of Fig. 4, we show the

various allowed regions in the C
⌧
TL - C

⌧
SL plane assuming the relation C

⌧
SL = �C

⌧
PL.

From the upper panel of Fig. 4, it can be seen that a simultaneous explanation of the

RD and RD⇤ anomalies requires C
⌧
SL(mb) = �C

⌧
PL(mb) 2 [0.08, 0.23] and C

⌧
TL(mb) 2

[�0.11,�0.06] (the small overlap of the red and green regions for positive values of C⌧
SL

and negative values of C⌧
TL). We are ignoring the overlap regions with C

⌧
PL > 1 because of

the bound from Br(Bc ! ⌧⌫). There is also an overlap region enclosing C⌧
SL = �C

⌧
PL = 0

and for non-zero C
⌧
TL which corresponds to the tensor solution discussed in the previous

section.
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Figure 4: The red and green (blue) shaded regions in the left panel correspond to the values

of C⌧
SL = �C

⌧
PL and C

⌧
TL that satisfy the experimental measurement of RD and RD⇤ (RJ/ )

within 1� respectively. The small overlap of the red and green regions for positive (negative)

values of C⌧
SL (C⌧

TL) is magnified separately in the middle panel. The right panel shows the

RG evolution of the coupling ratio C
⌧
SL/C

⌧
TL assuming C

⌧
SL/C

⌧
TL = 2 at 3 TeV. See text for

more details.

We would like to comment in passing that there exist scalar leptoquark models that

generate the operator (c̄PL⌫) (⌧̄PLb) at the matching scale4 ⇤, see e.g., [55]. This op-

erator can be written in terms of the operators in Eq. (2.3) after performing the Fierz

3The combination of vector and scalar operators is discussed in appendix C.7.
4This operator arises from a SU(2)L ⇥ U(1)Y gauge invariant operator

⇣
l̄0
k
u
0
⌘
✏jk

⇣
q̄0

j
e
0
⌘
which, by

using Fierz transformation, gives

⇣
l̄0
k
u
0
⌘
✏jk

⇣
q̄0

j
e
0
⌘
= �1

8

"
4
⇣
l̄0
j
e
0
⌘
✏jk

⇣
q̄0

k
u
0
⌘
+

⇣
l̄0
j
�µ⌫e

0
⌘
✏jk

⇣
q̄0

k
�
µ⌫
u
0
⌘#

.

See section 4 below for the notations.
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transformation5,

(c̄PL⌫) (⌧̄PLb) = �1

8

"
2(O⌧

SL �O⌧
PL) +O⌧

TL

#
. (3.3)

Thus, at the matching scale one gets

C
⌧
SL(⇤) = �C

⌧
PL(⇤) = 2C⌧

TL(⇤) . (3.4)

This was our motivation to consider C⌧
SL = �C

⌧
PL in Fig. 4. The ratio C⌧

SL/C
⌧
TL, however,

increases with the decreasing RG scale as shown in the right panel of Fig. 4. Assuming

C
⌧
SL(⇤)/C

⌧
TL(⇤) = 2 for ⇤ = 3 TeV, we get C⌧

SL(mb)/C⌧
TL(mb) ⇡ 4.

Note that, in the above discussion we have considered only real values of the Wilson

coe�cients. Allowing for complex Wilson coe�cients may lead to new possibilities, see

for example [56].

3.5 Distinguishing the various explanations

In the previous subsections we saw that simultaneous explanations of the RD and RD⇤

anomalies are possible by

1. a combination of vector and axial-vector operators (the overlap of red and green

regions in Fig. 1)

2. a combination of scalar and pseudo-scalar operators (the overlap of red and green

regions in Fig. 2)

3. tensor operator only (the region between the two dashed vertical lines in Fig. 3)

4. a combination of scalar, pseudo-scalar and tensor operators (the overlap of red and

green regions in Fig. 4, in particular, the region with positive values of C⌧
SL and

negative values of C⌧
TL.)

The second solution is quite strongly disfavoured by the existing indirect upper bound

on the branching ratio of Bc ! ⌧⌫. So we ignore it here. We also ignore the scenario

with a combination of vector and scalar operators because of the reason mentioned in

the last paragraph of section C.7.

5Note that vector leptoquarks, after Fierz transformation, generate vector operators only in the basis

of section 2. A scenario with vector leptoquarks will be discussed in section 5.3.
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Figure 1. The enhancements of R(D(⇤)) from b ! c⌧N̄R decays for various simplified models. The
world average experimental 1�, 2�, and 3� fit regions are shown in decreasing shade of gray. The
SM point is denoted by a black dot.

below. The W
0 and R̃2 simplified models have only a single free Wilson coefficient and are

constrained to a contour: Since the NR contributions add incoherently to the SM, the phase
of each Wilson coefficient is unphysical. By contrast, �, U1, and S1 have two free Wilson
coefficients, corresponding to two free magnitudes and a physical relative phase, permitting
them to span a region.

Assuming first that all Wilson coefficients are real, we show in Fig. 2 the 0.5�, 1� CLs
(dark, light blue) and 1.5�, 2� CLs (dark, light green) in the relevant Wilson coefficient
spaces for each simplified model. These CLs are generated by the �

2 defined with respect
to the R(D(⇤)) experimental data and correlations (2.14), not including the possible effects
of NP errors. That is,

�
2 = vT

�
�1
R(D(⇤))

v , v =
�
R(D)th �R(D)exp , R(D⇤)th �R(D⇤)exp

�
, (2.16)

The �
2 CLs (dof =2) in Fig 2 then correspond simply to projections of the CL ellipses in

Fig. 1. We will hereafter refer to the minimal �2 points in the WC space for each simplified
model as the model’s ‘best fit’ points with respect to the R(D(⇤)) results (2.14), though it
should be emphasized that this is not the same as a NP WC fit to the experimental data,
which would require inclusion of the NP errors in the underlying experimental fits. In Fig. 2
the best fit points are shown by black dots, with explicit values provided in Table 2. For
the W

0 and R̃2 models, we show the explicit �
2, as well as the intervals corresponding to

1� and 2� CLs (dof = 2).
The additional NP currents from the operators (2.8) also incoherently modify the Bc !

– 6 –

If there are light right-handed Neutrinos, 

c

mN < mBs �mD⇤ �m⌧ ⇡ 1.5GeV
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Figure 9. Sterile neutrino decay modes induced by the NP couplings (left) and by tree level
sterile-active mixing (centre, right).

Model �NR!⌫� lifetime (s)

W
0 c2VR

⇤4
e↵

↵
32⇡8 V

2
cbG

2
F m

2
⌧ m

2
b m

2
c m

3
NR

c
�2
VR 1024 (mNR/keV)�3

R̃2 c
2
SR

↵
32⇡8 V

2
cbG

2
F m

2
b m

3
NR

c
�2
SR 1013 (mNR/keV)�3

U1 c
2
SL

↵
32⇡8 V

2
cbG

2
F m

2
c m

3
NR

c
�2
SL 1014 (mNR/keV)�3

S1 c
2
SR

↵
32⇡8 V

2
cbG

2
F m

2
b m

3
NR

c
�2
SR 1013 (mNR/keV)�3

Table 3. Approximate NR ! ⌫� decay rates (middle column) and lifetimes (final column) for the
mediators listed in the first column. For U1(S1), we only show the contribution from the cSL(cSR)
operators, which are expected to dominate; if these coefficients vanish, the decay rates and lifetimes
get contributions from cVR of the same form as that for the W

0 operator.

the Dirac mass from Eq. 4.2, then convert to the mixing angle via sin ✓ ⇡ mD/mN . For
instance, for S1 this gives �(N ! ⌫�) ⇠ 32↵ sin2 ✓m5

N G
2
F /⇡

4
/g

4. Thus

�(N ! ⌫�)S1

�(NR ! 3⌫)S1

⇡
32⇥ 192↵

⇡ g4
⇠ 103. (4.4)

4.3 Sterile Neutrino Cosmology

The above estimates imply that the sterile neutrino NR can be fairly long-lived. The
interactions with SM fermions mandated by consistency with the R(D(⇤)) anomaly also
lead to copious production of NR in the early Universe. The cosmological aspects of the
sterile neutrino therefore require careful treatment.

The interactions with SM fermions thermalize the NR population with the SM bath
at high temperatures. These interactions are active until the temperature drops below the
masses of the SM fermions involved in these interactions, i.e., around the GeV scale. Since
we have assumed mNR . 100 MeV, the NR abundance is not Boltzmann suppressed, and
NR survives as an additional relativistic neutrino species in the early Universe. It then
becomes crucial to determine the fate of this NR population.

For the R̃2, U1, and S1 mediated models, it follows from Table 3 that the NR lifetime
is ⇠ 1014(mNR/keV)�3 s. For mNR ⇠ O(eV–keV), this implies a late decay of the NR

population into the �⌫ channel, which injects an unacceptable amount of photons into the

– 19 –
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[Mannel, Rusov, Shahriaran, 1702.01089]

SM NP Experiment

Br(B+ ! D
0
⌧
+
⌫⌧ ) (0.75± 0.13) % 0.93 % (0.91± 0.11) %

Br(B+ ! D
⇤0
⌧
+
⌫⌧ ) (1.25± 0.09) % 1.65 % (1.77± 0.11) %

Br(B+ ! Xc⌧
+
⌫⌧ ) (2.37± 0.08) % (3.15± 0.19) % (2.41± 0.23) %

Table 5: Summary of predictions for di↵erent mode of semitauonic B-meson decays in the
framework of SM and including NP e↵ects in comparison with relevant experimental data. NP
predictions presented here correspond to the first scenario for parameters ↵, � (4.8). We do not
quote an uncertainty for the exclusive NP calculations; for fixed {↵, �} the uncertainties are of
the same size as the SM ones.

the one-sigma intervals for Br(B+ ! Xc⌧
+
⌫⌧ ): the red band is our SM prediction (2.26), the

green area represents the LEP measurement (2.29), and the blue band is our prediction for
inclusive B

+ ! Xc⌧
+
⌫⌧ decay including the contribution (4.1) from NP (specified in Tab. 5).

The error estimate of the latter value contains also the uncertainties from ↵ and �, including
the correlation between them. The NP prediction brings the inclusive rate into agreement with
the data on exclusive decays, but is now in visible tension with the LEP data.

Recently, the constraints on NP in the b ! c⌧ ⌫̄ transition from the tauonic Bc decay have
been discussed, however, with a di↵erent ansatz for the NP operators [24, 25, 26]. In fact,
adding the new physics contribution (4.1) yields a modification of the decay rate Bc ! ⌧ ⌫̄,
which reads

�(Bc ! ⌧ ⌫̄⌧ ) =
Mm

2
⌧
f
2
Bc
G

2
F
|Vcb|2

8⇡

✓
1� m

2
⌧

M2

◆2 ����1� ↵� M
2

m⌧ (mb +mc)
�

����
2

, (4.10)

where M is the mass of the Bc meson and fBc is its decay constant, defined in the usual way.
It has been pointed out in [24] that even relatively small values of � may have a significant
e↵ect in the decay rate, since the pre-factor M2

/(m⌧ (mb +mc)) ⇠ 4 enhances the contribution
of OS�P .

Using the parametrization (4.1) together with our fit values implies a reduction of the tauonic
branching fraction for the Bc compared to the SM, since the extracted value of � = 0.35 is
positive and yields in combination with the corresponding pre-factor the relative contribution
of order ⇠ 1 but with a opposite sign compared to (1 � ↵) contribution, as one can see from
(4.10). We conclude that the width of leptonic Bc ! ⌧ ⌫̄⌧ decay including our parametrization
of NP is not in tension with the measured Bc lifetime.

Thus we arrive at a di↵erent conclusion compared to [24]. However, the reason is that we
dropped the assumption that only the leading order in the SMEFT expansion is taken into
account. Thus, attributing a possible NP e↵ect leading to the R(D(⇤)) puzzle to dimension-
eight operators can lift the constraint obtained in [24]. We have pursued a di↵erent purpose
with this simple model, but this observation might deserve a more detailed analysis.
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e↵ect in the decay rate, since the pre-factor M2
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Using the parametrization (4.1) together with our fit values implies a reduction of the tauonic
branching fraction for the Bc compared to the SM, since the extracted value of � = 0.35 is
positive and yields in combination with the corresponding pre-factor the relative contribution
of order ⇠ 1 but with a opposite sign compared to (1 � ↵) contribution, as one can see from
(4.10). We conclude that the width of leptonic Bc ! ⌧ ⌫̄⌧ decay including our parametrization
of NP is not in tension with the measured Bc lifetime.

Thus we arrive at a di↵erent conclusion compared to [24]. However, the reason is that we
dropped the assumption that only the leading order in the SMEFT expansion is taken into
account. Thus, attributing a possible NP e↵ect leading to the R(D(⇤)) puzzle to dimension-
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0.91 + 1.77 = 2.68

The most recent calculation of the inclusive cross section…



A combined explanation?



• Anomalies in neutral and charged b -> 2nd 
generation transition can be described by 
leptoquark currents

• However, one needs leptoquarks with different 
properties

b ! s b ! c

�

b ⌫

c
⌧

�

b µ

s
µ

M� = 35TeV⇥p
gsµgbµ M� = 1TeV⇥p

gb⌫gc⌧

A combined explanation?



• What are the quantum numbers of a successful 
candidate

A combined explanation?

Model RK(⇤) RD(⇤) RK(⇤) & RD(⇤)

S1 7⇤ X 7⇤

R2 7⇤ X 7

fR2 7 7 7

S3 X 7 7

U1 X X X

U3 X 7 7

Table 2: Summary of the LQ models which can accommodate RK(⇤) (first column), RD(⇤) (sec-

ond column), and both RK(⇤) and RD(⇤) (third column) without inducing other phenomenological

problems. The symbol 7⇤
means that the discrepancy can be alleviated, but not fully accommo-

dated. See text for details.

with findings of Ref. [45]. A slightly non-minimalistic possibility is to build a model with
two di↵erent scalar leptoquarks, as explored for S1 and S3 in Ref. [45, 69, 70], and for R2

and S3 in Ref. [67]. Note that our conclusions can also serve as a guideline for future
studies if one of the anomalies disappears.

6 Revisiting U1 = (3,1)2/3

In this Section we discuss in more detail the phenomenological status of the scenario U1.
We will use the low-energy physics observables which receive the tree-level contributions
from the U1 exchange to constrain the model parameters. We will also compare these
results with the ones deduced from the experimental bounds based on direct searches at
the LHC. Furthermore, we will make a brief comment concerning the loop e↵ects.

6.1 Low-energy constraints

To satisfy both RK(⇤) < RSM
K(⇤) and RD(⇤) > RSM

D(⇤) we will assume the following structure for
the Yukawa matrices:

xL =

0

@
0 0 0
0 xsµ

L xs⌧
L

0 xbµ
L xb⌧

L

1

A , xR = 0 , (39)

where the couplings to the first generation are set to zero in order to avoid the conflicts
with experimental limits on µ � e conversion on nuclei, the atomic parity violation and
on B(K ! ⇡⌫⌫̄). To determine the region allowed by Rexp

K(⇤) , we compare the result of the

21

[Angelescu et al, 1808.08179]
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D(⇤) we will assume the following structure for
the Yukawa matrices:

xL =

0

@
0 0 0
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L

0 xbµ
L xb⌧

L

1

A , xR = 0 , (39)

where the couplings to the first generation are set to zero in order to avoid the conflicts
with experimental limits on µ � e conversion on nuclei, the atomic parity violation and
on B(K ! ⇡⌫⌫̄). To determine the region allowed by Rexp

K(⇤) , we compare the result of the

21

Figure 7: The correlation between the couplings xs⌧L and xb⌧L allowed by flavor constraints is

plotted for mU1 = 1.5 TeV. Gray points are excluded by current LHC data (36 fb
�1

) on pp ! ``
(` = µ, ⌧). The future LHC sensitivity is depicted by the red points, which were obtained by

extrapolating current data to 300 fb
�1

, as discussed in Sec. 4.2. Blue points are allowed by all

constraints, including the extrapolated LHC results to 300 fb
�1

.

Next, we show in Fig. 8 the correlations between xbµ
L and xs⌧

L (left panel) and between
xb⌧
L and xsµ

L (right panel). The color code remains the same as before and the red (blue)
dashed lines correspond to the LHC limits obtained at 36 fb�1 (300 fb�1), but assuming
for simplicity that the couplings which are not present in a given plot are set to zero. 11 It
is clear from Eq. (30) that in order to explain the measured deviation with respect to the
SM in the b ! sµµ transitions, both xsµ

L and xbµ
L need to be di↵erent from zero. Moreover,

as discussed in the case of Fig. 7, current and future LHC limits provide a lower bound
on |xs⌧

L |, while Rexp
D(?) sets a lower limit on |xb⌧

L |. These considerations have an important
impact on the LFV decays, as we discuss below.

We finally show in Fig. 9 our prediction for the correlation of two LFV observables,
B(⌧ ! µ�) and B(B ! Kµ⌧), with the hatched black lines denoting the current ex-
perimental bounds on these processes. Again, mU1 is set to 1.5 TeV. As mentioned in the
previous paragraph, the fact that the LHC sets a lower bound on the absolute value of |xs⌧

L |
has a dramatic impact on the amount of LFV predicted by the U1 model: as can be seen in
Fig. 9. Interestingly, we see that the current LHC bounds lead to B(B ! Kµ⌧) & 2⇥10�7,

11
Setting other couplings to zero to get the dashed regions in these plots is the reason why some of the

red points remain within the dashed blue rectangles (because for these points the other couplings which

are not in the plot are not set to zero).
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• A vector LQ at the TeV scale?

[MB, Neubert, 1511.01900 ]
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A combined explanation?

is the Pati-Salam Leptoquark !

Pati and Salam proposed to combine Lepton number and 
color in a single gauge group

[Pati, Salam, 1974]

SU(4)C ⇥ SU(2)L ⇥ SU(2)R
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Uµ
1

Uµ
1 Z 0µ

G = (8,1)0
Z 0 = (1,1)0

Problematic because K ! µe M & 100TeV

[Barbieri, Murphy, Senza 1611.04930]
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on B(K ! ⇡⌫⌫̄). To determine the region allowed by Rexp
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A combined explanation?

is the Pati-Salam Leptoquark ! [Pati, Salam, 1974]

Needs more work

h
SU(4)C ⇥ SU(2)L ⇥ SU(2)R

i3 [Bordone, Cornella, Fuentes-Martin, 
Isidori,  1712.01368 ]

SU(4)C ⇥ SU(3)0 ⇥ SU(2)L ⇥ U(1)0 [Greljo, Stefanel  1802.04274]

SU(4)C ⇥ SU(2)L ⇥ SU(2)R [Blanke, Crivellin  1801.07256]

in warped extra dimension 
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Figure 24: Projected uncertainty for various RHc ratios from the Belle-II and LHCb experiments
(years are indicative). The Belle-II uncertainties include estimates of the evolution of the
systematic uncertainties. The systematic uncertainties at LHCb are assumed to scale with the
accumulated statistics until they reach limits at 0.003, 0.004 and 0.012 for RD⇤ , RD and RJ/ ,
and 0.006 for both RDs and R⇤c .

Figure 25: Projected uncertainty for various RHs ratios from the Belle-II and LHCb experiments
(years are indicative) in the range ⇠ 1 < q

2
< 6 GeV2

/c
4. The Belle-II values include estimates

of the evolution of the systematic uncertainties (for RK⇤ , the charged and neutral channels have
been combined). The LHCb uncertainties are statistical only (the precision of all measurements
will be dominated by the size of the available data samples except for RK and RK⇤ at 300 fb�1).
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Future Prospects

[Bifani et al, 1809.06229]
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Figure 4: The di↵erential branching fraction of B+! ⇡+µ+µ� in bins of dilepton invariant mass
squared, q2, compared to SM predictions taken from Refs. [1] (APR13), [6] (HKR15) and from
lattice QCD calculations [7] (FNAL/MILC15).

and in the region 15.0 < q2 < 22.0GeV2/c4 is

B(B+! ⇡+µ+µ�)

B(B+! K+µ+µ�)
= 0.037± 0.008 (stat)± 0.001 (syst) .

These results are the most precise measurements of these quantities to date.

5.2 CKM matrix elements

The ratio of CKM matrix elements |Vtd/Vts| can be calculated from the ratio of branching
fractions, B(B+ ! ⇡+µ+µ�)/B(B+ ! K+µ+µ�), and is given in terms of measured
quantities

|Vtd/Vts|2 =
B(B+! ⇡+µ+µ�)

B(B+! K+µ+µ�)
⇥

R
FKdq2R
F⇡dq2

(3)

where F⇡(K) is the combination of form factor, Wilson coe�cients and phase space factor for
the B+ ! ⇡(K) decay. The values of

R
F⇡,Kdq2 are calculated using the EOS package [29],

with B+ ! ⇡+ form factors taken from Refs. [30,31] and B+ ! K+ form factors taken from
Ref. [32]. The EOS package is a framework for calculating observables, with uncertainties,
in semileptonic b-quark decays for both SM and new physics parameters. In order to
take into account the correlations between the theory inputs for the matrix element ratio
calculation, the EOS package is used to produce a PDF as a function of the B+! ⇡+µ+µ�

9

Future Prospects

[LHCb,1804.07167]

Lepton Non-Universality in b→d transitions?
Search for B0

s ! K⇤µ+µ�

• FCNC b ! d`` transition, CKM-suppressed with respect to b ! s`` in
the SM (B ⇠ O(10

�8
))

• Interesting to probe MFV nature of new physics

• First evidence of this decay is observed with a significance of 3.4�

• The branching ratio is estimated using B0 ! K⇤J/ 

B(B0
s ! K⇤µ+µ�

) = (3.0 ± 1.0(stat) ± 0.2(syst) ± 0.3(ext)) ⇥ 10
�8

P. Álvarez Cartelle (ICL) Flavour anomalies @ LHCb 16/38

16/25
Dataset: Run1 (3 fb

�1
) + Run2 (1.6 fb

�1
)

[LHCb-PAPER-2018-004 in preparation]

`+

`�

b

`+

`�

b s

d

⇡ Vtd

Vts
⇡ 1

32

]2c [MeV/−µ+µm
5000 5200 5400 5600 5800 6000

)2
C

an
di

da
te

s /
 ( 

50
 M

eV
/c

0

5

10

15

20

25

30

35 Total
−µ+µ → s

0B
−µ+µ → 0B

Combinatorial
−h'+ h→ (s)

0B

µν+µ)−(K−π → (s)
0B

−µ+µ0(+)π → 0(+)B

µν
−µ p→ b

0Λ

µν
+µψ J/→ +

cB

LHCb
BDT > 0.5

Figure 1: Mass distribution of the selected B0
(s) ! µ+µ� candidates (black dots) with BDT > 0.5.

The result of the fit is overlaid, and the di↵erent components are detailed.

of 4.6% and 10.9%, respectively. The dependence is approximately linear in the physically
allowed Aµ+µ�

�� range.
For the B0

s ! µ+µ� lifetime determination, the data are background-subtracted with
the sPlot technique [41], using a fit to the dimuon mass distribution to disentangle signal
and background components statistically. Subsequently, a fit to the signal decay-time
distribution is made with an exponential function multiplied by the acceptance function
of the detector. The B0

s candidates are selected using criteria similar to those applied
in the branching fraction analysis, the main di↵erences being a reduced dimuon mass
window, [5320, 6000]MeV/c2, and looser particle identification requirements on the muon
candidates. The former change allows the fit model for the B0

s ! µ+µ� signal to be
simplified by removing most of the B0 ! µ+µ� and exclusive background decays that
populate the lower dimuon mass region, while the latter increases the signal selection
e�ciency. Furthermore, instead of performing a fit in bins of BDT, a requirement of BDT
> 0.55 is imposed. All these changes minimise the statistical uncertainty on the measured
e↵ective lifetime. This selection results in a final sample of 42 candidates.

The mass fit includes the B0
s ! µ+µ� and combinatorial background components.

The parameterisations of the mass shapes are the same as used in the branching fraction
analysis. The correlation between the mass and the reconstructed decay time of the
selected candidates is less than 3%.

The variation of the trigger and selection e�ciency with decay time is corrected for in
the fit by introducing an acceptance function, determined from simulated signal events
that are weighted to match the properties of the events seen in data. The use of simulated
events to determine the decay-time acceptance function is validated by measuring the
e↵ective lifetime of B0 ! K+⇡� decays selected in data. The measured e↵ective lifetime
is 1.52 ± 0.03 ps, where the uncertainty is statistical only, consistent with the world

6

Search for B0

s ! K⇤µ+µ�

• FCNC b ! d`` transition, CKM-suppressed with respect to b ! s`` in
the SM (B ⇠ O(10

�8
))

• Interesting to probe MFV nature of new physics

• First evidence of this decay is observed with a significance of 3.4�

• The branching ratio is estimated using B0 ! K⇤J/ 

B(B0
s ! K⇤µ+µ�

) = (3.0 ± 1.0(stat) ± 0.2(syst) ± 0.3(ext)) ⇥ 10
�8

P. Álvarez Cartelle (ICL) Flavour anomalies @ LHCb 16/38

16/25
Dataset: Run1 (3 fb

�1
) + Run2 (1.6 fb

�1
)

[LHCb-PAPER-2018-004 in preparation]

Bd ! µ+µ�
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Figure 16: Constraints from current (upper panel) and future (lower panel) experiments on a U(1)Lµ�L⌧

gauge boson with gauge coupling gµ�⌧ = ✏ e. Additional constraints from supernova cooling are not
shown (see Section 3.6).

4.4 U(1)Lµ�L⌧

This group exhibits the biggest changes compared to the case of pure kinetic mixing, due to suppressed
couplings to hadrons and electrons. The best current limits arise from experiments and observations that
only require one kinetic mixing factor. In addition, there is the BBN limit from [14].11 Importantly, we
note that there is still room for an explanation of the (g � 2)µ anomaly [13]12. This makes it particularly
attractive for future experimental probes. While SHiP will cover a large region of parameter space it
will not reach the area suggested by (g � 2)µ. This area will be probed by COHERENT [113] but
most decisively by the proposed muon run of NA64µ [18, 52]. The additional region of projected SHiP
sensitivity for MA0 > 2mµ is a consequence of high statistics and the unsuppressed Br(A0

! µ
+
µ
�
).

11For this limit we show the coupling range displayed in [14] as solid. For weaker couplings the region is hatched. A
determination of the decoupling of the gauge boson in the early universe would require a more sophisticated analysis.

12For similar discussions around flavor-changing couplings we refer to [128, 129].
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New Physics ?
New gauge bosons 

This gauge group 
is special, because 
it is anomaly-free 
and predicts no 
FCNCs at tree-
level. 

Because mass matrices are diagonal already!

LZ0 = ¯̀g0

0

@
0 0 0
0 1 0
0 0 �1

1

A �µZ 0
µ`+
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@
me 0 0
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Figure 6: Regions in ALP coupling space where the experimental value of (g � 2)µ is reproduced
at 68% (red), 95% (orange) and 99% (yellow) confidence level (CL), for di↵erent values of ma. We
assume Kaµ(⇤) = 0 at ⇤ = 1TeV and neglect the tiny contribution proportional to C�Z . For
ma > 2mµ, the gray regions are excluded by a dark-photon search in the e+e� ! µ+µ� + µ+µ�

channel performed by BaBar [84].

is of order ⇤/TeV, while the other one can be of similar order or larger. Since cµµ enters
observables always in combination with mµ, it is less constrained by perturbativity than C��.

An important constraint on the ALP–photon and ALP–muon couplings, C�� and cµµ,
can be derived from a search for light Z

0 bosons performed by BaBar, which constrains the
resonant production of muon pairs in the process e+e� ! µ

+
µ
� + Z

0
! µ

+
µ
� + µ

+
µ
� [84].

The Feynman diagrams contributing to this process at tree level (and for me = 0) are shown
in Figure 7. Neglecting the electron mass and averaging over the initial-state polarizations,
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µ µ µ

� �

µ

aZ/�µµ

µ a

Figure 5: One-loop diagrams contributing to the anomalous magnetic moment of the muon.

They are positive and satisfy h1,2(0) = 1 as well as h1(x) ⇡ (2/x)(ln x �
11

6
) and h2(x) ⇡

(ln x+ 3

2
) for x � 1. The scheme-dependent constant �2 = �3 is again related to the treatment

of the Levi–Civita symbol in d dimensions, see Appendix C.
Note that in processes in which the ALP only appears in loops but not as an external

particle, the scale dependence arising from the UV divergences of the ALP-induced loop con-
tributions are canceled by the scale dependence of a Wilson coe�cient in the D = 6 e↵ective
Lagrangian of the SM. In the present case the relevant term yielding a tree-level contribution
to aµ reads (written in the broken phase of the electroweak theory)

L
D=6

e↵
3 �Kaµ

emµ

4⇤2
µ̄ �µ⌫F

µ⌫
µ . (39)

In order to calculate the Wilson coe�cient Kaµ one would need to consider a specific UV
completion of the e↵ective Lagrangian (1). The large logarithm in the term proportional to
C�� in (37) is, however, una↵ected by this consideration. The coe�cient we obtain for this
logarithm agrees with [11] (the remaining finite terms were not displayed in this reference).
Two-loop light-by-light contributions proportional to (C��/⇤)2 have been estimated in [11]
and were found to be approximately given by

�aµ

��
LbL

⇡
m

2

µ

⇤2

12↵3

⇡
C

2

�� ln2
µ
2

m2
µ

. (40)

For µ = ⇤ = 1TeV this evaluates to �aµ|LbL ⇡ 5.6 · 10�12
C

2

��. In the region of parameter
space we consider, where |C��|/⇤ . 2TeV�1 (see below), the impact of this e↵ect is tiny.

In our numerical analysis, we will assume that the contribution of Kaµ(µ) is subleading
at the high scale µ = ⇤. If the Wilson coe�cients cµµ and C�� are of similar magnitude,
the logarithmically enhanced contribution is the parametrically largest one-loop correction. It
gives a positive shift of aµ provided the product cµµ C�� is negative. The correction propor-
tional to C�Z is suppressed by (1 � 4s2w) and hence is numerically subdominant. Note also
that the contribution proportional to (cµµ)2 is suppressed in the limit where m

2

a � m
2

µ, while
the remaining terms remain unsuppressed.

Figure 6 shows the regions in the parameter space of the couplings cµµ and C�� in which
the experimental value of the muon anomalous magnetic moment can be explained in terms
of the ALP-induced loop corrections shown in Figure 5, without invoking a large contribution
from the unknown short-distance coe�cient Kaµ(⇤). There is a weak dependence on the ALP
mass, such that the allowed parameter space increases for m

2

a � m
2

µ. Interestingly, we find
that an explanation of the anomaly is possible without much tuning as long as one coe�cients
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Figure 7: Tree-level Feynman diagrams contributing to the process e+e� ! µ+µ�a.

we obtain for the cross section

�(e+e� ! µ
+
µ
�
a) =

↵
2

3⇡⇤2

h
I��(r, ✏)

��e2 C��

��2 + ✏ I�µ(r, ✏) Re
�
e
2
C�� c

⇤
µµ

�
+ ✏ Iµµ(r, ✏) |cµµ|

2

i
,

(41)
where r = m

2

a/s and ✏ = m
2

µ/s are dimensionless ratios, and
p
s ⇡ 10.58GeV is the center-

of-mass energy. Note that the contributions involving the ALP–muon coupling are chirally
suppressed by a factor ✏ = m

2

µ/s and hence are numerically very small in the region where
C�� and cµµ take values of similar magnitude. The contributions involving the ALP–photon
coupling are logarithmically divergent in the limit mµ ! 0. Neglecting terms of O(✏) and
higher in the coe�cient functions, which is an excellent approximation numerically, we find

I��(r, ✏) =
2

3
(1 � r)3 ln

(1 � r)2

✏
�

2

3
(3 � r) r2 ln r �

7 � 17r + 17r2 � 7r3

3
,

I�µ(r, ✏) = (1 � r)2

8 Li2(1 � r) + 2 ln r ln

(1 � r)2

✏
+ ln2

r

�
� (3 + 4r + 3r2) ln r � 5(1 � r

2) ,

Iµµ(r, ✏) = r
2


1

4
ln2

r � ln r ln(1 + r) � Li2(�r) �
⇡
2

12

�
�

1 � 2r � 3r2

4
ln r �

1 � 4r + 3r2

2
.

(42)
In order to compute the resonant e

+
e
�

! µ
+
µ
�
a ! µ

+
µ
�
µ
+
µ
� cross section, we need to

multiply expression (41) with the a ! µ
+
µ
� branching ratio. Assuming that only the Wilson

coe�cients C�� and cµµ are non-zero, and that the ALP couplings to charged leptons are flavor
universal, we obtain (for ma > 2mµ)

Br(a ! µ
+
µ
�) =

m2
µ

2m2
a

q
1 �

4m2
µ

m2
a

|cµµ|
2

|e2 C��|
2 +

P
`

m2
`

2m2
a

q
1 �

4m2
`

m2
a

|cµµ|
2

, (43)

where the sum in the denominator extends over all lepton flavors with 2m` < ma. If additional
decay channels were present, the bounds derived below would become weaker.

At one-loop order, the e↵ective ALP–photon coupling receives contributions proportional
to cµµ, which have been shown in (13) and (22). These loop-induced e↵ects contribute to
(41) at a level comparable to the chirally-suppressed tree-level contributions involving cµµ. In
order to properly account for the full dependence on cµµ, one should thus use the e↵ective
ALP–photon coupling

C
e↵

�� = C�� + cµµ

X

`=e,µ,⌧

B1(⌧`)

16⇡2
(44)
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Figure 7: Tree-level Feynman diagrams contributing to the process e+e� ! µ+µ�a.

we obtain for the cross section

�(e+e� ! µ
+
µ
�
a) =

↵
2

3⇡⇤2

h
I��(r, ✏)

��e2 C��

��2 + ✏ I�µ(r, ✏) Re
�
e
2
C�� c

⇤
µµ

�
+ ✏ Iµµ(r, ✏) |cµµ|

2

i
,

(41)
where r = m

2

a/s and ✏ = m
2

µ/s are dimensionless ratios, and
p
s ⇡ 10.58GeV is the center-

of-mass energy. Note that the contributions involving the ALP–muon coupling are chirally
suppressed by a factor ✏ = m

2

µ/s and hence are numerically very small in the region where
C�� and cµµ take values of similar magnitude. The contributions involving the ALP–photon
coupling are logarithmically divergent in the limit mµ ! 0. Neglecting terms of O(✏) and
higher in the coe�cient functions, which is an excellent approximation numerically, we find

I��(r, ✏) =
2

3
(1 � r)3 ln

(1 � r)2

✏
�

2

3
(3 � r) r2 ln r �

7 � 17r + 17r2 � 7r3

3
,

I�µ(r, ✏) = (1 � r)2

8 Li2(1 � r) + 2 ln r ln

(1 � r)2

✏
+ ln2

r

�
� (3 + 4r + 3r2) ln r � 5(1 � r

2) ,

Iµµ(r, ✏) = r
2


1

4
ln2

r � ln r ln(1 + r) � Li2(�r) �
⇡
2

12

�
�

1 � 2r � 3r2

4
ln r �

1 � 4r + 3r2

2
.

(42)
In order to compute the resonant e

+
e
�

! µ
+
µ
�
a ! µ

+
µ
�
µ
+
µ
� cross section, we need to

multiply expression (41) with the a ! µ
+
µ
� branching ratio. Assuming that only the Wilson

coe�cients C�� and cµµ are non-zero, and that the ALP couplings to charged leptons are flavor
universal, we obtain (for ma > 2mµ)

Br(a ! µ
+
µ
�) =

m2
µ

2m2
a

q
1 �

4m2
µ

m2
a

|cµµ|
2

|e2 C��|
2 +

P
`

m2
`

2m2
a

q
1 �

4m2
`

m2
a

|cµµ|
2

, (43)

where the sum in the denominator extends over all lepton flavors with 2m` < ma. If additional
decay channels were present, the bounds derived below would become weaker.

At one-loop order, the e↵ective ALP–photon coupling receives contributions proportional
to cµµ, which have been shown in (13) and (22). These loop-induced e↵ects contribute to
(41) at a level comparable to the chirally-suppressed tree-level contributions involving cµµ. In
order to properly account for the full dependence on cµµ, one should thus use the e↵ective
ALP–photon coupling

C
e↵

�� = C�� + cµµ

X

`=e,µ,⌧

B1(⌧`)

16⇡2
(44)
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An axion-like particle 3

where �(x, y) = (1� x� y)2 � 4xy, and we have defined

CZh ⌘ C(5)
Zh + v2

2⇤2 C
(7)
Zh . Integrating out the top-quark

yields the one-loop contributions �CZh ⇡ �0.016 ctt and
�Cah ⇡ 0.173 c2tt [23]. For natural values of the Wilson
coe�cients the rates in (6) can give rise to large branch-
ing ratios. For instance, one finds Br(h ! Za) = 0.1
for |CZh|/⇤ ⇡ 0.34TeV�1 and Br(h ! aa) = 0.1
for |Cah|/⇤2

⇡ 0.62TeV�2. Even in the absence of
large tree-level contributions, the loop-induced top-quark
contribution yields Br(h ! aa) = 0.01 for |ctt|/⇤ ⇡

1.04TeV�1, while a combination of the top-quark contri-

bution and the dimension-7 contribution from C(7)
Zh can

give Br(h ! Za) = O(10�3) without tuning. With
such rates, large samples of ALPs will be produced
in Run-2 of the LHC. The model-independent bound
Br(h ! BSM) < 0.34 derived from the global analysis
of Higgs couplings [29] implies |CZh|/⇤ . 0.72TeV�1

and |Cah|/⇤2 < 1.34TeV�2 at 95% CL.
If the ALP is light or weakly coupled to SM fields,

its decay length can become macroscopic, and hence
only a small fraction of ALPs decay inside the detec-
tor. Since to good approximation Higgs bosons at the
LHC are produced along the beam direction, the average
decay length of the ALP perpendicular to the beam is
L?
a (✓) = sin ✓ �a�a/�a, where ✓ is the angle of the ALP

with respect to the beam axis in the Higgs-boson rest
frame, �a and �a are the usual relativistic factors in that
frame, and �a is the total decay width of the ALP. If the
ALP is observed in the decay mode a ! XX̄, we can
express its total width in terms of the branching fraction
and partial width for this decay, i.e.

L?
a (✓) = sin ✓

p
�2
a � 1

Br(a ! XX̄)

�(a ! XX̄)
. (7)

The boost factor is �a = (m2
h � m2

Z + m2
a)/(2mamh)

for h ! Za and �a = mh/(2ma) for h ! aa. As a
consequence, only a fraction of events given by

fdec = 1�
D
e�Ldet/L

?
a (✓)

E
, (8)

where the brackets mean an average over solid angle, de-
cays before the ALP has traveled a distance Ldet set by
the relevant detector components. We define the e↵ective
branching ratios

Br(h ! Za ! `+`�XX̄)
��
e↵

= Br(h ! Za)

⇥ Br(a ! XX̄) fdec Br(Z ! `+`�) , (9)

Br(h ! aa ! 4X)
��
e↵

= Br(h ! aa) Br(a ! XX̄)2 f2
dec ,

where Br(Z ! `+`�) = 0.0673 for ` = e, µ. If the
ALPs are observed in their decay into photons, we re-
quire Ldet = 1.5m, such that the decay occurs be-
fore the electromagnetic calorimeter. For a given value
of the Wilson coe�cients CZh or Cah, we can now
present the reach of high-luminosity LHC searches for

��-� ��-� ��-� � ���

���

�

��-�

��-�

FIG. 3. Constraints on the ALP mass and coupling to pho-
tons derived from various experiments (colored areas without
boundaries, adapted from [5]) along with the parameter re-
gions (shaded in light green) that can be probed in LHC Run-
2 (300 fb�1 integrated luminosity) using the Higgs decays h !
Za ! `+`��� (top) and h ! aa ! 4� (bottom). We require
at least 100 signal events in each channel. The contours in
the upper panel correspond to |CZh|/⇤ = 0.72TeV�1 (solid),
0.1TeV�1 (dashed) and 0.015TeV�1 (dotted). Those in the
lower panel refer to |Cah|/⇤2 = 1TeV�2 (solid), 0.1TeV�2

(dashed) and 0.01TeV�2 (dotted). The red band shows the
preferred parameter space where the (g�2)µ anomaly can be
explained at 95% CL.



The anomalous magnetic moment of the electron
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A Tale of Two Anomalies
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A recent improved determination of the fine structure constant, ↵ = 1/137.035999046(27), leads to
a ⇠ 2.4� negative discrepancy between the measured electron anomalous magnetic moment and the
Standard Model prediction. That situation is to be compared with the muon anomalous magnetic
moment where a positive ⇠ 3.7� discrepancy has existed for some time. A single scalar solution
to both anomalies is shown to be possible if the two-loop electron Barr-Zee diagrams dominate the
scalar one-loop electron anomaly e↵ect and the scalar couplings to the electron and two photons are
relatively large. We also briefly discuss the implications of that scenario.

So far, neither the LHC experiments nor direct
searches for dark matter (DM) have uncovered any signs
of a “natural” Higgs sector nor weak scale dark matter
states. However, there have been mild deviations from
the Standard Model (SM) predictions over the years. Of
these, a long-standing one is the ⇠ 3.7� discrepancy be-
tween experiment [1, 2] and theory (see, for example,
Refs. [3, 4]) for the muon anomalous magnetic moment
aµ ⌘ (gµ � 2)/2

�aµ ⌘ a
exp
µ

� a
th
µ

= (274± 73)⇥ 10�11
, (1)

which has withstood various theoretical refinements and
is being currently remeasured at Fermilab with higher
precision. While the final word on gµ � 2 remains to be
decided by the new measurements and ongoing theoreti-
cal improvements of the SM prediction, the deviation has
been a subject of intense phenomenological interest. As
new physics at the TeV scale gets more constrained, the
parameter space for weak scale models that could explain
gµ � 2 starts to close.

Meanwhile, the search for new “dark” or “hidden”
states at low mass scales <

⇠ 1 GeV has recently been
getting increasing attention [5, 6], partially spurred by
astrophysical considerations related to DM models [7]
and perhaps also by the dearth of indications for new
high energy phenomena. In fact, gµ � 2 has emerged as
an interesting target for dark sector searches, since light
states with feeble couplings to the SM can in principle
explain the anomaly. An early and motivated possibility
was o↵ered by the “dark photon” hypothesis, where a
new vector boson that kinetically mixes with the photon
[8] could have provided a solution [9]. This idea and its
simple extensions have now been essentially ruled out.
However, other light states from a dark sector, for ex-
ample a light scalar that very weakly couples to muons,
could still furnish a potential solution [10].

A recent precise determination of the fine structure
constant, ↵, has introduced a new twist to this story.

⇤
email: hooman@bnl.gov

†
email: marciano@bnl.gov

An improvement in the measured h/MCs of atomic Ce-
sium, where h is Planck’s constant, used in conjunction
with other precisely known mass ratios and the Rydberg
constant leads to the new best value [11]

↵
�1(Cs) = 137.035999046(27). (2)

(For a detailed explanation of that prescription and its
use in determining the SM prediction for the electron
anomalous magnetic moment, ae = (ge � 2)/2, see the
articles by G. Gabrielse in Ref. [12].) As a result, com-
parison of the theoretical prediction of aSM

e
[13] with the

existing experimental measurement of aexp
e

[14, 15] now
leads to a discrepancy

�ae ⌘ a
exp
e

� a
SM
e

(3)

= [�87± 28 (exp)± 23 (↵)± 2 (theory)]

⇥ 10�14
,

or when the uncertainties are added in quadrature

�ae = (�87± 36)⇥ 10�14
. (4)

The above result represents a 2.4� discrepancy that is
opposite in sign from the long standing muon discrep-
ancy previously mentioned and larger in magnitude than
lepton-mass-scaling m

2
e
/m

2
µ
might suggest.

Note that the discrepancy in Eqs. (3) and (4) results
from an improvement in ↵

�1 from 137.035998995(85)
which previously [13] gave �ae = �130(77)⇥ 10�14 and
represented a 1.7� e↵ect. The central value has de-
creased in magnitude, but its significance has increased.
The errors from the experimental determinations of ae
and ↵ are now the dominant sources of uncertainty
and they are expected to further improve in the near
future. An alternative perspective is that ↵

�1(ae) =
137.035999149(33), derived from a comparison of ae the-
ory [13] and experiment [14, 15], di↵ers by 2.4� from
Eq. (2), and follow-up experimental improvements may
resolve the current discrepancy or significantly diminish
its magnitude.

Interestingly, dark photon models [9] and their sim-
ple extensions predict a one-loop positive deviation for
both gµ � 2 and ge � 2. Therefore, the negative ⇠ 2.4�
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A Tale of Two Anomalies

Hooman Davoudiasl ⇤1 and William J. Marciano †1

1Department of Physics, Brookhaven National Laboratory, Upton, NY 11973, USA

A recent improved determination of the fine structure constant, ↵ = 1/137.035999046(27), leads to
a ⇠ 2.4� negative discrepancy between the measured electron anomalous magnetic moment and the
Standard Model prediction. That situation is to be compared with the muon anomalous magnetic
moment where a positive ⇠ 3.7� discrepancy has existed for some time. A single scalar solution
to both anomalies is shown to be possible if the two-loop electron Barr-Zee diagrams dominate the
scalar one-loop electron anomaly e↵ect and the scalar couplings to the electron and two photons are
relatively large. We also briefly discuss the implications of that scenario.

So far, neither the LHC experiments nor direct
searches for dark matter (DM) have uncovered any signs
of a “natural” Higgs sector nor weak scale dark matter
states. However, there have been mild deviations from
the Standard Model (SM) predictions over the years. Of
these, a long-standing one is the ⇠ 3.7� discrepancy be-
tween experiment [1, 2] and theory (see, for example,
Refs. [3, 4]) for the muon anomalous magnetic moment
aµ ⌘ (gµ � 2)/2

�aµ ⌘ a
exp
µ

� a
th
µ

= (274± 73)⇥ 10�11
, (1)

which has withstood various theoretical refinements and
is being currently remeasured at Fermilab with higher
precision. While the final word on gµ � 2 remains to be
decided by the new measurements and ongoing theoreti-
cal improvements of the SM prediction, the deviation has
been a subject of intense phenomenological interest. As
new physics at the TeV scale gets more constrained, the
parameter space for weak scale models that could explain
gµ � 2 starts to close.

Meanwhile, the search for new “dark” or “hidden”
states at low mass scales <

⇠ 1 GeV has recently been
getting increasing attention [5, 6], partially spurred by
astrophysical considerations related to DM models [7]
and perhaps also by the dearth of indications for new
high energy phenomena. In fact, gµ � 2 has emerged as
an interesting target for dark sector searches, since light
states with feeble couplings to the SM can in principle
explain the anomaly. An early and motivated possibility
was o↵ered by the “dark photon” hypothesis, where a
new vector boson that kinetically mixes with the photon
[8] could have provided a solution [9]. This idea and its
simple extensions have now been essentially ruled out.
However, other light states from a dark sector, for ex-
ample a light scalar that very weakly couples to muons,
could still furnish a potential solution [10].

A recent precise determination of the fine structure
constant, ↵, has introduced a new twist to this story.

⇤
email: hooman@bnl.gov

†
email: marciano@bnl.gov

An improvement in the measured h/MCs of atomic Ce-
sium, where h is Planck’s constant, used in conjunction
with other precisely known mass ratios and the Rydberg
constant leads to the new best value [11]

↵
�1(Cs) = 137.035999046(27). (2)

(For a detailed explanation of that prescription and its
use in determining the SM prediction for the electron
anomalous magnetic moment, ae = (ge � 2)/2, see the
articles by G. Gabrielse in Ref. [12].) As a result, com-
parison of the theoretical prediction of aSM

e
[13] with the

existing experimental measurement of aexp
e

[14, 15] now
leads to a discrepancy

�ae ⌘ a
exp
e

� a
SM
e

(3)

= [�87± 28 (exp)± 23 (↵)± 2 (theory)]

⇥ 10�14
,

or when the uncertainties are added in quadrature

�ae = (�87± 36)⇥ 10�14
. (4)

The above result represents a 2.4� discrepancy that is
opposite in sign from the long standing muon discrep-
ancy previously mentioned and larger in magnitude than
lepton-mass-scaling m

2
e
/m

2
µ
might suggest.

Note that the discrepancy in Eqs. (3) and (4) results
from an improvement in ↵

�1 from 137.035998995(85)
which previously [13] gave �ae = �130(77)⇥ 10�14 and
represented a 1.7� e↵ect. The central value has de-
creased in magnitude, but its significance has increased.
The errors from the experimental determinations of ae
and ↵ are now the dominant sources of uncertainty
and they are expected to further improve in the near
future. An alternative perspective is that ↵

�1(ae) =
137.035999149(33), derived from a comparison of ae the-
ory [13] and experiment [14, 15], di↵ers by 2.4� from
Eq. (2), and follow-up experimental improvements may
resolve the current discrepancy or significantly diminish
its magnitude.

Interestingly, dark photon models [9] and their sim-
ple extensions predict a one-loop positive deviation for
both gµ � 2 and ge � 2. Therefore, the negative ⇠ 2.4�
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[Parker 1812.04130]

2.5�deviates from the SM prediction by 

…with the opposite sign.

Taking both seriously 
excludes an explanation 
by gauge bosons.



[Davoudiasl, Marciano 1806.10252]

deviation in ge�2 cannot be simultaneously explained to-
gether with the ⇠ 3.7� anomaly in gµ�2 in the simplest
versions of those models, even if one could circumvent
existing experimental constraints.

In this paper, we would like to point out that a minimal
model based on a single light real scalar �, can in princi-
ple explain the deviations of both gµ � 2 and ge � 2, in a
relatively economical fashion. We will show that a two-
loop Barr-Zee diagram [16, 17] might explain �ae while
a one-loop contribution could be the primary origin of
�aµ [10, 18], with both corrections mediated by the same
scalar �. For more detailed discussions of these loop pro-
cesses and their contributions to the electron and muon
anomalous magnetic moments see Ref. [19, 20], where
the authors discuss the relative contributions of one- and
two-loop diagrams, but focus primarily on the case of a
pseudoscalar boson.

Before going further, we note that somewhat less min-
imal solutions, e.g. with a scalar coupled to the muon
and a pseudo-scalar coupled to the electron, can poten-
tially yield the right size and sign for the deviations in
gµ � 2 and ge � 2, respectively, and satisfy experimental
constraints. However, here, we focus on the e↵ect of a
single light scalar where inclusion of the Barr-Zee contri-
bution represents an extension of earlier work in Ref. [10].
Studies of the contribution of Barr-Zee type diagrams to
gµ � 2 in the context of two Higgs doublet models and
supersymmetry can also be found in Ref. [21].

Let us consider the following e↵ective Lagrangian for
the real scalar � of mass m�

L� = �
1

2
m

2
�
�
2
�

X

f

�f� f̄f �
�

4
�Fµ⌫F

µ⌫
, (5)

where we only include explicit couplings with strengths
�f to a set of fermions f and have omitted various kinetic
terms and fermion masses. In this work, we allow f to
correspond to SM fermions, as well as other potential
more massive charged fermions. The �f are constrained
by phenomenology, as will be discussed later. We assume
that the � coupling to photons, through the field strength
tensor Fµ⌫ , is governed by the the constant � which has
mass dimension �1. The sum over ��� triangle diagrams
mediated by f will induce a contribution to � , but we
do not specify the properties of all charged states that
couple to �.

We will start with the gµ � 2 discrepancy, assumed to
be dominated by the one-loop diagram in Fig.1, which is
given by [10, 22, 23]

�a` =
�
2
`

8⇡2
x
2

Z 1

0
dz

(1 + z)(1� z)2

x2(1� z)2 + z
(6)

for a lepton ` of mass m` and x ⌘ m`/m�.
Current experimental constraints, as illustrated in

Ref. [24] - under the assumption that � only couples
to muons - allow 2mµ

<
⇠ m�

<
⇠ 100 GeV and �µ ⇠

µ µ

�

�

FIG. 1: One-loop � contribution to gµ � 2.

e e

�

��

FIG. 2: E↵ective two-loop Barr-Zee diagram contribution to
ge � 2, with fermion loops integrated out. The dot (•) repre-
sents light and heavy fermion loops that contribute to � .

5⇥10�4
�0.1, roughly corresponding to a range of param-

eters that can explain the 3.7� deviation in gµ � 2, given
by Eq. (1), which we will approximate as�aµ ⇡ 3⇥10�9.
The above lower bound on m� corresponds to demand-
ing that � decay promptly into muon pairs. In our
scenario, couplings to the electron lead to prompt de-
cays � ! e

+
e
� below the muon pair threshold, allowing

m�
<
⇠ 200 MeV. However, for such values of m�, the

one-loop positive contribution to ge � 2 starts to become
significant and cancel out the desired two-loop e↵ect that
we will discuss below. For m� well above the GeV scale,
we also find it di�cult to accommodate the suggested
ge � 2 anomaly in Eq. (4) with reasonable values of �e

and � . In addition, for m� � 1 GeV, typical low en-
ergy probes of � at intense beam facilities become less
e�cient, adversely a↵ecting experimental prospects for
testing the scenario. For the above reasons, we mostly
focus on the � mass range 2mµ

<
⇠ m�

<
⇠ few GeV, in

what follows.

Let us choose, for concreteness,

m� = 250 MeV and �µ = 10�3
, (7)

which according to Eq. (6) yields �aµ ⇡ 3⇥ 10�9.

We now address the deviation in Eq. (4). Here, we will
concentrate on the “Barr-Zee” diagram contribution to
a` in Fig.2, for a heavy fermion f loop that is represented
by the dot (•) in the figure, given by [16, 19]

�a
BZ
`

(f) = �
↵

6⇡

m`

mf

�`�f

⇡2
Q

2
f
N

f

c
I(y) , (8)
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2

A combined explanation?

New scalar with ~ 100 MeV mass and couplings to muons 
and electrons of order 10-3   to  10-4. Coupling to photons 
loop-induced.



The future of Lepton flavour is golden

In the next years we will enter a new golden age for high 
precision lepton experiments

• Electron EDM de . 10�27 e cm de . 10�29�10�31 e cm

�aµ = 7.2⇥ 10�9 �aµ = 1.4⇥ 10�9

µ ! e� BR(µ ! e�) < 4.2⇥ 10�13 BR(µ ! e�) < 5⇥ 10�14•  
•  Nµ ! Ne BR(Nµ ! Ne) < 6⇥ 10�13 BR(Nµ ! Ne) < 3⇥ 10�17

•  BR(µ ! eee) < 4⇥ 10�12 BR(µ ! eee) < 1⇥ 10�16µ ! eee

• Muon g-2 

and plans for more…
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This is an improvement hardly found in modern physics… 

…these experiments will allow us to look at the muon 
with a resolution ~10 000 times better than ever before.

[Bernstein, P. S. Cooper Phys.Rept. 532 (2013)]

The future of Lepton flavour is golden



The future of Lepton flavour is golden



Conclusions

Several anomalies in flavour physics continue to question 
the validity of the SM. 

Some point to scales expected from generic flavour 
structures! Some point to surprisingly low scales.

But future data will improve uncertainties by ~1 order of 
magnitude and increase sensitivity in lepton observables 
by up to 4 orders of magnitude.

We are designing the first probes of the multi-PeV scale.



Executive summary
b→s transitions: Clean LFV observables agree with dirty 
angular observables. The low-mass bin in        does not 
look like NP. NP: leptoquark (30 TeV)  

RK⇤

b→c transitions:  Large deviation in a charged current 
process. In question by LEP(?). NP: leptoquark (1 TeV)

 
Combined explanations need gauge-unification at the 
TeV scale.

g-2:  Both muon and electron 

in tension with the SM, but 
opposite direction. 

NP: axion (< GeV) or hidden 
photon (for the muon).



Backup



A pattern in b → s transitions

Simple example: A single resonance ⇧(q2) =
f2

q2 �M2 + iM�

Im⇧(q2) =
f2M�

(q2 �M2)2 +M2�2

� ! 0

⇡ ⇡f2�(q2 �M2)

|⇧(q2)|2 =
f4

(q2 �M2)2 +M2�2

=
f2

M�
Im⇧(q2)

⇡ ⇡f4

M�
�(q2 �M2)

Z m2

0
dq2Im⇧(q2) ⇡ ⇡f2 ⌧ m2

Z m2

0
dq2|⇧(q2)|2 ⇡ ⇡f4

M�

small compared to the non-res 
contribution. Duality holds!

[Beneke, Buchalla, Neubert, Sachrajda, 0902.4446]

singular!



A pattern in b → s transitions

b̄

d

s̄

d

µ+

µ�

B0 K0 B0

µ+

µ�

K0

✓l

1

�

d�

d cos ✓l
=

3

4
(1� FH)(1� cos2 ✓l) +

1

2
FH +AFB cos ✓l

Helicity suppressedd�SM

d cos ✓l
/ sin2 ✓l +O(m2

l ) / m2
l

[Bobeth, Hiller, Piranishvili 0709.4174]



[Azatov et al. , 1805.03209]

A new TeV-scale scalar?

3.2 Scalar and Pseudo-scalar operators

Here we consider the scalar and pseudo-scalar operators, O⌧
SL and O⌧

PL respectively. In

the left panel of Fig. 2, we show the parameter space that satisfies the individual exper-

imental data on RD, RD⇤ and RJ/ within 1�. As discussed before, while the operator

O⌧
SL contributes to RD only, the operator O⌧

PL contributes only to RD⇤ . This explains

the vertical and horizontal nature of the allowed regions for RD and RD⇤ respectively.

Br(Bc⟶τν)<30%

Br(Bc⟶τν)<10%

0.0 0.2 0.4 0.6 0.8
0.0

0.5

1.0
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C
PLτ
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(μ
)
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)

Figure 2: Left panel : the red and green (blue) bands correspond to the values of C⌧
SL and

C
⌧
PL that satisfy the experimental measurement ofRD and RD⇤ (RJ/ ) within 1� respectively.

The values of C⌧
PL that correspond to Br(Bc ! ⌧⌫) < 30% and < 10% are also shown.

Right panel : renormalisation group running of the WCs C⌧
SL and C

⌧
PL.

Note that the operator O⌧
PL directly contributes to the decay Bc ! ⌧⌫ also (refer to

appendix-A for more details). The regions below the two horizontal dashed lines cor-

respond to Br(Bc ! ⌧⌫) < 30% and < 10%, which were claimed to be the indirect

experimental upper bounds by the authors of [53] and [54] respectively. Thus, an ex-

planation of RD⇤ by the operator O⌧
PL is in serious tension with the upper bound on

Br(Bc ! ⌧⌫).

The right panel of Fig. 2 shows the renormalisation group (RG) running (considering

only QCD interactions) of the WCs C⌧
SL and C

⌧
PL from the mb scale to 5 TeV using the

following equation [51],

C(mb) =


↵s(mt)

↵s(mb)

� �

2�
(5)
0


↵s(⇤)

↵s(mt)

� �

2�
(6)
0

C(⇤) , (3.2)

where, � = �8. The values at the mb scale are taken from the allowed bands in the left

panel.
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In tension with [Akeroyd, Chen, 1708.04072]Br(Bc ! ⌧⌫)

[Freytsis et al, 1506.08896]

CSR =
�2

p
2GF

M2
H+

Vcbmbm⌧ tan�2

b

`�

⌫̄

c

H
+

CSL =
�2

p
2GF

M2
H+

Vcbmcm⌧

1

tan�2

Hard to get two sizable coefficients 

Lepton Non-Universality in b→c



Experimental challenge

• Di↵erences between electrons and muons in the detector

� Electron Bremsstrahlung ! Degraded momentum, and mass/q2 resolutions

(bkg from B ! K⇡⇡ee)
� Trigger less e�cient for electrons

• Cancel most systematics arising from these di↵erences by computing RK⇤0 as a

double ratio

RK⇤0 =
B0

! K⇤0µ+µ�

B0 ! K⇤0J/ (µ+µ�)

. B0
! K⇤0e+e�

B0 ! K⇤0J/ (e+e�)

P. Álvarez Cartelle (ICL) Flavour anomalies @ LHCb 12/38

12/25

[LHCb, JHEP 08 (2017) 055]
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C9 = �C10 :

Loop InducedC9 :C9 = �C10 :,

3

or the same-chirality couplings dominate, we derive from
the current experimental upper limit Br(D0

! µ+µ�) <
7.6 · 10�9 (at 95% CL) [32] the bounds

q���L
cµ

��2���R
uµ

��2 +
���R

cµ

��2���L
uµ

��2 < 1.2 · 10�3 M̂2
� ,

���L
cµ�L⇤

uµ + �R
cµ�R⇤

uµ

�� < 0.052 M̂2
� .

(14)

Compared with [33] we obtain significantly stronger
bounds on the mixed-chirality couplings, because we in-
clude RG evolution e↵ects of the charm-quark mass. On
the other hand, a slightly stronger bound (by about a
factor 3) than ours on the same-chirality couplings can
be derived from the decay D+

! ⇡+µ+µ� [33, 34]. Note
that relations (8), (12) and (14) can naturally be satisfied
assuming hierarchical mixing matrices with O(1) entries
for the left-handed couplings and an overall suppression
of right-handed couplings. Such a suppression is techni-
cally natural, since the right-handed coupligns arise from
a di↵erent operator in the Lagrangian (4).

Loop-Induced Processes. Earlier this year, LHCb has
reported a striking departure from lepton universality in
the ratio RK in (2) [17]. Leptoquarks can provide a nat-
ural source of flavor universality violation, because their
couplings to fermions are not governed by gauge sym-
metries, see e.g. [35, 36]. A model-independent analysis
of this observable was presented in [37–39], while global
fits combining the data on RK with other observables in
b ! s`+`� transitions (in particular with angular observ-
ables in B̄ ! K̄⇤µ+µ�) were performed in [21–24]. The
authors of [37–39] also studied two leptoquark models, in
which contributions to RK arise at tree level. In this case
the leptoquark mass is expected to be outside the reach
for discovery at the LHC, unless the relevant couplings
are very small. In our model e↵ects on RK arise first
at one-loop order, from diagrams such as those shown
in Figure 2. Working in the limit where M2

� � m2
t,W ,

we obtain for the contributions to the relevant Wilson
coe�cients in the basis of [37]

Cµ(�)
LL =

m2
t

8⇡↵M2
�

���L
tµ

��2

�
1

64⇡↵

p
2

GFM2
�

�
�L�L†�

bs

VtbV ⇤
ts

�
�L†�L

�
µµ

,

Cµ(�)
LR =

m2
t

16⇡↵M2
�

���R
tµ

��2


ln
M2

�

m2
t

� f(xt)

�

�
1

64⇡↵

p
2

GFM2
�

�
�L�L†�

bs

VtbV ⇤
ts

�
�R†�R

�
µµ

,

(15)

where f(xt) = 1+ 3
xt�1

�
ln xt
xt�1 �1

�
⇡ 0.47. Analogous ex-

pressions hold for b ! se+e� transitions. The first term
in each expression arises from the four mixed W– � box
graphs. Importantly, it inherits the CKM and GIM sup-
pression factors of the SM box diagrams. The remaining
terms result from the box diagram containing two lepto-
quarks. Relation (6) is essential to ensure that the sum of

c
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FIG. 2. Loop diagrams contributing to b ! sµµ transitions.

all diagrams is gauge invariant. A good fit to the data can
be obtained for �1.5 < Cµ

LL < �0.7 and Cµ
LR ⇡ 0 at µ ⇠

M�, assuming that new physics only a↵ects the muon
mode – the “one-operator benchmark point” considered
in [37]. In this letter we concentrate on this benchmark
point for simplicity. Interestingly, the global fit to all
b ! s`+`� data is also much improved for Cµ

LL ⇡ �1
and Cµ

LR ⇡ 0 [21–24], and even the slight deviation in the
ratio Br(Bs ! µ+µ�)/Br(Bs ! µ+µ�)SM = 0.79 ± 0.20
seen in the combination of LHCb [40] and CMS [41] mea-
surements can be explained. These observations yield
further evidence for the suppression of right-handed lep-
toquark couplings compared with left-handed ones. We
will see below that such a pattern is also required by
purely leptonic rare processes.

The contributions from mixed W– � box graphs in (15)
are controlled by the couplings of the leptoquark to top-
quarks and muons. These terms are predicted to be posi-
tive in our model and hence alone they cannot explain the
RK anomaly. Indeed, as we will show, the correspond-
ing couplings are tightly constrained by other leptonic
observables. The contributions from the box graph with
two internal leptoquarks are thus essential to reproduce
the benchmark value Cµ

LL ⇡ �1. This requires

X

i

���L
uiµ

��2 Re

�
�L�L†�

bs

VtbV ⇤
ts

� 1.74
���L

tµ

��2 ⇡ 12.5 M̂2
� , (16)

while the analogous combination of right-handed cou-
plings should be smaller, so as to obtain Cµ

LR ⇡ 0. Com-
bining (16) with the upper bound in (12) yields

s
���L

uµ

��2 +
���L

cµ

��2 +

✓
1 �

0.77

M̂2
�

◆���L
tµ

��2 > 2.36 , (17)

where the top contribution is suppressed for the lep-
toquark masses we consider. In order to reporoduce
Cµ

LL = �0.7 or �1.5 instead of the benchmark value �1
the right-hand side of this bound must be replaced by 2.0
or 2.9, respectively. The above condition can naturally be
satisfied with a large generation-diagonal coupling �L

cµ.

The quantity (�L�L†)bs, normalized to V ⇤
tsVtb, can

also be constrained by the existing measurements of the
Bs�B̄s mixing amplitude. In our model the new-physics
contribution arises from box diagrams containing two
leptoquarks. It generates the same operator as in the
SM. It is thus useful to follow the suggestion of the
UTfit Collaboration and define the ratio CBs e2i�Bs ⌘

Arnan, Crivellin et al. 1608.07832
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C9 : Vector Currents

Altmannshofer, Gori, Pospelov, Yavin, 1403.1269

• LFV diagonal couplings 

µb

µs

Z 0

Beautiful solution: Lµ � L⌧gauged symmetry!

Anomaly free gauge group. No need for new fermions :)

• QFV off-diagonal couplings 
Charging b and s -> anomalies. Needs new fermions :/
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E. Constraint from pp ! Z0 +X ! µ+µ� +X

The Z
0 boson will be produced at LHC predominantly via flavor violating bs̄ ! Z

0 (and its conjugate process) and

the flavor conserving bb̄ ! Z
0 processes. Hence, search of heavy resonance in the dimuon final state by ATLAS and

CMS will constrain the parameter space of our model. In particular ATLAS [56] has set a 95% CL (confidence level)

upper limit on �(pp ! Z
0 +X)Br(Z 0 ! µ

+
µ
�) in the 150 GeV . mZ0 . 5 TeV mass range, with the 13 TeV and

⇠ 13 fb�1 dataset. CMS [57] has also searched for heavy resonances decaying to dimuon pair in the mass range 400

GeV . mZ0 . 4.5 TeV with 13 TeV and ⇠ 13 fb�1 dataset, setting a 95% CL upper limit on R� defined as:

R� =
�(pp ! Z

0 +X)Br(Z 0 ! µ
+
µ
�)

�(pp ! Z +X)Br(Z ! µ+µ�)
. (26)

We reinterpret R� and extract �(pp ! Z
0 +X)Br(Z 0 ! µ

+
µ
�) by multiplying with the Standard Model prediction

of �(pp ! Z +X)Br(Z ! µ
+
µ
�) = 1928.0 pb [58].

To determine the upper limit, we generate matrix element (ME) of the pp ! Z
0 process up to two additional jets

in the final state to include inclusive contributions. The ME is then merged and matched with parton shower (PS)

following the MLM [59] matching prescription. We restrict ourselves up to two additional jets due to computational

limitations. It should be noted that we have not used any K factor in our analysis. We finally convert the observed

ATLAS (CMS) 95% CL upper limit on �(pp ! Z
0 +X)Br(Z 0 ! µ

+
µ
�) in the mass range 150 GeV < mZ0 < 5 TeV

(400 GeV < mZ0 < 4.5 TeV). This way we constrain g
0 and mZ0 as shown in Figs. 1 and 2.

10 100 1000

0.001

0.01

0.1

1.

mz ' (GeV)

|g
'|

Figure 1. Allowed region in g0 vs mZ0 (light Z0 range), see text.

V. RESULTS

We now summarize the constraints on the coupling g
0 and mass mZ0 of the Z 0 in our U(1)B3�3Lµ model as shown in

Figs. 1 and 2. The region of coupling-mass (g0�mZ0) allowed in our model by the various flavor and collider constraints

8

are divided into two ranges, for light (mZ0 < 1 TeV) and heavy (1TeV < mZ0 < 10 TeV) Z 0, corresponding to Figs. 1

and 2, respectively. The allowed region of our model which produces correct 2� band of C9 indicated by a global fit

of all the observed b ! s transitions [8] is shown in green. The best fit value of C9 = �1.12 is also shown within the

allowed 2� band by dashed black line. Although, we have only shown the allowed range of global fit values from [8],

similar results have been obtained by other groups [7, 9]. They result in very similar allowed bands for our model,

with a significant overlap region. This allowed region in our model also explains the P
0
5 anomaly, as well as all other

b ! sµ
+
µ
� anomalies mentioned earlier [3, 4, 6].

We have also studied all relevant constraints from flavor physics as well as from LEP precision [48] as well as LHC

direct searches [50, 56]. The most stringent LEP precision constraints on our model comes from the Z
0 contribution

to the Z ! µµ vertex and Z ! ⌫⌫ decays. The LEP constraint from these decays is shown by red dashed line. The

region above the red dashed line is ruled out these constraints. The ATLAS collaboration [49] has also looked for the

decay Z ! 4µ which in our model can be facilitated by the Z
0. This places a constraint on our model parameter

space which is shown by the solid red line (the region above the line is ruled out).

The ATLAS and CMS collaboration has also looked for direct decay of a heavy Z
0 ! µµ [56, 57]. This also

constrains significantly our parameter space. The black shaded region in the plot is ruled out by ATLAS, while the

blue shaded region is ruled out by CMS. One sees that the direct search limits from ATLAS and CMS in fact rule out a

simultaneous explanation of all b ! s transition anomalies for Z 0 masses in the range from 150 GeV up to ⇠ 1.3 TeV.

Low energy physics also puts severe constraints on the model. For example, the neutrino trident production puts a

constraint on our model which is shown by the solid blue line. The region above the blue line is ruled out by neutrino

trident constraints. [10, 46]. Finally, the most stringent constraint on our model comes from BS mixing [42, 43]: the

pink shaded region in figures is ruled out by the BS mixing constraints.

1 1.5 2 3 4 6 8 10
0.05

0.1

0.5

1.

mz ' (TeV)

|
|

Z→μμ and Z→νμνμ

Neutrino Trident

Bs mixing

ATLAS dimuon limit (95% CL)
CMS dimuon limit (95% CL)

C9
NP = -1.12

C9
NP(2σ)

Figure 2. Allowed region in g0 vs mZ0 (heavy Z0 range), see text.Bonilla et al. 1705.00915
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The expressions for quantities used as constraints are
given in Sec. III where we perform the scan of parameters
and show that the model accommodates both B-physics
anomalies. Several significant predictions are presented
in Sec. IV and we conclude in Sec. V.

II. LEPTOQUARK MODEL

The Yukawa Lagrangian for a theory with the LQ state
� which carries the quantum numbers (3, 2)1/6 of the SM
gauge group, (SU(3)c, SU(2)L)Y , in the interaction basis
reads,

L� = d
0
RYL(e�)†L0 +Q

0
YR�⌫

0
R + h.c., (3)

where the standard notation has been used, with L and
Q being the left-handed doublet of leptons and quarks re-
spectively, combined with the right-handed (RH) singlet
fermions and with the SU(2)L-doublet of LQ fields �,
where e� = i�2�⇤. The primed fermion fields ( 0) are re-
lated to the unprimed ones through rotations, ( i)0L,R =

U i†
L,R 

i
L,R, so that after taking YL ! Ud

RYLU
`†
L and

YR ! Ud
LYRU

⌫†
R , one recognizes the Pontecorvo-Maki-

Nakagawa-Sakata UPMNS = U `
LU

⌫†
L , and the Cabibbo-

Kobayashi-Maskawa VCKM = Uu
LU

d†
L matrices, and the

above Lagrangian in the fermion mass eigenbasis be-
comes,

L� = dR (YLUPMNS) ⌫L�
(�1/3)

� dRYL`L�
(2/3)

+ uL (VCKMYR) ⌫R�
(2/3) + dLYR⌫R�

(�1/3) + h.c.,(4)

where the superscript in �(Q) denotes the electric charge
eigenstates of the LQ doublet, Q = Y + T3, which we
assume to be degenerate in mass (T3 being the weak
isospin). The couplings YL,R are the 3 ⇥ 3 matrices.
The crucial di↵erence between Eq. (4) and the model
discussed in Ref. [14] is the presence of the second line
in Eq. (4). In other words, besides the doublet of light
scalar LQ states with hypercharge Y = 1/6, in this model
we also have the light RH neutrinos the mass of which
is assumed to be very small with respect to the hadronic
mass scale, and in the following we will neglect it. We
consider neutrinos to be Dirac particles, even though this
issue is immaterial in the limit of m⌫ ! 0. Since the neu-
trinos are considered as massless it is legitimate to take
UPMNS to be the unit matrix.
The above Yukawa Lagrangian is the essential ingredi-

ent of the full model which also comprises the kinetic and
mass terms of the LQ field. Our working assumption is
that m� ' 1 TeV, and since we are working with the low
energy processes it is more convenient to work in a low
energy e↵ective e↵ective theory, obtained by integrating
out the heavy propagating �. We first focus onto the
terms relevant to b ! s`` and b ! c`⌫ transitions. For

the first one we obtain

L
dk!di``
e↵ =

1

m2
�

Y ij
L Y ⇤kl

L diPL`j `lPRdk + h.c.

= �
Y ij
L Y ⇤kl

L

2m2
�

di�µPRdk `l�
µPL`j + h.c. , (5)

where the second line is obtained by applying the Fierz
identity. PL/R = (1 ⌥ �5)/2, as usual. For the charged
current process, instead, we have,

L
d!u`⌫
e↵ =

(VCKMYR)ijY ⇤kl
L

2m2
�

⇥
uiPRdk `lPR⌫j

+
1

4
ui�µ⌫PRdk `l�

µ⌫PR⌫j

�
+ h.c. , (6)

which means that the NP contribution to the semilep-
tonic decays (and to b ! c`⌫̄ in particular) arising from
this model comes with the non-zero RH Yukawa cou-
plings. Furthermore, in the low energy e↵ective theory
one also generates the process c ! u⌫⌫̄ which is not
phenomenologically interesting in the massless neutrino
limit. Another significant contribution generated by this
model is the one related to b ! s⌫⌫̄ transition, namely,

L
dk!di⌫⌫̄
e↵ = �

X

↵=L,R

Y ij
↵ Y ⇤kl

↵

2m2
�

d̄i�
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2m2
�


d̄iPLdk⌫̄lPL⌫j +

1

4
d̄i�µ⌫PLdk⌫̄l�

µ⌫PL⌫j

�
+ h.c.,

(7)

which will be used in the phenomenological discussion
below.

III. CONSTRAINTS ON YUKAWA COUPLINGS

In this work, for simplicity, we will take the couplings
to the first generation to be zero in order to avoid the
potential problems with the atomic parity violation ex-
periments [18], and we will assume the following structure
of the matrices of Yukawa couplings:

YL,R =

0

@
0 0 0
0 Y sµ

L,R Y s⌧
L,R

0 Y bµ
L,R Y b⌧

L,R

1

A ,

VCKMYR =

0

@
0 VusY

sµ
R + VubY

bµ
R VusY s⌧

R + VubY b⌧
R

0 VcsY
sµ
R + VcbY

bµ
R VcsY s⌧

R + VcbY b⌧
R

0 VtsY
sµ
R + VtbY

bµ
R VtsY s⌧

R + VtbY b⌧
R

1

A .

The product VCKMYR is explicitly written in order
to emphasize the fact that even if the couplings that
involve the first generation of quarks/leptons are zero,
the NP contributions to the leptonic and semileptonic
decays of kaons (s ! u) or B-mesons (b ! u), driven
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to the first generation to be zero in order to avoid the
potential problems with the atomic parity violation ex-
periments [18], and we will assume the following structure
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The product VCKMYR is explicitly written in order
to emphasize the fact that even if the couplings that
involve the first generation of quarks/leptons are zero,
the NP contributions to the leptonic and semileptonic
decays of kaons (s ! u) or B-mesons (b ! u), driven
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The expressions for quantities used as constraints are
given in Sec. III where we perform the scan of parameters
and show that the model accommodates both B-physics
anomalies. Several significant predictions are presented
in Sec. IV and we conclude in Sec. V.

II. LEPTOQUARK MODEL
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reads,
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is assumed to be very small with respect to the hadronic
mass scale, and in the following we will neglect it. We
consider neutrinos to be Dirac particles, even though this
issue is immaterial in the limit of m⌫ ! 0. Since the neu-
trinos are considered as massless it is legitimate to take
UPMNS to be the unit matrix.
The above Yukawa Lagrangian is the essential ingredi-
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mass terms of the LQ field. Our working assumption is
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RYLU
`†
L and

YR ! Ud
LYRU
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R , one recognizes the Pontecorvo-Maki-

Nakagawa-Sakata UPMNS = U `
LU

⌫†
L , and the Cabibbo-

Kobayashi-Maskawa VCKM = Uu
LU

d†
L matrices, and the

above Lagrangian in the fermion mass eigenbasis be-
comes,

L� = dR (YLUPMNS) ⌫L�
(�1/3)

� dRYL`L�
(2/3)

+ uL (VCKMYR) ⌫R�
(2/3) + dLYR⌫R�

(�1/3) + h.c.,(4)

where the superscript in �(Q) denotes the electric charge
eigenstates of the LQ doublet, Q = Y + T3, which we
assume to be degenerate in mass (T3 being the weak
isospin). The couplings YL,R are the 3 ⇥ 3 matrices.
The crucial di↵erence between Eq. (4) and the model
discussed in Ref. [14] is the presence of the second line
in Eq. (4). In other words, besides the doublet of light
scalar LQ states with hypercharge Y = 1/6, in this model
we also have the light RH neutrinos the mass of which
is assumed to be very small with respect to the hadronic
mass scale, and in the following we will neglect it. We
consider neutrinos to be Dirac particles, even though this
issue is immaterial in the limit of m⌫ ! 0. Since the neu-
trinos are considered as massless it is legitimate to take
UPMNS to be the unit matrix.
The above Yukawa Lagrangian is the essential ingredi-

ent of the full model which also comprises the kinetic and
mass terms of the LQ field. Our working assumption is
that m� ' 1 TeV, and since we are working with the low
energy processes it is more convenient to work in a low
energy e↵ective e↵ective theory, obtained by integrating
out the heavy propagating �. We first focus onto the
terms relevant to b ! s`` and b ! c`⌫ transitions. For

the first one we obtain

L
dk!di``
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where the second line is obtained by applying the Fierz
identity. PL/R = (1 ⌥ �5)/2, as usual. For the charged
current process, instead, we have,
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which means that the NP contribution to the semilep-
tonic decays (and to b ! c`⌫̄ in particular) arising from
this model comes with the non-zero RH Yukawa cou-
plings. Furthermore, in the low energy e↵ective theory
one also generates the process c ! u⌫⌫̄ which is not
phenomenologically interesting in the massless neutrino
limit. Another significant contribution generated by this
model is the one related to b ! s⌫⌫̄ transition, namely,
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which will be used in the phenomenological discussion
below.

III. CONSTRAINTS ON YUKAWA COUPLINGS

In this work, for simplicity, we will take the couplings
to the first generation to be zero in order to avoid the
potential problems with the atomic parity violation ex-
periments [18], and we will assume the following structure
of the matrices of Yukawa couplings:
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A .

The product VCKMYR is explicitly written in order
to emphasize the fact that even if the couplings that
involve the first generation of quarks/leptons are zero,
the NP contributions to the leptonic and semileptonic
decays of kaons (s ! u) or B-mesons (b ! u), driven
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The expressions for quantities used as constraints are
given in Sec. III where we perform the scan of parameters
and show that the model accommodates both B-physics
anomalies. Several significant predictions are presented
in Sec. IV and we conclude in Sec. V.
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with � ⌘ �(q2) = [q2 � (mB +mD)2][q2 � (mB �mD)2].
The form factors f0,+,T (q2) in (15) are defined as usual,

hD(k)|c̄�µb|B(p)i = (p+ k)µf+(q
2) + qµf�(q

2),

hD(k)|c̄�µ⌫b|B(p)i = �i(pµk⌫ � kµp⌫)
2fT (q2)

(mB +mD)
,
(17)

and f�(q2) = [f0(q2)�f+(q2)]⇥(m2
B�m2

D)/q2. Using the

form factors from Ref. [4] and requiring Rµ/e
D < 1.05, we

will obtain quite a powerful constraint on our couplings,

g
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b!c`i⌫̄j
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(VCKMYR)

cj Y bi⇤
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4
p
2GFVcbm2

�

, (18)

where the tensor coupling scales as gT (1 TeV) ⇡

0.78 ⇥ gT (µ = mb) ⇡ 0.7 ⇥ gT (µ = 2 GeV), and the
tensor form factor is taken from [26].

6. Finally, the experimental upper limit on B(B !

K⌫⌫̄) [24] turns out to be an important constraint too.
The relevant expression for this process computed in the
SM, extended by the e↵ective Lagrangian (7), is
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where N = ↵emGFVtbV ⇤
ts/(

p
2⇡), CSM

L = �6.38(6) [27],
and we do not show the terms / 1/m4

�.

With all of the above ingredients in hands we are now
able to constrain the Yukawa couplings Y ij

L,R, which are

then used to determine the values of gb!cµ⌫̄
S and gb!c⌧⌫̄

S ,
while the corresponding tensor couplings are obtained
by using Eq. (18) at the scale µ = m�. After insert-
ing those final couplings into Eq. (15) we can compute
RD = B(B ! D⌧⌫)/B(B ! Dl⌫). The result is shown
in Fig. 1 where we see that with all of the constraints
discussed above, our model not only gives RK = 0.88(8)
compatible with the experimental finding, but we are also
able to find the points which are compatible with Rexp

D to
1�. In other words, the model we propose here can sat-
isfactorily accommodate both B-physics anomalies, RK

FIG. 1: The ensemble of points (all colors combined) cor-
respond to our model after applying all the constraints on
Yukawa couplings discussed in this Section except for the con-
straint 5. They are shown in the plane gb!c⌧⌫̄

S Vs. gb!cµ⌫̄
S ,

against the green regions which represent RD at 1-, 2- and 3-�.
Red and blue points are selected after imposing the condition
5.. Finally the red points alone indicate the compatibility
with RD to 2�.

and RD. We should reiterate that we focused on RD be-
cause all of the form factors have been computed on the
lattice, and we do not need to rely on the experimental
information about the normalization and shapes of the
form factors, which is not the case with RD⇤ . Using the
experimental information about the form factors would
be inappropriate in our case since we claim that both
the couplings to ⌧ and to µ are modified. We should
say that by using the model form factors, such as those
from Ref. [28], we indeed obtain that RD⇤ > RSM

D⇤ and
in a good ballpark with respect to the experimental re-
sults, but we prefer not to quote those results until the
lattice QCD determination of the full set of form factors
becomes available.

The structure of Yukawa couplings from the con-
straints listed above is such that Y sµ

L,R and Y s⌧
L,R are small,

while Y bµ
L,R and Y b⌧

L,R can be large and are correlated in

such a way that Y bµ
L and Y b⌧

L,R are large for small values

of Y bµ
R , but diminish in size with the increase of Y bµ

R .
We checked that �(K ! µ⌫)/�(K ! e⌫) remains intact,
i.e. at its SM value. We also checked that our model
is consistent with the direct LQ searches [29], and that
varying m� 2 (0.7, 1) TeV, leaves our conclusions un-
changed. Notice also that in the scalar LQ model with
Y = 1/6 the enhancement of B(⌧ ! µ�) and (g�2)µ are
highly suppressed and experimentally indistinguishable
from their SM predictions [17, 18].
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The expressions for quantities used as constraints are
given in Sec. III where we perform the scan of parameters
and show that the model accommodates both B-physics
anomalies. Several significant predictions are presented
in Sec. IV and we conclude in Sec. V.

II. LEPTOQUARK MODEL

The Yukawa Lagrangian for a theory with the LQ state
� which carries the quantum numbers (3, 2)1/6 of the SM
gauge group, (SU(3)c, SU(2)L)Y , in the interaction basis
reads,

L� = d
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where the standard notation has been used, with L and
Q being the left-handed doublet of leptons and quarks re-
spectively, combined with the right-handed (RH) singlet
fermions and with the SU(2)L-doublet of LQ fields �,
where e� = i�2�⇤. The primed fermion fields ( 0) are re-
lated to the unprimed ones through rotations, ( i)0L,R =
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above Lagrangian in the fermion mass eigenbasis be-
comes,
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(2/3) + dLYR⌫R�

(�1/3) + h.c.,(4)

where the superscript in �(Q) denotes the electric charge
eigenstates of the LQ doublet, Q = Y + T3, which we
assume to be degenerate in mass (T3 being the weak
isospin). The couplings YL,R are the 3 ⇥ 3 matrices.
The crucial di↵erence between Eq. (4) and the model
discussed in Ref. [14] is the presence of the second line
in Eq. (4). In other words, besides the doublet of light
scalar LQ states with hypercharge Y = 1/6, in this model
we also have the light RH neutrinos the mass of which
is assumed to be very small with respect to the hadronic
mass scale, and in the following we will neglect it. We
consider neutrinos to be Dirac particles, even though this
issue is immaterial in the limit of m⌫ ! 0. Since the neu-
trinos are considered as massless it is legitimate to take
UPMNS to be the unit matrix.
The above Yukawa Lagrangian is the essential ingredi-

ent of the full model which also comprises the kinetic and
mass terms of the LQ field. Our working assumption is
that m� ' 1 TeV, and since we are working with the low
energy processes it is more convenient to work in a low
energy e↵ective e↵ective theory, obtained by integrating
out the heavy propagating �. We first focus onto the
terms relevant to b ! s`` and b ! c`⌫ transitions. For

the first one we obtain
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where the second line is obtained by applying the Fierz
identity. PL/R = (1 ⌥ �5)/2, as usual. For the charged
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which means that the NP contribution to the semilep-
tonic decays (and to b ! c`⌫̄ in particular) arising from
this model comes with the non-zero RH Yukawa cou-
plings. Furthermore, in the low energy e↵ective theory
one also generates the process c ! u⌫⌫̄ which is not
phenomenologically interesting in the massless neutrino
limit. Another significant contribution generated by this
model is the one related to b ! s⌫⌫̄ transition, namely,
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to emphasize the fact that even if the couplings that
involve the first generation of quarks/leptons are zero,
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is assumed to be very small with respect to the hadronic
mass scale, and in the following we will neglect it. We
consider neutrinos to be Dirac particles, even though this
issue is immaterial in the limit of m⌫ ! 0. Since the neu-
trinos are considered as massless it is legitimate to take
UPMNS to be the unit matrix.
The above Yukawa Lagrangian is the essential ingredi-

ent of the full model which also comprises the kinetic and
mass terms of the LQ field. Our working assumption is
that m� ' 1 TeV, and since we are working with the low
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which means that the NP contribution to the semilep-
tonic decays (and to b ! c`⌫̄ in particular) arising from
this model comes with the non-zero RH Yukawa cou-
plings. Furthermore, in the low energy e↵ective theory
one also generates the process c ! u⌫⌫̄ which is not
phenomenologically interesting in the massless neutrino
limit. Another significant contribution generated by this
model is the one related to b ! s⌫⌫̄ transition, namely,
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which will be used in the phenomenological discussion
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III. CONSTRAINTS ON YUKAWA COUPLINGS

In this work, for simplicity, we will take the couplings
to the first generation to be zero in order to avoid the
potential problems with the atomic parity violation ex-
periments [18], and we will assume the following structure
of the matrices of Yukawa couplings:
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The product VCKMYR is explicitly written in order
to emphasize the fact that even if the couplings that
involve the first generation of quarks/leptons are zero,
the NP contributions to the leptonic and semileptonic
decays of kaons (s ! u) or B-mesons (b ! u), driven
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The expressions for quantities used as constraints are
given in Sec. III where we perform the scan of parameters
and show that the model accommodates both B-physics
anomalies. Several significant predictions are presented
in Sec. IV and we conclude in Sec. V.

II. LEPTOQUARK MODEL
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fermions and with the SU(2)L-doublet of LQ fields �,
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consider neutrinos to be Dirac particles, even though this
issue is immaterial in the limit of m⌫ ! 0. Since the neu-
trinos are considered as massless it is legitimate to take
UPMNS to be the unit matrix.
The above Yukawa Lagrangian is the essential ingredi-

ent of the full model which also comprises the kinetic and
mass terms of the LQ field. Our working assumption is
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FIG. 1. Goodness-of-fit for the coe�cients of individual operators from the measured R(D) and R(D⇤) ratios. Besides the
fits to the unprimed operators in Table II (left), we also show fits to primed operators not related by simple rescalings (right).
Faded regions for CSL indicate good fits to the observed rates excluded by the measurement of the q2 spectrum [2]. Note that
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FIG. 2. Goodness-of-fit for coe�cients of operators which can be generated from dimension-6 operators with fermion bilinears
having the same SM quantum numbers. The plots show 1-, 2-, and 3� allowed regions. Approximate regions of parameter
space excluded by the measurement of the q2 spectrum [2] are presented as faded regions, as in Fig. 1.

contributing operators simultaneously. Fig. 2 shows the
three such two-dimensional �2 fits. While any two rates
can be explained by fitting two operator coe�cients, the
existence of a solution consistent with all other con-
straints with a given flavor structure is nontrivial and
is the topic of the following section. A summary of all
coe�cients of best fit points with �2

min
< 5 and accept-

able q2 spectra is provided in Table III.

Besides the branching ratios, additional model discrim-
ination comes from the q2 spectra (especially in B̄ !
D⌧ ⌫̄), which are consistent with SM expectations [2, 3].
It is not possible to do a combined fit with publicly avail-
able data, because correlations among di↵erent q2 bins
are unavailable. We follow Ref. [2] in eliminating cer-
tain models by comparing their predicted q2 spectra with
the measurement. It was observed that two of the four
solutions in the CSR–CSL plane (Fig. 2, left plot) are
excluded [2], as indicated by the faded regions. In the
C 0

VR
–C 0

VL
plane (middle plot), we find the measured q2

Coe�cient(s) Best fit value(s) (⇤ = 1 TeV)

CVL 0.18± 0.04, �2.88± 0.04

CT 0.52± 0.02, �0.07± 0.02

C00
SL

�0.46± 0.09

(CR, CL) (1.25,�1.02), (�2.84, 3.08)

(C0
VR

, C0
VL

) (�0.01, 0.18), (0.01,�2.88)

(C00
SR

, C00
SL

) (0.35,�0.03), (0.96, 2.41),

(�5.74, 0.03), (�6.34,�2.39)

TABLE III. Best-fit operator coe�cients with acceptable
q2 spectra and �2

min < 5. For the 1D fits in Fig. 1 we in-
clude the ��2 < 1 ranges (upper part), and show the central
values of the 2D fits in Fig. 2 (lower part).

spectra exclude regions that provide good fits to the total
rates for values of |C 0

VR
| >⇠ 0.5. In the C 00

SR
–C 00

SL
plane

(right plot) all fits consistent with the total rates are also
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L �L

ueeL �⇤ � d̄cL �L
d⌫⌫L�

⇤ + ūc
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to help in Eq. (18). Vector operators: Global fits which
also include B̄s ! �µµ data [18] indicate sizable contri-

butions from vector operators O(0)µ
9 . In fact, CNPµ

9 ⇠ �1
is found to have the right sign and magnitude to explain
RK . However, most fits find that C

0µ
9 is of similar size

and opposite in sign so that the contributions to RK in
Eq. (18) cancel. Again, other operators or electrons are
needed. To summarize, at this point the outcome of the
global fits (performed without taking into account RK)
is inconclusive, whether or not BSM physics is preferred
by the data depends on how hadronic uncertainties are
treated and on the data set chosen. While the SM gives a
good fit [17] all groups indicate an intriguing support for

sizable C
(0)NP
9 , triggered by LHCb’s paper [19]. Future

updates including the analysis of the 3fb�1 data set will
shed light on this.
For our UV-interpretation of the data in the next Section

IV it is useful to change from the O(0)`
9,10 basis to one with

left- and right projected leptons

O`

LL
⌘ (O`

9 �O`

10)/2 , O`

LR
⌘ (O`

9 +O`

10)/2 , (20)

O`

RL
⌘ (O0`

9 �O0`
10)/2 , O`

RR
⌘ (O0`

9 +O0`
10)/2 , (21)

therefore

C
`

LL
= C

`

9 � C
`

10 , C
`

LR
= C

`

9 + C
`

10 , (22)

C
`

RL
= C

0`
9 � C

0`
10 , C

`

RR
= C

0`
9 + C

0`
10 . (23)

If we assume new physics in muons alone we can rewrite
Eqs. (13) and (18) to obtain constraints on the BSM
contributions

0.0 . Re[Cµ

LR
+ C

µ

RL
� C

µ

LL
� C

µ

RR
] . 1.9 ,

0.7 . �Re[Cµ

LL
+ C

µ

RL
] . 1.5 . (24)

One sees that the only single operator which improves
both constraints is Oµ

LL
and a good fit of the above is

obtained with

C
µ

LL
' �1 , C

µ

ij
= 0 otherwise (25)

which we adopt as our benchmark point. In terms of the
standard basis, this choice implies C

NPµ

9 = �C
NPµ

10 '
�0.5 and C

NPµ

9 + C
NPµ

10 = 0. It would be interest-
ing to perform global fits as in [15–17] with this con-
straint to probe how this scenario stacks up against all
|�B| = |�S| = 1 data. In particular, all transversity
amplitudes corresponding to ¯̀�µ(1 + �5)` currents (AR)
in B̄ ! K̄

⇤(! K̄⇡)`` decays in this scenario remain SM-
valued.
A few comments are in order: If B̄s ! µµ data had shown
an enhancement (of similar size for concreteness) over
the SM, the preferred one-operator benchmark would
have been C

µ

RL
' �1 with all other coe�cients vanish-

ing. In that case the new physics would have to gener-
ate right-handed quark FCNCs instead of SM-like left-
handed ones. This fact that B̄s ! µµ is a diagnostic for
the chirality of the quarks in BSM FCNCs makes more

precise measurements of B̄s ! µµ especially interesting.
Second, the constraint C

NPµ

9 + C
NPµ

10 = 0 which is mo-
tivated by SU(2)L-invariance of the UV physics ensures
that the combination Re[C9C

⇤
10]/(|C9|2+ |C10|2) remains

invariant, i.e. SM-valued. This is helpful because this
combination enters in the dominant contributions to the
forward-backward asymmetry as well as in the angular
observable P

0
5 in B̄ ! K̄

⇤
µµ decays at high-q2, where

data are in agreement with the SM [20]. In fact, all high
q
2 observables driven by ⇢2/⇢1 follow this pattern of Wil-
son coe�cients [9] and would remain invariant if Cµ

LL
6= 0

were the sole BSM e↵ect. Third, Cµ

LL
< 0 shifts the lo-

cation of the zero which is present in AFB(B̄ ! K̄
⇤
µµ)

at low q
2 to higher values, also in agreement with current

data.

B. (Pseudo)scalars

Following [3] the RK-data implies for (pseudo-) scalar
contributions at 1 sigma 3

15 . 2Re[Cµ

P+]�|Cµ

S+|
2�|Cµ

P+|
2+|Ce

S+|2+|Ce

P+|2.34 .
(26)

This constraint cannot be satisfied with muon operators
because the coe�cients of the quadratic terms enter with
minus signs and the linear term is either too small or
dominated by the quadratic terms. In addition, muon
scalars are subject to the B̄s ! µµ constraint (12), (13)

|Cµ

P�| . 0.3 , |Cµ

S�| . 0.1 B(B̄s ! µµ) . (27)

The corresponding electron contributions are bounded by
(15). We obtain at 1�(2�)

|Ce

S+|2 + |Ce

P+|2 . 4 (24) B(B̄ ! K̄ee) . (28)

The constraints from inclusive decays (16) are weaker,
and do not involve interference terms

|Ce

S
|2 + |Ce

P
|2 + |C 0e

S
|2 + |C 0e

P
|2 . 53 (91) B(B̄ ! Xsee) .

(29)

We checked that the available data on inclusive decays in
the bin 1GeV2

< q
2
< 6GeV2 is even less constraining.

We learn that at 1 � an explanation of RK by (pseudo-)
scalar operators is excluded. At 2 � this is an option if
the electron contributions are sizable. However, in this
case one needs to accept cancellations between C

e

S,P
and

C
0e
S,P

due to the B̄s ! ee constraint (11), (13)

|Ce

S�|2 + |Ce

P�|2 . 1.3 B(B̄s ! ee) . (30)

In any case, a measurement of the flat term F
e

H
in the

B̄ ! K̄ee angular distribution (17) would probe this
scenario. This fact, that RK and F

e

H
are correlated had

already been pointed out in [3].

3 In the evaluation of the S, P and T, T5 constraints we keep
corrections proportional to a single power of the muon mass.

3

or the same-chirality couplings dominate, we derive from
the current experimental upper limit Br(D0

! µ+µ�) <
7.6 · 10�9 (at 95% CL) [32] the bounds

q���L
cµ

��2���R
uµ

��2 +
���R

cµ

��2���L
uµ

��2 < 1.2 · 10�3 M̂2
� ,

���L
cµ�L⇤

uµ + �R
cµ�R⇤

uµ

�� < 0.052 M̂2
� .

(14)

Compared with [33] we obtain significantly stronger
bounds on the mixed-chirality couplings, because we in-
clude RG evolution e↵ects of the charm-quark mass. On
the other hand, a slightly stronger bound (by about a
factor 3) than ours on the same-chirality couplings can
be derived from the decay D+

! ⇡+µ+µ� [33, 34]. Note
that relations (8), (12) and (14) can naturally be satisfied
assuming hierarchical mixing matrices with O(1) entries
for the left-handed couplings and an overall suppression
of right-handed couplings. Such a suppression is techni-
cally natural, since the right-handed coupligns arise from
a di↵erent operator in the Lagrangian (4).

Loop-Induced Processes. Earlier this year, LHCb has
reported a striking departure from lepton universality in
the ratio RK in (2) [17]. Leptoquarks can provide a nat-
ural source of flavor universality violation, because their
couplings to fermions are not governed by gauge sym-
metries, see e.g. [35, 36]. A model-independent analysis
of this observable was presented in [37–39], while global
fits combining the data on RK with other observables in
b ! s`+`� transitions (in particular with angular observ-
ables in B̄ ! K̄⇤µ+µ�) were performed in [21–24]. The
authors of [37–39] also studied two leptoquark models, in
which contributions to RK arise at tree level. In this case
the leptoquark mass is expected to be outside the reach
for discovery at the LHC, unless the relevant couplings
are very small. In our model e↵ects on RK arise first
at one-loop order, from diagrams such as those shown
in Figure 2. Working in the limit where M2

� � m2
t,W ,

we obtain for the contributions to the relevant Wilson
coe�cients in the basis of [37]

Cµ(�)
LL =

m2
t

8⇡↵M2
�

���L
tµ

��2

�
1

64⇡↵

p
2

GFM2
�

�
�L�L†�

bs

VtbV ⇤
ts

�
�L†�L

�
µµ

,

Cµ(�)
LR =

m2
t

16⇡↵M2
�

���R
tµ

��2


ln
M2

�

m2
t

� f(xt)

�

�
1

64⇡↵

p
2

GFM2
�

�
�L�L†�

bs

VtbV ⇤
ts

�
�R†�R

�
µµ

,

(15)

where f(xt) = 1+ 3
xt�1

�
ln xt
xt�1 �1

�
⇡ 0.47. Analogous ex-

pressions hold for b ! se+e� transitions. The first term
in each expression arises from the four mixed W– � box
graphs. Importantly, it inherits the CKM and GIM sup-
pression factors of the SM box diagrams. The remaining
terms result from the box diagram containing two lepto-
quarks. Relation (6) is essential to ensure that the sum of
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FIG. 2. Loop diagrams contributing to b ! sµµ transitions.

all diagrams is gauge invariant. A good fit to the data can
be obtained for �1.5 < Cµ

LL < �0.7 and Cµ
LR ⇡ 0 at µ ⇠

M�, assuming that new physics only a↵ects the muon
mode – the “one-operator benchmark point” considered
in [37]. In this letter we concentrate on this benchmark
point for simplicity. Interestingly, the global fit to all
b ! s`+`� data is also much improved for Cµ

LL ⇡ �1
and Cµ

LR ⇡ 0 [21–24], and even the slight deviation in the
ratio Br(Bs ! µ+µ�)/Br(Bs ! µ+µ�)SM = 0.79 ± 0.20
seen in the combination of LHCb [40] and CMS [41] mea-
surements can be explained. These observations yield
further evidence for the suppression of right-handed lep-
toquark couplings compared with left-handed ones. We
will see below that such a pattern is also required by
purely leptonic rare processes.

The contributions from mixed W– � box graphs in (15)
are controlled by the couplings of the leptoquark to top-
quarks and muons. These terms are predicted to be posi-
tive in our model and hence alone they cannot explain the
RK anomaly. Indeed, as we will show, the correspond-
ing couplings are tightly constrained by other leptonic
observables. The contributions from the box graph with
two internal leptoquarks are thus essential to reproduce
the benchmark value Cµ

LL ⇡ �1. This requires

X

i

���L
uiµ

��2 Re

�
�L�L†�

bs

VtbV ⇤
ts

� 1.74
���L

tµ

��2 ⇡ 12.5 M̂2
� , (16)

while the analogous combination of right-handed cou-
plings should be smaller, so as to obtain Cµ

LR ⇡ 0. Com-
bining (16) with the upper bound in (12) yields

s
���L

uµ

��2 +
���L

cµ

��2 +

✓
1 �

0.77

M̂2
�

◆���L
tµ

��2 > 2.36 , (17)

where the top contribution is suppressed for the lep-
toquark masses we consider. In order to reporoduce
Cµ

LL = �0.7 or �1.5 instead of the benchmark value �1
the right-hand side of this bound must be replaced by 2.0
or 2.9, respectively. The above condition can naturally be
satisfied with a large generation-diagonal coupling �L

cµ.

The quantity (�L�L†)bs, normalized to V ⇤
tsVtb, can

also be constrained by the existing measurements of the
Bs�B̄s mixing amplitude. In our model the new-physics
contribution arises from box diagrams containing two
leptoquarks. It generates the same operator as in the
SM. It is thus useful to follow the suggestion of the
UTfit Collaboration and define the ratio CBs e2i�Bs ⌘

Constrained to be 
< 2.3  by R⌫⌫

)

One LQ to rule them all



For the Benchmark                                           , we need
X

i

���L
uiµ

��2 Re
�
�L�L†�

bs

VtbV ⇤
ts

� 1.74
���L

tµ

��2 ⇡ 12.5
M2

�

TeV2

3

to help in Eq. (18). Vector operators: Global fits which
also include B̄s ! �µµ data [18] indicate sizable contri-

butions from vector operators O(0)µ
9 . In fact, CNPµ

9 ⇠ �1
is found to have the right sign and magnitude to explain
RK . However, most fits find that C

0µ
9 is of similar size

and opposite in sign so that the contributions to RK in
Eq. (18) cancel. Again, other operators or electrons are
needed. To summarize, at this point the outcome of the
global fits (performed without taking into account RK)
is inconclusive, whether or not BSM physics is preferred
by the data depends on how hadronic uncertainties are
treated and on the data set chosen. While the SM gives a
good fit [17] all groups indicate an intriguing support for

sizable C
(0)NP
9 , triggered by LHCb’s paper [19]. Future

updates including the analysis of the 3fb�1 data set will
shed light on this.
For our UV-interpretation of the data in the next Section

IV it is useful to change from the O(0)`
9,10 basis to one with

left- and right projected leptons

O`

LL
⌘ (O`

9 �O`

10)/2 , O`

LR
⌘ (O`

9 +O`

10)/2 , (20)

O`

RL
⌘ (O0`

9 �O0`
10)/2 , O`

RR
⌘ (O0`

9 +O0`
10)/2 , (21)

therefore

C
`

LL
= C

`

9 � C
`

10 , C
`

LR
= C

`

9 + C
`

10 , (22)

C
`

RL
= C

0`
9 � C

0`
10 , C

`

RR
= C

0`
9 + C

0`
10 . (23)

If we assume new physics in muons alone we can rewrite
Eqs. (13) and (18) to obtain constraints on the BSM
contributions

0.0 . Re[Cµ

LR
+ C

µ

RL
� C

µ

LL
� C

µ

RR
] . 1.9 ,

0.7 . �Re[Cµ

LL
+ C

µ

RL
] . 1.5 . (24)

One sees that the only single operator which improves
both constraints is Oµ

LL
and a good fit of the above is

obtained with

C
µ

LL
' �1 , C

µ

ij
= 0 otherwise (25)

which we adopt as our benchmark point. In terms of the
standard basis, this choice implies C

NPµ

9 = �C
NPµ

10 '
�0.5 and C

NPµ

9 + C
NPµ

10 = 0. It would be interest-
ing to perform global fits as in [15–17] with this con-
straint to probe how this scenario stacks up against all
|�B| = |�S| = 1 data. In particular, all transversity
amplitudes corresponding to ¯̀�µ(1 + �5)` currents (AR)
in B̄ ! K̄

⇤(! K̄⇡)`` decays in this scenario remain SM-
valued.
A few comments are in order: If B̄s ! µµ data had shown
an enhancement (of similar size for concreteness) over
the SM, the preferred one-operator benchmark would
have been C

µ

RL
' �1 with all other coe�cients vanish-

ing. In that case the new physics would have to gener-
ate right-handed quark FCNCs instead of SM-like left-
handed ones. This fact that B̄s ! µµ is a diagnostic for
the chirality of the quarks in BSM FCNCs makes more

precise measurements of B̄s ! µµ especially interesting.
Second, the constraint C

NPµ

9 + C
NPµ

10 = 0 which is mo-
tivated by SU(2)L-invariance of the UV physics ensures
that the combination Re[C9C

⇤
10]/(|C9|2+ |C10|2) remains

invariant, i.e. SM-valued. This is helpful because this
combination enters in the dominant contributions to the
forward-backward asymmetry as well as in the angular
observable P

0
5 in B̄ ! K̄

⇤
µµ decays at high-q2, where

data are in agreement with the SM [20]. In fact, all high
q
2 observables driven by ⇢2/⇢1 follow this pattern of Wil-
son coe�cients [9] and would remain invariant if Cµ

LL
6= 0

were the sole BSM e↵ect. Third, Cµ

LL
< 0 shifts the lo-

cation of the zero which is present in AFB(B̄ ! K̄
⇤
µµ)

at low q
2 to higher values, also in agreement with current

data.

B. (Pseudo)scalars

Following [3] the RK-data implies for (pseudo-) scalar
contributions at 1 sigma 3

15 . 2Re[Cµ

P+]�|Cµ

S+|
2�|Cµ

P+|
2+|Ce

S+|2+|Ce

P+|2.34 .
(26)

This constraint cannot be satisfied with muon operators
because the coe�cients of the quadratic terms enter with
minus signs and the linear term is either too small or
dominated by the quadratic terms. In addition, muon
scalars are subject to the B̄s ! µµ constraint (12), (13)

|Cµ

P�| . 0.3 , |Cµ

S�| . 0.1 B(B̄s ! µµ) . (27)

The corresponding electron contributions are bounded by
(15). We obtain at 1�(2�)

|Ce

S+|2 + |Ce

P+|2 . 4 (24) B(B̄ ! K̄ee) . (28)

The constraints from inclusive decays (16) are weaker,
and do not involve interference terms

|Ce

S
|2 + |Ce

P
|2 + |C 0e

S
|2 + |C 0e

P
|2 . 53 (91) B(B̄ ! Xsee) .

(29)

We checked that the available data on inclusive decays in
the bin 1GeV2

< q
2
< 6GeV2 is even less constraining.

We learn that at 1 � an explanation of RK by (pseudo-)
scalar operators is excluded. At 2 � this is an option if
the electron contributions are sizable. However, in this
case one needs to accept cancellations between C

e

S,P
and

C
0e
S,P

due to the B̄s ! ee constraint (11), (13)

|Ce

S�|2 + |Ce

P�|2 . 1.3 B(B̄s ! ee) . (30)

In any case, a measurement of the flat term F
e

H
in the

B̄ ! K̄ee angular distribution (17) would probe this
scenario. This fact, that RK and F

e

H
are correlated had

already been pointed out in [3].

3 In the evaluation of the S, P and T, T5 constraints we keep
corrections proportional to a single power of the muon mass.
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hBs|H full
e↵ |B̄si/hBs|HSM

e↵ |B̄si [41]. We obtain

C(�)
Bs

e2i�
(�)
Bs = 1 +

1

g4S0(xt)

m2
W

M2
�

"�
�L�L†�

bs

VtbV ⇤
ts

#2

, (18)

where g =
p

4⇡↵/sW is the SU(2) gauge coupling, and

S0(xt) = 4xt�11x2
t+x3

t
4(1�xt)2

�
3x3

t ln xt

2(1�xt)3
⇡ 2.30 is the loop

function for the SM box diagram. The values obtained
from the global fit are CBs = 1.052 ± 0.084 and �Bs =
(0.72±2.06)�, which when interpreted as a measurement
of leptoquark parameters gives

�
�L�L†�

bs

VtbV ⇤
ts

⇡ (1.87 + 0.45i) M̂� . (19)

Note that for M� . 1 TeV the central value of the real
part of this ratio is close to the upper bound obtained
in (12). At 90% CL the real part can be as large as
3.6 M̂�, while the phase becomes undetermined. As long
as M� < 1.6 TeV, the upper bound on the real part is
thus somewhat weaker than the one obtained from (12).
It is interesting that to reproduce the benchmark value
Cµ

LL ⇡ �1 we need a value of (�L�L†)bs close to the upper
bound in (16) and close to the central value in (19). Our
model thus predicts that the B̄ ! K̄(⇤)⌫⌫̄ decay rates
are enhanced compared with the SM, and that future
measurements should find a new-physics contribution to
Bs�B̄s mixing close to the current best fit value.

Further constraints on the leptoquark couplings enter-
ing (17) arise from LEP measurements of the Z-boson
partial widths into leptons. In particular, we find for the
one-loop corrections to the Zµµ̄ couplings

gµA = gµ,SMA ±
3
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3

◆
�

s2W
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#
,

where the upper (lower) sign refers to A = L (R). For
simplicity we have set m2

Z/(4m2
t ) ! 0 in the top contri-

bution, which numerically is a good approximation. We
require that the Z ! µ+µ� partial width agrees with its
SM value within 2� of its experimental error. Assum-
ing that the left-handed couplings are larger than the
right-handed ones, and that a single coupling combina-
tion dominates, we obtain

q���L
cµ

��2 +
���L

uµ

��2 <
3.24 M̂�

b1/2cu

,
���L

tµ

�� <
1.22 M̂�

b1/2t

, (21)

where bcu = 1+0.39 ln M̂� and bt = 1+0.76 ln M̂�. The
first relation is compatible with the bound (17) as long
as M� > 0.67 TeV.
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FIG. 3. Loop diagrams contributing to (g�2)µ and ⌧ ! µ�.

The couplings of the muon to up-type quarks, which
enter in (15), also contribute to the muon anomalous
magnetic moment aµ = (g � 2)µ/2 and the rare decay
⌧ ! µ�. In our model, new-physics contributions to
these quantities arise from the one-loop vertex correc-
tions shown in Figure 3. Working in the limit where
M2

� � m2
t , we obtain in agreement with [42–44]

a(�)
µ =

X

q=t,c

mµmq
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µµ

+
�
�R†�R

�
µµ

i
,

(22)

where mq ⌘ mq(mq) are running quark masses. The
present experimental value of aµ di↵ers from the SM pre-
diction by (287± 80) · 10�11 [45]. The last term above is
negative and thus of wrong sign, however it is suppressed
by the small muon mass. Assuming the worst case, where
the first bound in (21) is saturated, this term contributes
approximately �37 · 10�11. To reproduce the observed
value in our model, we must then require that (we use
mc ⇡ 1.275 GeV)

ac Re
�
�R
cµ�L⇤

cµ

�
+ 20.7at Re

�
�R
tµ�L⇤

tµ

�
⇡ 0.08 M̂2

� , (23)

where at = 1 + 1.06 ln M̂� and ac = 1 + 0.17 ln M̂�. As-
suming hierarchical coupling matrices and a suppression
of right-handed couplings compared with left-handed
ones, as mentioned earlier, both terms on the left-handed
side can naturally be made of the right magnitude to
explain the anomaly. We stress that aµ is the only ob-
servable studied in this letter which requires a non-zero
right-handed coupling of the leptoquark. For example,
if (17) is satisfied with |�L

cµ| ⇠ 2.4, the aµ anomaly can
be explained with |�R

cµ| ⇠ 0.03. The leptoquark contri-
bution to aµ is tightly correlated with one-loop radiative
corrections to the masses of the charged leptons. Rela-
tion (23) ensures that these corrections stay well inside
the perturbative regime. The Wilson coe�cients of the
dipole operators mediating the radiative decay ⌧ ! µ�
are given by expressions very closely resembling those
in (22) [43, 46]. From the current experimental bound
Br(⌧ ! µ�) < 4.4 · 10�8 at 90% CL [47], we obtain

���ac �R
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cµ + 20.7at �R

t⌧�
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tµ � 0.015

�
�L†�L

�
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���
2

+ (L $ R)

�1/2
< 0.017 M̂2

� .

(24)
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hBs|H full
e↵ |B̄si/hBs|HSM

e↵ |B̄si [41]. We obtain
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where g =
p

4⇡↵/sW is the SU(2) gauge coupling, and

S0(xt) = 4xt�11x2
t+x3

t
4(1�xt)2

�
3x3

t ln xt

2(1�xt)3
⇡ 2.30 is the loop

function for the SM box diagram. The values obtained
from the global fit are CBs = 1.052 ± 0.084 and �Bs =
(0.72±2.06)�, which when interpreted as a measurement
of leptoquark parameters gives

�
�L�L†�

bs

VtbV ⇤
ts

⇡ (1.87 + 0.45i) M̂� . (19)

Note that for M� . 1 TeV the central value of the real
part of this ratio is close to the upper bound obtained
in (12). At 90% CL the real part can be as large as
3.6 M̂�, while the phase becomes undetermined. As long
as M� < 1.6 TeV, the upper bound on the real part is
thus somewhat weaker than the one obtained from (12).
It is interesting that to reproduce the benchmark value
Cµ

LL ⇡ �1 we need a value of (�L�L†)bs close to the upper
bound in (16) and close to the central value in (19). Our
model thus predicts that the B̄ ! K̄(⇤)⌫⌫̄ decay rates
are enhanced compared with the SM, and that future
measurements should find a new-physics contribution to
Bs�B̄s mixing close to the current best fit value.

Further constraints on the leptoquark couplings enter-
ing (17) arise from LEP measurements of the Z-boson
partial widths into leptons. In particular, we find for the
one-loop corrections to the Zµµ̄ couplings

gµA = gµ,SMA ±
3
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where the upper (lower) sign refers to A = L (R). For
simplicity we have set m2

Z/(4m2
t ) ! 0 in the top contri-

bution, which numerically is a good approximation. We
require that the Z ! µ+µ� partial width agrees with its
SM value within 2� of its experimental error. Assum-
ing that the left-handed couplings are larger than the
right-handed ones, and that a single coupling combina-
tion dominates, we obtain

q���L
cµ

��2 +
���L

uµ

��2 <
3.24 M̂�

b1/2cu

,
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tµ

�� <
1.22 M̂�

b1/2t

, (21)

where bcu = 1+0.39 ln M̂� and bt = 1+0.76 ln M̂�. The
first relation is compatible with the bound (17) as long
as M� > 0.67 TeV.
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FIG. 3. Loop diagrams contributing to (g�2)µ and ⌧ ! µ�.

The couplings of the muon to up-type quarks, which
enter in (15), also contribute to the muon anomalous
magnetic moment aµ = (g � 2)µ/2 and the rare decay
⌧ ! µ�. In our model, new-physics contributions to
these quantities arise from the one-loop vertex correc-
tions shown in Figure 3. Working in the limit where
M2

� � m2
t , we obtain in agreement with [42–44]
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(22)

where mq ⌘ mq(mq) are running quark masses. The
present experimental value of aµ di↵ers from the SM pre-
diction by (287± 80) · 10�11 [45]. The last term above is
negative and thus of wrong sign, however it is suppressed
by the small muon mass. Assuming the worst case, where
the first bound in (21) is saturated, this term contributes
approximately �37 · 10�11. To reproduce the observed
value in our model, we must then require that (we use
mc ⇡ 1.275 GeV)

ac Re
�
�R
cµ�L⇤

cµ

�
+ 20.7at Re

�
�R
tµ�L⇤

tµ

�
⇡ 0.08 M̂2

� , (23)

where at = 1 + 1.06 ln M̂� and ac = 1 + 0.17 ln M̂�. As-
suming hierarchical coupling matrices and a suppression
of right-handed couplings compared with left-handed
ones, as mentioned earlier, both terms on the left-handed
side can naturally be made of the right magnitude to
explain the anomaly. We stress that aµ is the only ob-
servable studied in this letter which requires a non-zero
right-handed coupling of the leptoquark. For example,
if (17) is satisfied with |�L

cµ| ⇠ 2.4, the aµ anomaly can
be explained with |�R

cµ| ⇠ 0.03. The leptoquark contri-
bution to aµ is tightly correlated with one-loop radiative
corrections to the masses of the charged leptons. Rela-
tion (23) ensures that these corrections stay well inside
the perturbative regime. The Wilson coe�cients of the
dipole operators mediating the radiative decay ⌧ ! µ�
are given by expressions very closely resembling those
in (22) [43, 46]. From the current experimental bound
Br(⌧ ! µ�) < 4.4 · 10�8 at 90% CL [47], we obtain
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• One-loop Contribution to 
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cµ| ⇠ 0.03.
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Higher order contributions to the quotient Eq. (3.16) are proportional to the lowest order
contribution: r

e/µ,(0)
K , calculated directly from Eq. (3.15). Including the effects of leading

higher-order logarithms through �LL, Eq. (3.16) can be written

r
e/µ
K = r

e/µ,(0)
K

⇣
1 +�K

e2p2 +�K
e2p4 + · · ·

⌘
(1 +�LL) (3.17)

and we take �LL = 0.055%, �K
e2p2 = �3.786% and �K

e2p4 = (0.135 ± 0.011)% [78] in our
calculation.

One can extend the study of lepton-flavor universality in leptonic kaon decays by con-
sidering the crossed process ⌧ ! K⌫. More specifically, the ratio

R
⌧/µ
K =

�(⌧ ! K⌫)

�(K ! µ⌫)
(3.18)

can be used to derive constraints on the muon and tau couplings of the leptoquark �, and
a similar approach has been taken to constrain the couplings of a vector leptoquark in
Ref. [43]. For the numerator, we find

�(⌧ ! K⌫) =
G

2
F |Vus|2

8⇡
f
2
Km

3
⌧

✓
1� m

2
K

m2
⌧

◆2X

i

����C
123i
V � C

123i
S

m
2
K

m⌧ (mu +ms)

����
2

, (3.19)

and the ratio R
⌧/µ
K is required to lie within 2� of its experimental value: (1.101 ± 0.016) ·

10�2 [77].
Pion leptonic decays have been well-studied in the context of leptoquark models, and

measurements of the ratio R
µ/e
⇡ = �(⇡ ! µ⌫)/�(⇡ ! e⌫) demand that leptoquark inter-

actions with the electron and first-generation quarks are small5 [80, 81]. The electron and
down-quark couplings play no role in the anomalies we consider in this work, and we only
require that the appropriate couplings are small enough to evade these constraints.

Comments on lepton flavor universality in B ! D
(⇤)(e, µ)⌫̄. An additional con-

straint comes from the observation that lepton-flavor universality is respected in the ratio
of decays

R
µ/e
D(⇤) =

�(B̄ ! D
(⇤)

µ⌫̄)

�(B̄ ! D(⇤)e⌫̄)
, (3.20)

implying a tension with the purported violation in µ–e universality evident in RK(⇤) . This
constraint has been studied in Ref. [67], where it was concluded that the leptoquark model
cannot respect this constraint while explaining the suppression of RK in the absence of the
right-handed couplings yij . The ratio has been measured to be R

µ/e
D = 0.995 ± 0.022 ±

0.039 [75], while the reciprocal is presented for the D
⇤ ratio: Re/µ

D⇤ = 1.04±0.05±0.01 [76].
In the case of Rµ/e

D , 2� consistency with the measurement allows for an approximately 10%

deviation from the SM prediction, a weaker bound than that presented in Ref. [67], while
the recent Belle result for Re/µ

D⇤ permits only a 4% deviation for contributions to the muonic
mode. We find that these constraints become less important for leptoquark masses larger

5
In the most minimal case, a non-zero x21 implies z21 ⇡ x21 and these couplings alone are sufficient to

mediate the decay ⇡+ ! µ+⌫.
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Figure 6: The results of our random scan showing RK against R
µ/e
D (top) and R

e/µ
D⇤

(bottom) for the parameter choices detailed in Sec. 4 for ‘scan I’, in which the leptoquark
mass is allowed to vary to values as large as 5 TeV. For leptoquark masses between 3 and
5 TeV, the tension in RK can be significantly resolved while keeping LFV effects between
electron and muon modes mild.

than 1 TeV, permitting sizeable contributions to RK in this model. We illustrate this point
in the top plot of Fig. 6, where random points passing all of the constraints presented in
our analysis except R

e/µ
D⇤ are presented in the RK–Rµ/e

D plane. The parameters and ranges
taken in our scan are the same as those of scan I in Sec. 4 in which masses are sampled
randomly from the range [1, 5] TeV. The complementary set-up for R

e/µ
D⇤ is shown in the

bottom figure of Fig. 6, mutatis mutandis.

Comments on Bc ! ⌧⌫. The leptonic decays of the charmed B meson have not yet
been measured—few Bc mesons are produced at e

+
e
�

B-factories and the leptonic mode
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The known particles were the

This was a very successful model, as it greatly simplified 
the previous best candidate for a fundamental theory of 
elementary particles, the periodic table of elements.
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Frc. 12. Pike's Peak, 7900 gauss. A disintegration
produced by a nonionizing ray occurs at a point in the
0.35 cm lead plate, from which six particles are ejected.
One of the particles (strongly ionizing) ejected nearly
vertically upward has the range of a 1.5 MEV proton, Its
energy (given by its range) corresponds to an Hp = 1.7 X10',
or a radius of 20 cm, which is three times the observed
value. If the observed curvature were produced entirely by
magnetic deflection it would be necessary to conclude that
this track represents a massive particle with an e/m much
greater than that of a proton or any other known nucleus,
As there are no experimental data available on the multiple
scattering of low energy protons in argon it is difficult to
estimate to what extent scattering may have modified the
curvature in this case. The particle is therefore tentatively
interpreted as a proton. The other particle ejected upward
to the right may be either an electron or a fast proton. The
four particles ejected downward are positively charged
and do not ionize sufficiently strongly to represent protons
of the curvatures shown. If they are positrons their
energies are respectively 105, 250, ~500 and 60 MEV.
The summed energies of the six particles produced in this
disintegration must exceed 1000 MEV. Since an electron
shower, coming in from above the chamber, occurs on this
exposure coincident in time with the disintegration in the
plate, the latter probably resulted from an encounter by a
photon or neutron which was produced along with the
electrons in the shower. The fact that light particles receive
so much energy would tend to favor the photon view.
This disintegration in which all the ejected particles are
probably positively charged represents a process funda-
mentally different from the usual electron shower; it shows
that charge has been removed from the nlclems and made
to appear in the form of light particles.

Fr@,. 13. Pasadena, 4500 gauss. A complex electron
shower not clearly defined in direction, and three heavy
particles with specific ionizations definitely greater than
that of electrons. The sign of charge of two of these heavy
particles represented by short tracks cannot be determined,
but the assumption that they represent protons is con-
sistent with the information supplied by the photograph.
The third heavy track appears above the 0.35 cm lead
plate where it has a specific ionization not noticeably
different from that of an electron. It penetrates the lead
plate and appears in the lower half of the chamber as a
nearly vertical track near the middle. Below the plate it
shows a greater ionization than an electron, and is deviated
in the magnetic field to indicate a positively charged
particle. Its Hp is apparently at most 1.4)&10 gauss cm,
which corresponds to a proton energy of 1 MEV and a
range of only 2 cm in the chamber, whereas the observed
range is greater than 5 cm. A difficulty of the same nature
was discussed in the description of the previous photograph.

but the assumption made that the particle
travels downward, there occur 33 tracks repre-
senting positively charged particles, and 5 repre-
senting negative particles; the latter 5 tracks,
however, may well represent positive particles
thrown backward.
For comparison with the Pike's Peak data a set

of l0, 543 exposures made at Pasadena under

the vertical as measured in the plane of the
chamber. Whereas the high energy electrons
favor the vertical direction very strongly, a large
percentage of the heavy particles are nearly
horizontal, and in several instances they are
clearly seen to be projected upward (see Figs.
9, 10, 12), indicating that in general they repre-
sent secondaries resulting from nuclear dis-
integration.
Wherever the direction of the particles is

definitely known (as for particles produced by a
disintegration occurring inside the chamber), the
sense of curvature in the magnetic field is such as
to indicate particles of positive charge. In the
cases where the direction of travel is not known,

14jl

FK'. 14. Pasadena, 4500 gauss. A short dense track shows
the ejection of a strongly ionizing particle from the lead
plate, apparently coincident in time" with the electron
shower. This particle may be a proton although it is not
possible to determine its energy.

Neddermeyer Anderson

Neddermeyer and Anderson 
discover a new fermion with
m = 106MeV
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