

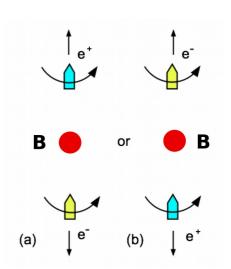
B physics at ATLAS and CMS

Marcella Bona (QMUL)

UK HEP Forum: the Spice of Flavour The Cosener's House, UK November 27th, 2018

B physics in ATLAS and CMS

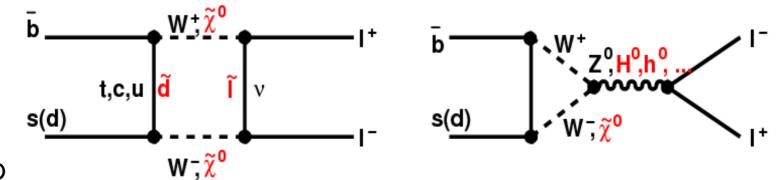
somewhat limited (wo)man power and trigger efficiencies

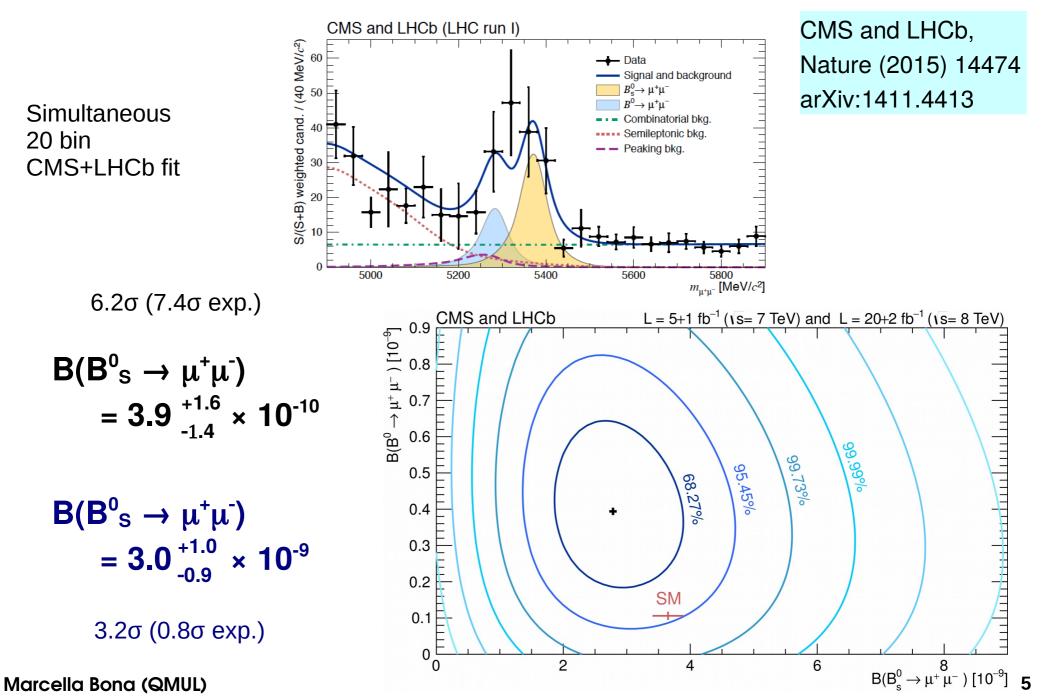

- but a good variety of analyses
- B_(s) oscillations in all-tracks final state
- Dedicated trigger for $B_{(s)}$ to $\mu\mu$
- K*μμ angular analysis and many other topics (b production, spectroscopy, etc)
- 15% of the bandwidth is allocated to B Physics
- Dedicated L1 soft-muon triggers to keep sensitivity at high luminosity
- some recent (2018) results
 - ATLAS: $B_{(s)}$ to $\mu\mu$, $K^*\mu\mu$ angular analysis, $B_s\pi$ searches
 - CMS: K+/K^{*} $\mu\mu$ angular analysis, observations of $\chi_{b1,2}$ and B^{*}_{\$1,2}
- and some prospects
 - electrons and ratio possibilities
 - high luminosity

rare B decays $B_{(s)} \rightarrow \mu^{+}\mu^{-}$

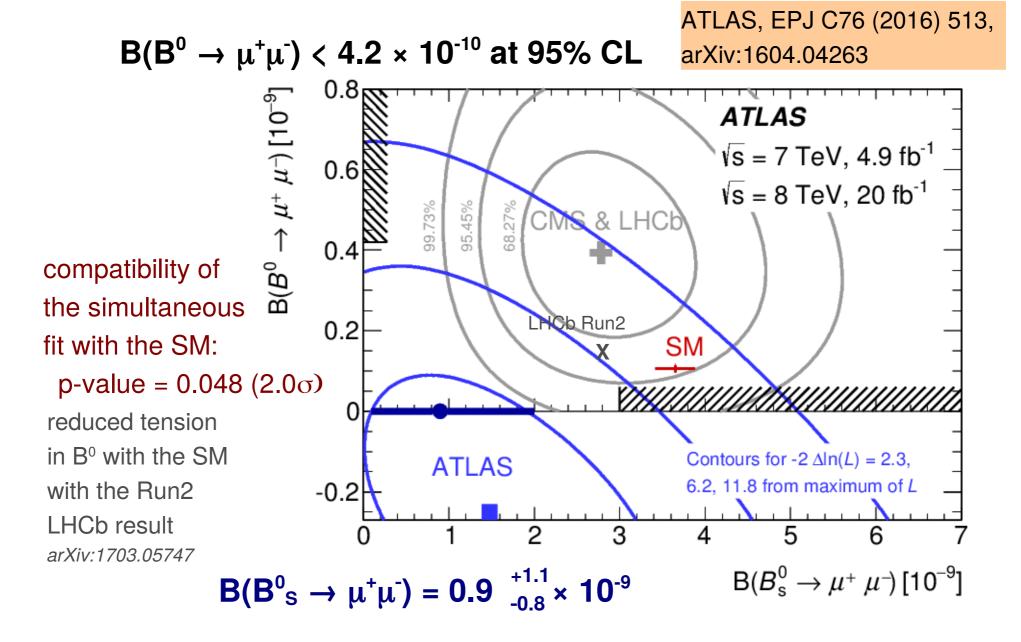
ATLAS: EPJ C76 (2016) 513, arXiv:1604.04263 ATLAS-CONF-2018-046 (2018) CMS Nature (2015) 14474, arXiv:1411.4413

Motivations and predictions


- Decays of B⁰ and B⁰_s into two leptons have to proceed through Flavour Changing Neutral Currents (FCNC)
 → forbidden at tree level in the SM
- In addition, they are CKM and helicity suppressed.
- Within the SM, they can be calculated with small theoretical uncertainties of order 6-8%


Bobeth et al., PRL 112 (2104) 101801 [includes NLO EM and NNLO QCD corrections]

meson		Lepton type	
\mathbf{type}	e	μ	au
B^0	$(2.48\pm0.21)10^{-15}$	$(1.06 \pm 0.09) 10^{-10}$	$(2.22\pm0.19)10^{-8}$
B_s^0	$(8.54 \pm 0.55) 10^{-14}$	$(3.65\pm0.23)10^{-9}$	$(7.73 \pm 0.49) 10^{-7}$


- Perfect ground for indirect new physics searches:
 - virtual new particles can contribute to the loop
 - both enhancement and suppression effects are possible

CMS analysis on full Run 1 data (with LHCb)

ATLAS analysis on full Run 1 data

ATLAS analysis on 2015-2016 Run 2 data

ATLAS-CONF-2018-046

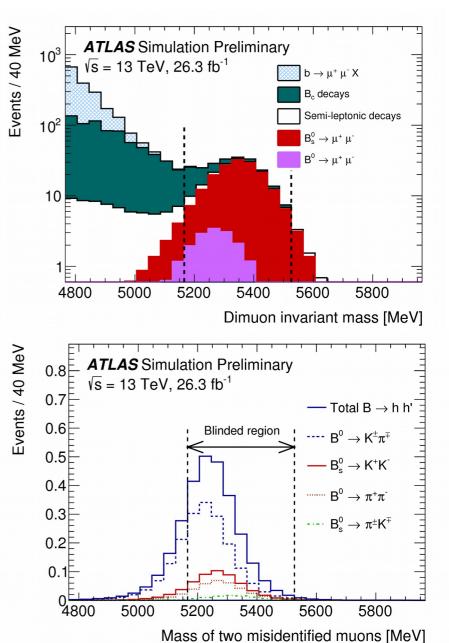
- 36.2/fb dataset of 2015-2016 data taking:
 - effectively 26.3/fb for B $\rightarrow \mu\mu$
 - 15.1/fb for B \rightarrow J/ $\psi\Phi$ and B \rightarrow J/ ψK
- Trigger: higher thresholds [4-6 GeV] than in Run1,
 - Lxy > 0 request at trigger level

$$\begin{split} \mathcal{B}(B^0_{(s)} \to \mu^+ \mu^-) = & \frac{N_{d(s)}}{\varepsilon_{\mu^+ \mu^-}} \times \frac{\varepsilon_{J/\psi K^+}}{N_{J/\psi K^+}} \times \frac{f_u}{f_{d(s)}} \\ & \times \left[\mathcal{B}(B^+ \to J/\psi K^+) \times \mathcal{B}(J/\psi \to \mu^+ \mu^-) \right] \end{split}$$

- correction for the different hadronisation probabilities for B⁰_S and B⁰ vs B[±]
- include the B[±] and J/ ψ branching fractions
- correction for the efficiencies of the two channels
- normalisation yield and efficiency ratio define the factor:

$$\mathcal{D}_{\text{norm}} = N_{J/\psi K^+} \left(\frac{\varepsilon_{\mu^+ \mu^-}}{\varepsilon_{J/\psi K^+}} \right)$$

B Physics at ATLAS & CMS


Background contributions

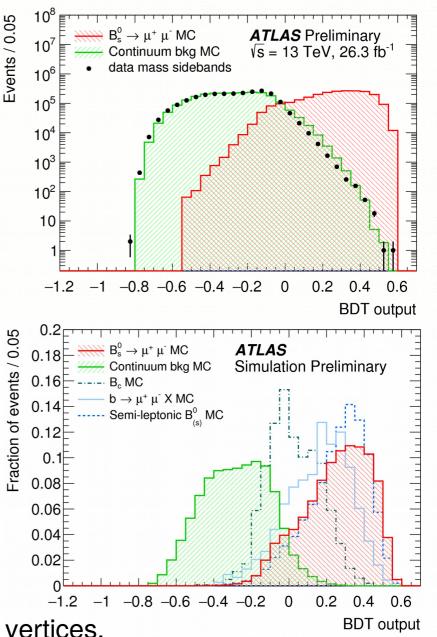
In order of relative magnitude:

- combinatorial background:
 - two real muons from different b quarks
- partially reconstructed B decays:
 - two real muons
 - Same Vertex (SV): $B \rightarrow \mu\mu X$ decays
 - Same Side (SS): semileptonic decay cascad
 (b → cµν → s(d)µµνν)
 - B_c decays: like $B_c \rightarrow J/\psi \ \mu v$
 - all these accumulate at low values of the dimuon invariant mass
- semileptonic B and B_s decays:
 - one real muon and a charged hadron.
- peaking background from charmless

hadronic $B_{(S)}$ decays:

- B decays into two hadrons h (kaons and pions): $B^{0}_{(S)} \rightarrow hh'$
- smaller component, but overlays with the signal in dimuon invariant mass

⁸


Tight muon-ID against hadron misidentification

- mis-identification reduced by 0.39² using standard 'tight' ATLAS selections
- studied on simulated samples
- validated on control regions
- negligible misidentification of protons (< 0.01%)</p>
- misidentification is 0.08%(0.10%) for $K(\pi)$.

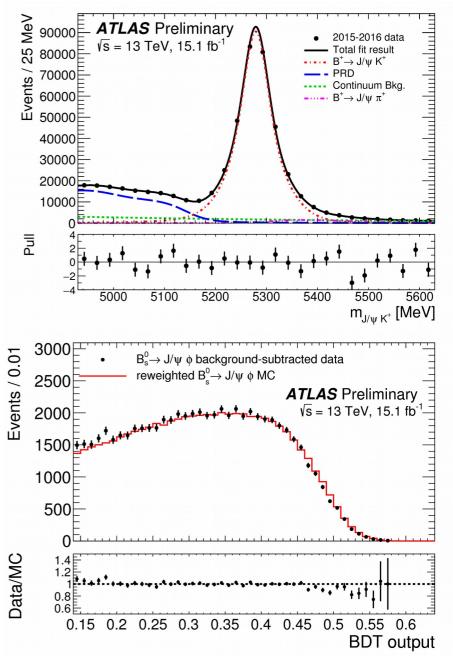
peaking-background events: 2.7±1.3

BDT against combinatorial bkg

- MVA classifier to discriminate from signal
- trained and tested on mass sidebands
 - divided in 3 subsets
 - 3 independent BDTs
 - compatible performance
- 15 variables related to properties of B
 candidates, muons from the B decay, other
 tracks from the same collision and to pile-up vertices.

Normalisation B yield extraction

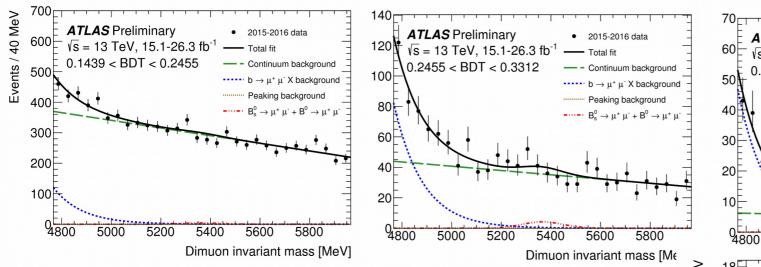
- unbinned maximum likelihood fit of the invariant mass $m_{J/\psi K} \rightarrow m_{\mu\mu K}$
- cross-checked with raw relative yield of J/ψπ over J/ψK ratio
 ρ_{π/K} = (3.71 ± 0.09)%


$$\mathcal{D}_{\text{norm}} = N_{J/\psi K^+} \left(\frac{\varepsilon_{\mu^+ \mu^-}}{\varepsilon_{J/\psi K^+}} \right)$$

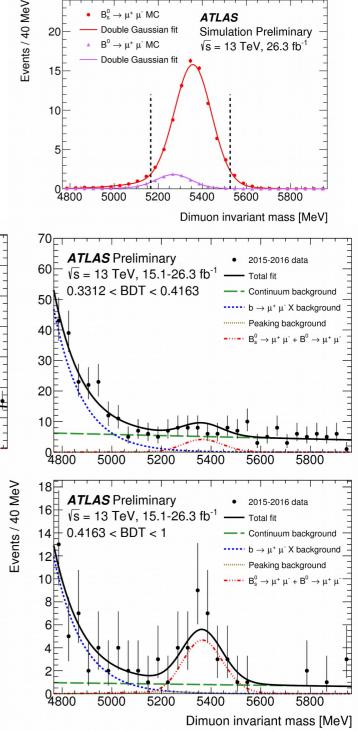
Efficiency ratio $\epsilon_{\mu\mu}/\epsilon_{J/\psi K}$

- efficiency ratio from MC
- systematic from data-MC discrepancies
- For B⁰_S: 2.7% correction for lifetime

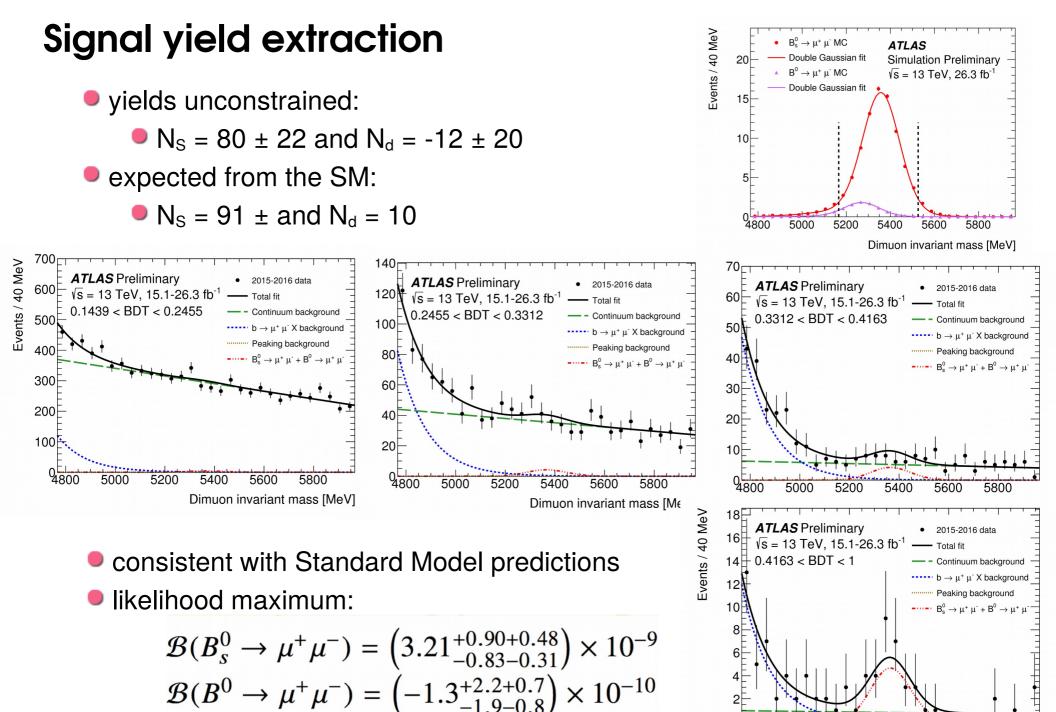
difference of the B⁰_S mass eigenstates


	Source	Contribution (%)
	Statistical	0.8
	BDT Input Variables	3.2
	Kaon Tracking Efficiency	1.5
	Muon trigger and reconstruction	1.0
	Kinematic Reweighting (DDW)	0.8
Marcella Bona	Pile-up Reweighting	0.6

B Physics at ATLAS & CMS

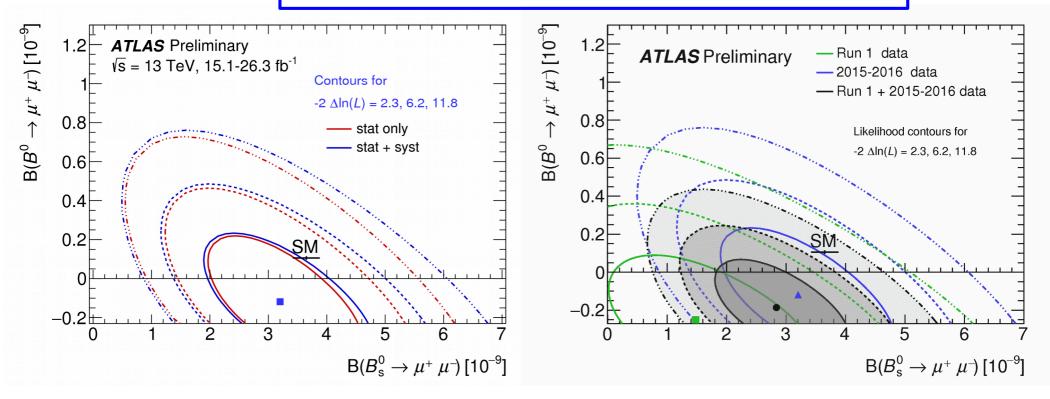

Signal yield extraction

 signal yields extracted with a unbinned maximum likelihood fit to the dimuon mass
 fit performed simultaneously in four BDT bins
 18% signal efficiency



- continuum: first order polynomial
- partially reconstructed B: exponential
- semi-leptonic: exponential

B Physics at ATLAS & CMS

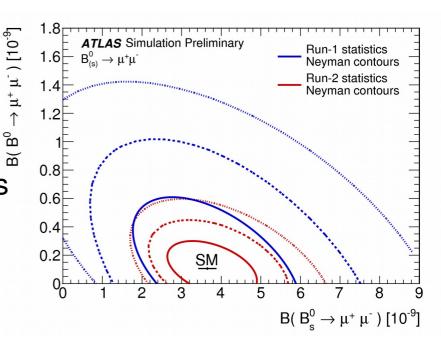

Marcella Bona (QMUL)

Combination of Run 1 and Run 2 results at ATLAS

Neyman Contours yield for Run 2:

$$\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = \left(3.21^{+0.96+0.49}_{-0.91-0.30}\right) \times 10^{-9} = \left(3.2^{+1.1}_{-1.0}\right) \times 10^{-9}$$
$$\mathcal{B}(B^0 \to \mu^+ \mu^-) < 4.3 \times 10^{-10} \text{ @ 95\% CL}$$

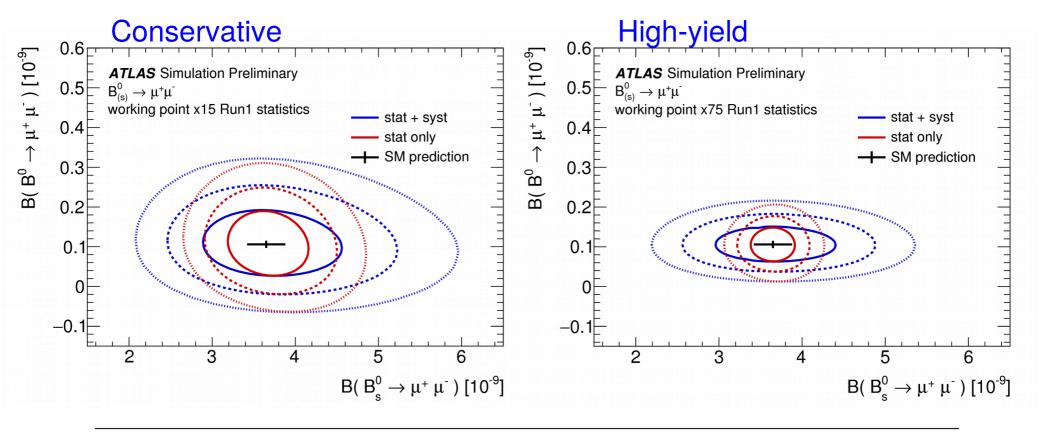
Run 1 + Run 2 (2015+2016) combination: Compatible with SM at 2.4 σ


 $\mathcal{B}(B_s^0 \to \mu^+ \mu^-) = (2.8^{+0.8}_{-0.7}) \times 10^{-9}$ $\mathcal{B}(B^0 \to \mu^+ \mu^-) < 2.1 \times 10^{-10}$

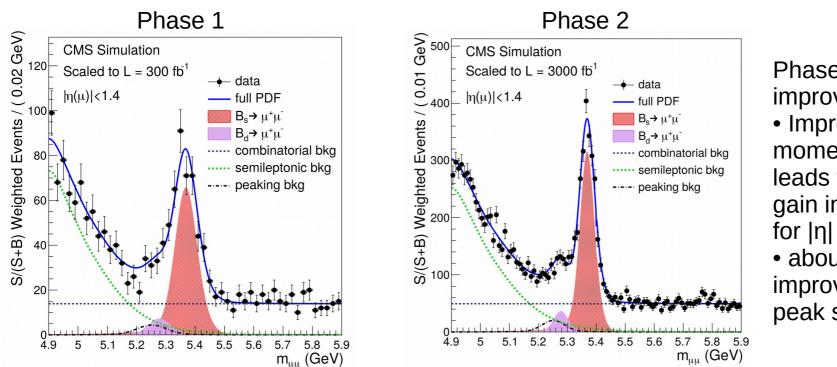
Prospect on rare B decays $B_{(s)} \rightarrow \mu^+\mu^-$ at ATLAS

ATL-PHYS-PUB-2018-005

Full Run 2:


- assuming 130/fb
- ⊂ σ(bb): 8 TeV → 13/14 TeV → x1.7
- 2MU6||MU6_MU4 topological triggers (6 GeV p_T thresholds)
- Estimate N(Run 2) ~7 x N(Run 1)

HL-LHC → 3 trigger scenarios: dimuon transverse momentum thresholds (p^{µ1}_τ, p^{µ2}_τ):


- Onservative: (10 GeV, 10 GeV) → ×15 Run 1 statistics;
- Intermediate: (6 GeV, 10 GeV) → ×60 Run 1 statistics;
- → High-yield: (6 GeV, 6 GeV) \rightarrow ×75 Run 1 statistics.

Prospect on rare B decays $B_{(s)} \rightarrow \mu^+\mu^-$ at ATLAS

	$\mathcal{B}(B^0_s \to \mu^+ \mu^-)$		$\mathcal{B}(B)$	$^{0}\rightarrow\mu^{+}\mu^{-})$
	stat $[10^{-10}]$	$stat + syst [10^{-10}]$	stat $[10^{-10}]$	stat + syst $[10^{-10}]$
Run 2	7.0	8.3	1.42	1.43
HL-LHC: Conservative	3.2	5.5	0.53	0.54
HL-LHC: Intermediate	1.9	4.7	0.30	0.31
HL-LHC: High-yield	1.8	4.6	0.27	0.28

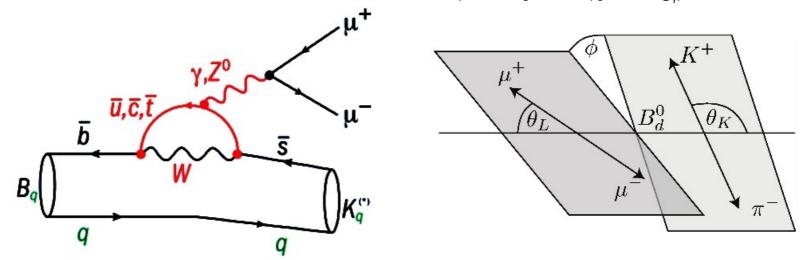
Prospect on rare B decays $B_{(s)} \rightarrow \mu^+\mu^-$ at CMS

FTR-14-015

Phase 2 with improved tracker: • Improvement in the momentum resolution leads to about 40% gain in mass resolution for $|\eta| < 1.0$. • about 25 % improvement in mass peak separation

Estimate of analysis sensitivity							
\mathcal{L} (fb ⁻¹)	$N(B^0_s)$	$N(B^0)$	$\delta \mathcal{B}(\mathbf{B}^0_s \to \mu^+ \mu^-)$	$\delta {\cal B}({ m B}^0 o \mu^+ \mu^-)$	B ⁰ sign.	$\left \begin{array}{c} \delta rac{\mathcal{B}(\mathrm{B}^0 ightarrow \mu^+ \mu^-)}{\mathcal{B}(\mathrm{B}^0_s ightarrow \mu^+ \mu^-)} \end{array} ight.$	
20	18.2	2.2	35%	> 100%	$0.0-1.5\sigma$	> 100%	
100	159	19	14%	63%	$0.6-2.5\sigma$	66%	
300	478	57	12%	41%	$1.5 - 3.5 \sigma$	43%	
300 (barrel)	346	42	13%	48%	$1.2 - 3.3 \sigma$	50%	
3000 (barrel)	2250	271	11%	18%	$5.6-8.0\sigma$	21%	

Angular analysis on B \rightarrow K^{*}µµ


ATLAS

JHEP 10 (2018) 047, arXiv:1805.04000 CMS

> 2011 data: Phys. Lett. B 727 (2013) 77 2012 data: Phys. Lett. B 753 (2016) 424 PLB 781 (2018) 517, arXiv:1710.02846

Angular analysis on $B \rightarrow K^* \mu \mu$

- $^{-0}$ another way to look at FCNC: b \rightarrow s transition with a BR ~ 1.1 10⁻⁶
- angular distribution of the 4 particles in the final state sensitive to new physics for the interference of NP and SM diagrams
 - allows measuring a large set of angular parameters sensitive to Wilson coefficients C⁽⁺⁾₇, C⁽⁺⁾₉, C⁽⁺⁾₁₀, C⁽⁺⁾_{S,P}

Observe described by three angles (θ_L, θ_K, φ) and the di-muon mass squared q² → the angular distribution is analysed in finite bins of q² as a function of θ_L, θ_K and φ.
IHEP 02 (2016) 104

 \sim LHCb reports a 3.4 σ deviation from the SM.

JHEP 02 (2016) 104 arXiv:1512.04442

Angular analysis on $B \rightarrow K^* \mu \mu$

B⁰ flavour eigenstate can be identified through the K^{*} → K⁻ π⁺ decay
 angular distribution given by:

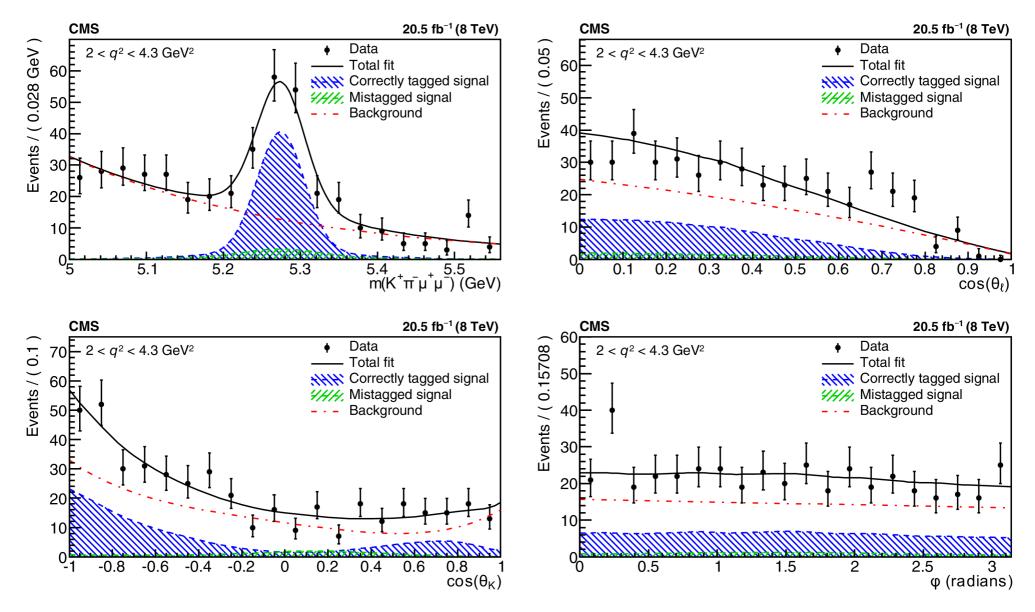
$$\frac{1}{d\Gamma/dq^2} \frac{d^4\Gamma}{d\cos\theta_\ell d\cos\theta_K d\phi dq^2} = \frac{9}{32\pi} \left[\frac{3(1-F_L)}{4} \sin^2\theta_K + F_L \cos^2\theta_K + \frac{1-F_L}{4} \sin^2\theta_K \cos 2\theta_\ell - F_L \cos^2\theta_K \cos 2\theta_\ell + S_3 \sin^2\theta_K \sin^2\theta_\ell \cos 2\phi + S_4 \sin 2\theta_K \sin 2\theta_\ell \cos \phi + S_5 \sin 2\theta_K \sin \theta_\ell \cos \phi + S_6 \sin^2\theta_K \cos \theta_\ell + S_7 \sin 2\theta_K \sin \theta_\ell \sin \phi + S_8 \sin 2\theta_K \sin 2\theta_\ell \sin \phi + S_9 \sin^2\theta_K \sin^2\theta_\ell \sin 2\phi_\ell \sin 2\phi_\ell \right].$$

 \bigcirc the S parameters are translated into the P⁽⁾ parameters via

$$P_1 = \frac{2S_3}{1 - F_L} \qquad P'_{i=4,5,6,8} = \frac{S_{j=4,5,7,8}}{\sqrt{F_L(1 - F_L)}}$$

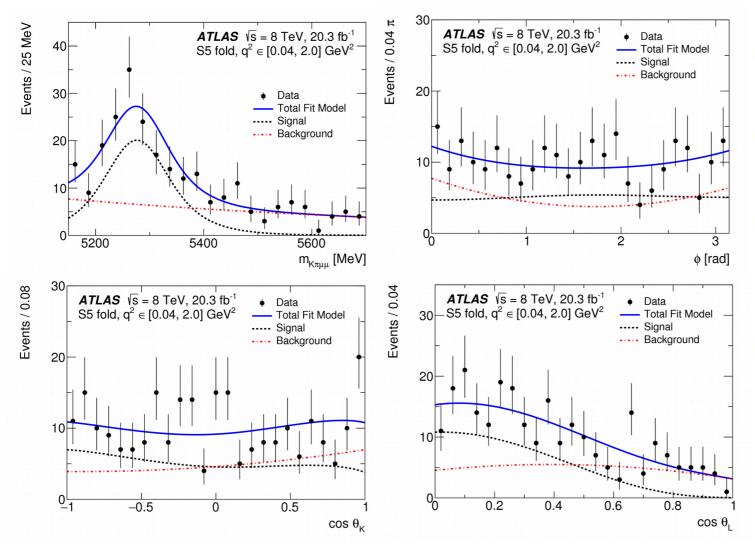
- the P⁽⁾ parameters are expected to have a reduced dependence on the hadronic form factors.
- ATLAS and CMS need to fold the angular distribution via trigonometric relations to reduce the number of free parameters

Analysis strategy for $B \rightarrow K^* \mu \mu$ at CMS

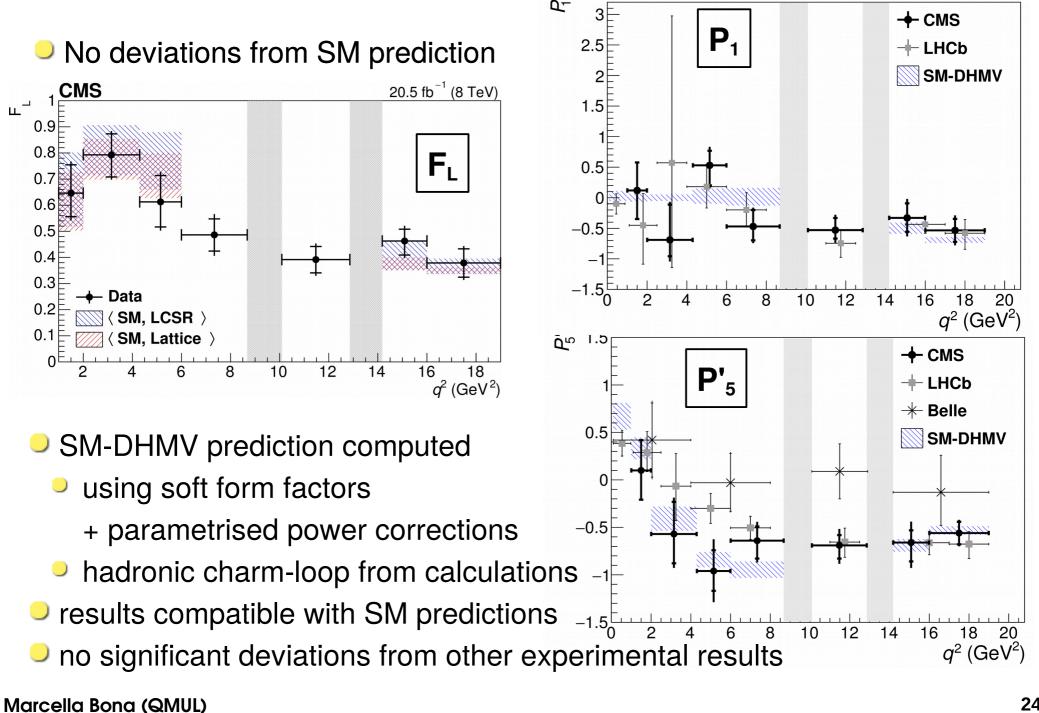

- Phys. Lett. B 727 (2013) 77 and Phys. Lett. B 753 (2016) 424
 - A_{FB} and F_{L} parameters and differential branching fraction measured
 - no deviations from SM prediction
- PLB 781 (2018) 517
 - fold around φ = 0 and θ_{ϱ} = $\pi/2$ $\rightarrow\,$ 6 parameters \rightarrow still too many
 - F_L , F_s , and A_s fixed from previous CMS measurement
 - P_1 and P'_5 measured, A^5_s nuisance parameter
 - q² range divided in 9 bins:
 - 7 signal bins, in each the angular analysis performed independently
 - 2 control-region bins, for resonant decays $B^{_0} \rightarrow J/\psi K^{*}$ / $B^{_0} \rightarrow \psi' K^{*}$
 - Ilavour assignment: mis-tagged event fraction 14%, measured on MC
 - two-step fit performed for 7 (+2 control regions) q² bins:
 - fit mass sidebands to determine the background shape
 - fit whole mass spectrum to extract 5 parameters: 2 yields, P₁, P'₅, A⁵₅

Analysis strategy for $B \rightarrow K^* \mu \mu$ at ATLAS

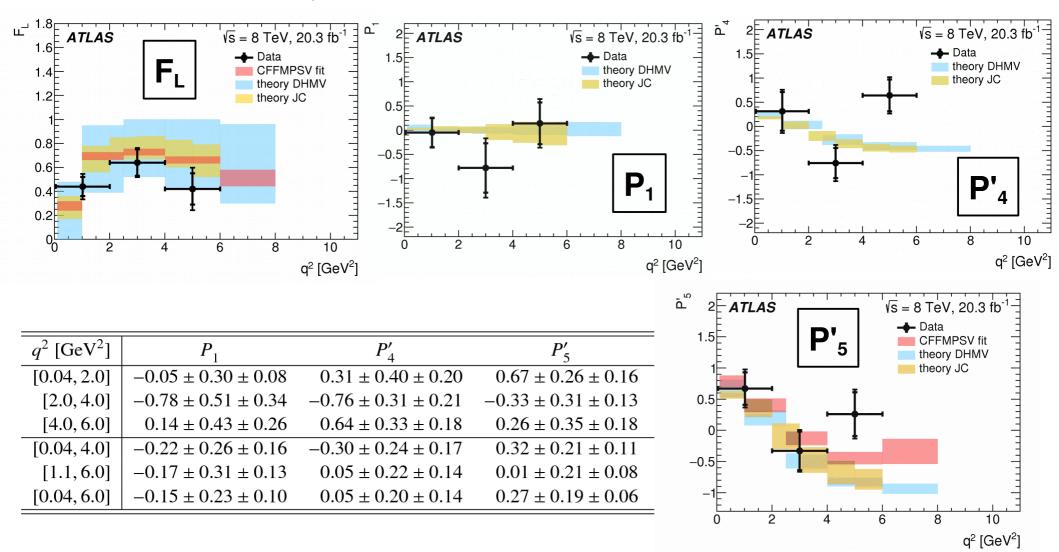
- Data collected in 2012 at 8 TeV with 20.3 fb⁻¹ Run 1 data
- Measured in 6 (overlapping) bins of q² in the range [0.04, 6] GeV²
- 4 sets of fits for three parameters (F_L , S_3 and S_i with j=4,5,7,8)
- Selection of triggers with muon p_T thresholds starting at 4 GeV
- K* tagged by the kaon sign:
 - dilution from mistag probability included in (1-2<w>):
 - <w> ~ 10.9(1)% with small dependence on q²
- 787 events selected with q² < 6 GeV²
- Extended unbinned maximum likelihood fits in each of the fit variants in each q² bin:
 - two step fit procedure: first fit the invariant mass distribution
 - then add to the fit the angular distributions to extract the F_{L} and S(P) parameters
- Signal shape studies from control samples K*J/ ψ and K* ψ (2S)


Fit projections for CMS

\sim fit projection for second bin: 2.0 < q² < 4.3 GeV².

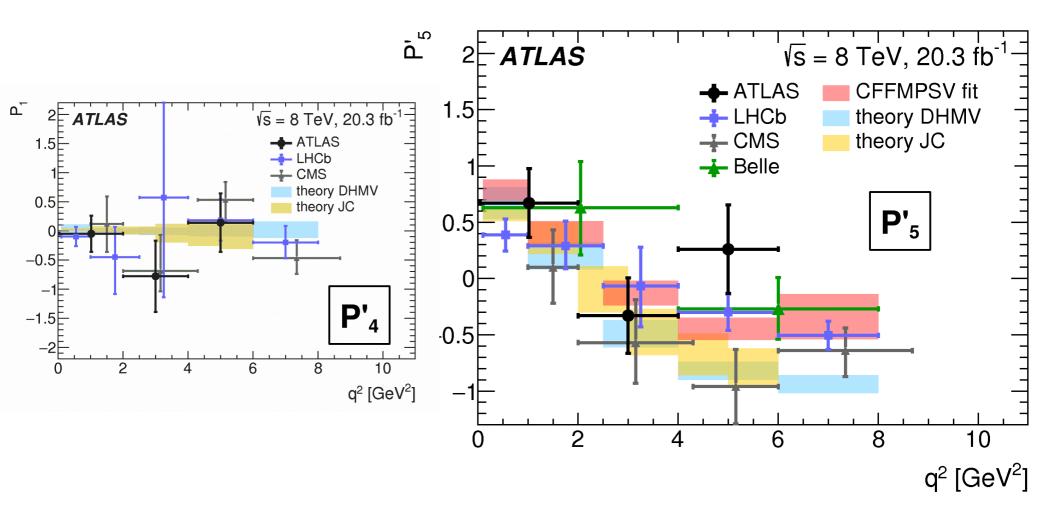

Fit projections for **ATLAS**

 fit m(K*µµ), cosθ_L, cosθ_K and φ to isolate signal and extract parameters of interest.


- Data shown for [0.04,2.0] GeV²
- Projections for the S₅ fit.
- Approx 106-128 signal events in 2 GeV² q² bin.
- Similar results for the other q² bins and other fit variants.

Angular analysis results at CMS

Angular analysis results at ATLAS


Results are compatible with theoretical calculations & fits:

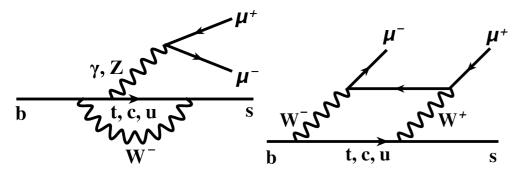
OPE and LHCb data fit: CFFMPSV: Ciuchini et al.; JHEP 06 (2016) 116. QCD factorisation: DMVH: Decotes-Genon et al.; JHEP 12 (2014) 125. JC: Jäger-Camalich; Phys. Rev. D93 (2016) 014028.

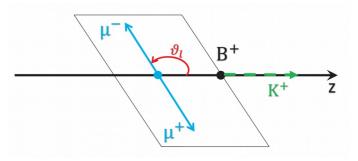
Angular analysis results at ATLAS and CMS

- ATLAS gets deviations of about 2.5 σ (2.7 σ) from DHMV in P'₄(P'₅) in [4,6] GeV²

CFFMPSV: Ciuchini et al.; JHEP 06 (2016) 116. DHMV: Decotes-Genon et al.; JHEP 12 (2014) 125. JC: Jäger-Camalich; Phys. Rev. D93 (2016) 014028.

B Physics at ATLAS & CMS


Angular analysis on B \rightarrow K⁺µµ

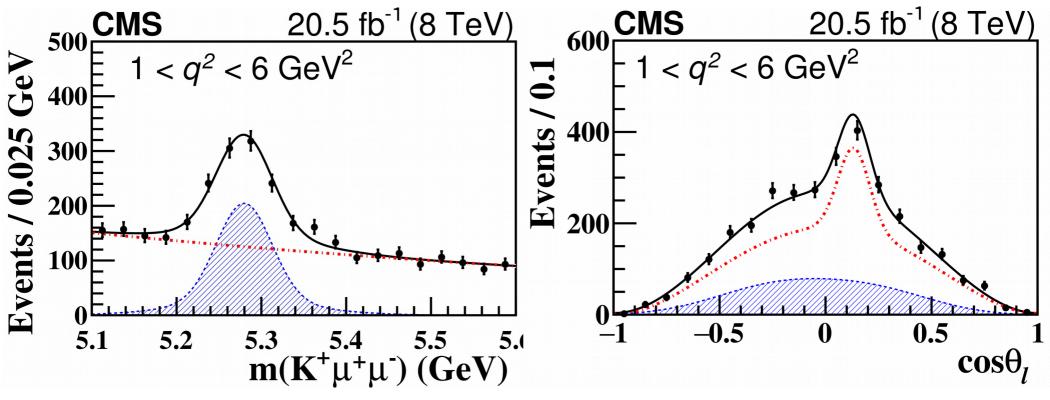

CMS

Accepted in Phys. Rev. D, CMS-BPH-15-001, arXiv:1806.00636

Angular analysis on $B \rightarrow K^+\mu\mu$ at CMS

■ another FCNC: b → s transition with a BR ~ 4.5 10^{-7}

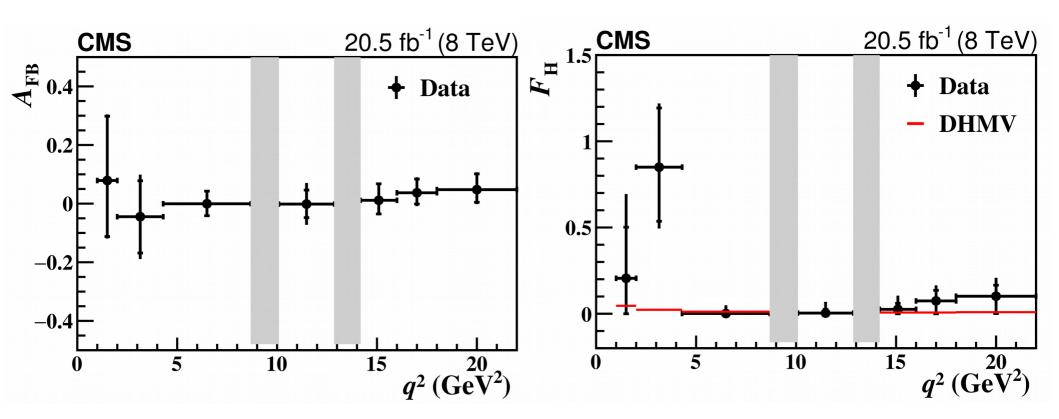
• Fully described by the angle θ_{ℓ} and $q^2 = M_{\mu\mu}$


- Angular decay rate: $\frac{1}{\mathrm{d}\Gamma/\mathrm{d}q^2} \frac{\mathrm{d}^2\Gamma}{\mathrm{d}q^2\mathrm{d}\cos\theta_l} = \frac{3}{4} \left(1 F_{\mathrm{H}}\right) \left(1 \cos^2\theta_\ell\right) + \frac{1}{2}F_{\mathrm{H}} + \mathcal{A}_{\mathrm{FB}}\cos\theta_\ell$
- The forward-backward asymmetry of the muons, A_{FB} , and the angular parameter F_{H} extracted via angular analysis

Range [1, 22] GeV² of q² divided in 9 bins

- analysis performed in 7 signal bins
- 2 bins with B⁺ → J/ψK⁺ and B⁺ → ψ'K⁺ are control channels
- 2 additional special bins: [1-6] GeV² (clean predictions) and [1-22] GeV² (full signal)

Angular analysis on B \rightarrow K⁺µµ at CMS


- Two-step unbinned extended maximum likelihood fit performed:
 - fit mass sidebands to determine the background shape
 - fixed in second step
 - fit whole mass spectrum with 4 floating parameters
 - 2 yields + 2 angular param

fit projections for special bin $1 < q^2 < 6 \text{ GeV}^2$

Angular analysis on B \rightarrow K⁺µµ at CMS

- Inner error bar is statistical uncertainty
- Full bar is total uncertainty
- Results compatible with SM predictions within uncertainties

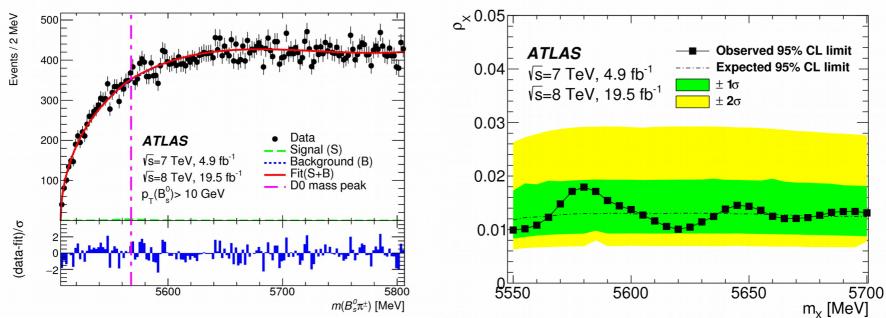
Searches and Observations

ATLAS

```
search for X \rightarrow B_s \pi^{\pm}:
```

Phys. Rev. Lett. 120 (2018) 202007, arXiv:1802.01840

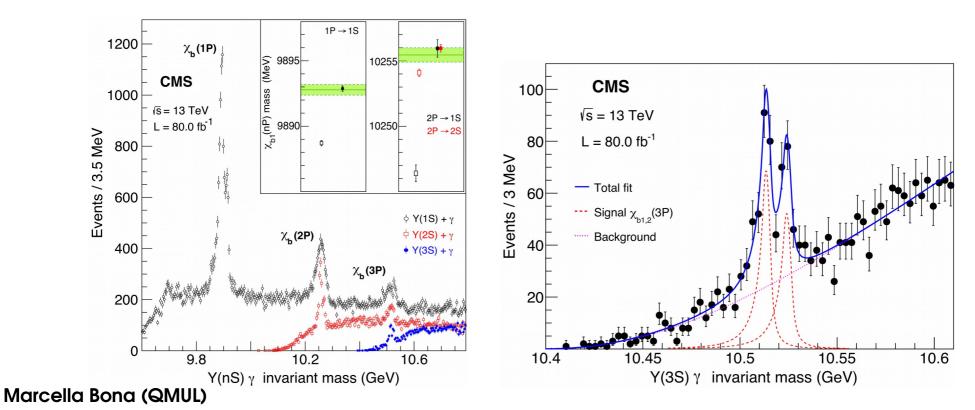
CMS


Measurements of $B_{s2}^{*}(5840)^{\circ}$ and $B_{s1}^{*}(5830)^{\circ}$:

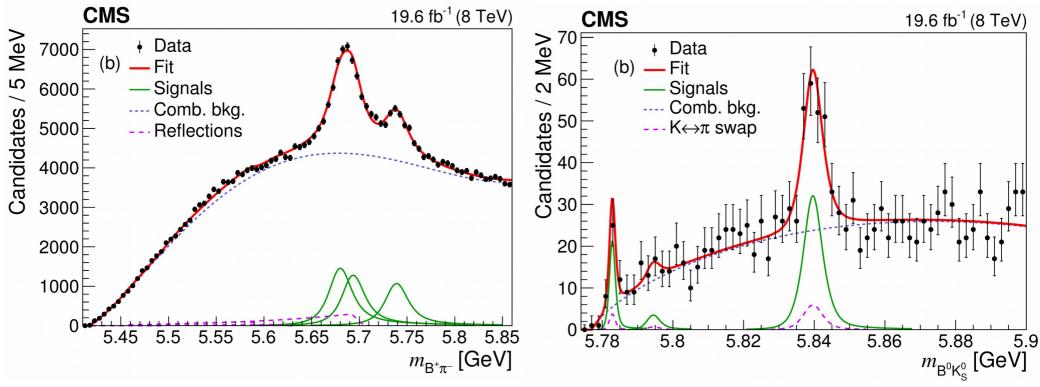
Eur. Phys. J. C 78 (2018) 939, arXiv:1809.03578 Observation of the $\chi_{_{b1}}(3P)$ and $\chi_{_{b2}}(3P)$:

Phys. Rev. Lett. 121 (2018) 092002, arXiv:1805.11192

Search for $X \rightarrow B_s \pi^{\pm}$ at ATLAS


- Search for the narrow structure, X(5568), reported by the D0 Collaboration in the decay sequence $X \rightarrow B_{s}^{0}\pi^{\pm}$, $B_{s}^{0} \rightarrow J/\psi\phi$
- Full Run 1: 4.9/fb of pp collisions at 7 TeV and 19.5/fb at 8 TeV
- No significant signal was found
- Upper limits on the number of signal events and on the production rate relative to B⁰ mesons, ρ_x,
 - N(X)<382 and ρ_x <0.016 for B⁰_s mesons with p_{τ} > 10 GeV
 - N(X)<356 and ρ_x <0.017 for p_T > 15 GeV

Observation of χ_{b1} (3P) and χ_{b2} (3P) at CMS


- $\chi_{b1}(3P)$ and $\chi_{b2}(3P)$ states observed through their Y(3S) γ decays
- Run 2 data: 80/fb at 13 TeV
- Iow-energy photons detected after converting to e⁺e⁻ pairs in the tracker
- first time that the J=1 and 2 states are well resolved and their masses individually measured: 10 513.42 ± 0.41 (stat) ± 0.18 (syst) MeV and 10 524.02 ± 0.57 (stat) ± 0.18 (syst) MeV

mass splitting is measured to be 10.60 ± 0.64 (stat) ± 0.17 (syst) MeV

Measurements of $B_{s_2}(5840)^0$ and $B_{s_1}(5830)^0$ at CMS

- Measurements of $B_{s2}^{*}(5840)^{\circ}$ and $B_{s1}^{*}(5830)^{\circ}$ mesons on 19.6/fb at 8 TeV
- P-wave B_{s}^{0} meson decays into $B^{(*)+}K^{-}$ and $B^{(*)0}K_{s}^{0}$
- ^(a) B^+ and B^0 mesons are identified via decays $B^+ \rightarrow J/\psi K^+$ and $B^0 \rightarrow J/\psi K^*(892)^0$
- a masses of P-wave B_{s}^{0} meson states and B_{s2}^{*} (5840)⁰ width measured
- first measurement of the mass difference between charged and neutral B*
- [●] $B_{s_2}^*(5840)^0 \rightarrow B^0 K_s^0$ observed and measured relative to $B_{s_2}^*(5840)^0 \rightarrow B^+ K^-$

B Physics at ATLAS & CMS

Perspective of ATLAS & CMS

CERN-EP-2018-058 CMS-DP-2012/022 D.Zanzi @ICHEP 2018 J. Hirschauer @LPCC Open Session M.Pierini @CERN Workshop on B anomalies 35

Future Prospect for ATLAS and CMS

- General purpose experiments can be competitive on favourable final states
- \bigcirc Dimuon is the quintessence of low-p_T experimental clean signature @LHC
- More statistics will allow to improve these results
- New trigger functionalities (e.g., tracking @L1) will allow to deal with 200 PU
- Detector limitation: experiments designed to do something else, namely cover 10-1000 GeV range
 - going below 10 GeV (e.g., with electrons and muons) requires effort
- Limited trigger bandwidth (general purpose vs. dedicated experiments)
- Needed customisation (reconstruction, trigger, etc.) vs working force (<50 people)</p>
- Muons are the essential handle for flavour physics in ATLAS & CMS
- Electron reconstruction at ATLAS & CMS is about matching a track to >= 1
 - At low pT, the track might not even make it to the calorimeter and, in any case, deposits are very low energetic: difficult to disentangle them from noise, pileup, etc
- Olearly, growing interest in flavour (thanks to LHCb anomalies) is helping here.
- Still, there is much to do in view of HL-LHC

New ideas for data collection

Scouting

- Since 2010, CMS is taking special "scouting" streams:
 - Run reconstruction in trigger farm (muons, jets, ...)
 - Write object features (e.g., four momenta) rather than the full event
 - Few KB traded for 1 MB: can write thousands more
 - Same now by ATLAS (TLA), LHCb (TurboStream + upgrade) and ALICE

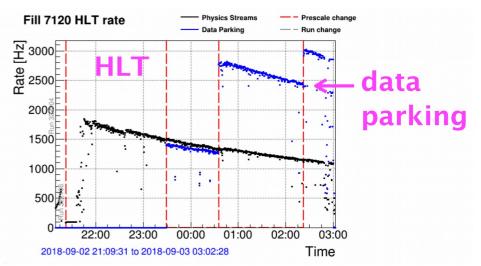
Parking

- Limitation to write 1000 evt/sec is not the trigger itself
- \bigcirc The problem is computing resources downstream \rightarrow disk & CPU power
- In 2012, both ATLAS&CMS took more data, counting on shutdown computing pledges & opportunistic computing resources to process them
- Extra 300-350 Hz of "parked" data are collected to extend the physics program: standard model measurements and searches for new physics
- The triggers defining the parked datasets are either a looser version of the core physics triggers (for instance with reduced pT thresholds on the reconstructed objects) or brand-new triggers with small overlap with the rest

Data taking in 2018 for ATLAS and CMS

ATLAS data taking in 2018

After few hours of collisions, L1 rate and HLT processing \mathbb{F} ATLAS Trigger Operation slots free up thanks to luminosity exponential decay pp data taken on 3–4 May, 2018, $\sqrt{s} = 13 \text{ TeV}$ HLT output rate (all streams) output HLT output bandwidth (all streams High-rate and CPU-intensive triggers can be enabled 누 within the data storage output limitation Strategy is used for the Trigger-level Analysis (ATL-DAQ-PUB-2017-003) \rightarrow total HLT output is only marginally increased by these additional events 17:30 19:30 21:30 23.30 01.30 03.30 End-of-fill strategy used for triggers for B-physics signals Time [hh:mm]


CMS data taking in 2018

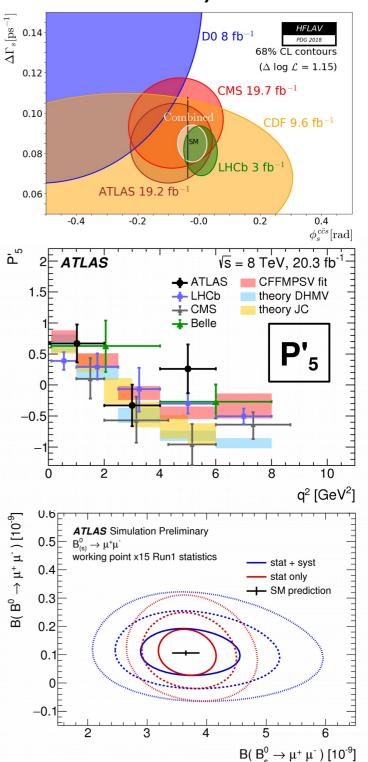
Smooth running since May: only minor updates to the trigger implemented

• L1 trigger rate \rightarrow 95 kHz at 2×10³⁴ cm⁻²s⁻¹

- able to lower L1 thresholds for single Egamma, MET, di-tau to improve HLT turn-on curves
- HLT rate \rightarrow 1.8 kHz at 2×10³⁴ cm⁻²s⁻¹

averages 1.1 kHz over 12h fill
 "parking" an unbiased sample of B mesons
 so far recorded over 9B events

HLT output bandwidth [GB/s]


End of fill

B Physics at ATLAS & CMS

39

Conclusions

- B physics in ATLAS and CMS is more challenging but still much alive and with promising perspectives
- the B anomalies are boosting a wider interest in flavour
- various ways to counteract the low trigger efficiency
- still quite limited manpower in general

B Physics at ATLAS & CMS

back-up slides

Results from the fits

	$q^2 \; [{\rm GeV}^2]$	$n_{ m signal}$	$n_{ m background}$	
$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	L / J			signal and
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	L / J			6
	L / J			0
	L / J			3

Results obtained are generally statistically limited:

$q^2 \; [{\rm GeV}^2]$	F_L	S_3	S_4	S_5	S_7	S_8
[0.04, 2.0]	$0.44 \pm 0.08 \pm 0.07$	$-0.02 \pm 0.09 \pm 0.02$	$0.19 \pm 0.25 \pm 0.10$	$0.33 \pm 0.13 \pm 0.06$	$-0.09 \pm 0.10 \pm 0.02$	$-0.11 \pm 0.19 \pm 0.07$
[2.0, 4.0]	$0.64 \pm 0.11 \pm 0.05$	$-0.15 \pm 0.10 \pm 0.07$	$-0.47 \pm 0.19 \pm 0.10$	$-0.16 \pm 0.15 \pm 0.05$	$0.15 \pm 0.14 \pm 0.09$	$0.41 \pm 0.16 \pm 0.15$
[4.0, 6.0]	$0.42 \pm 0.13 \pm 0.12$	$0.00 \pm 0.12 \pm 0.07$	$0.40 \pm 0.21 \pm 0.09$	$0.13 \pm 0.18 \pm 0.07$	$0.03 \pm 0.13 \pm 0.07$	$-0.09 \pm 0.16 \pm 0.04$
[0.04, 4.0]	$0.52 \pm 0.07 \pm 0.06$	$-0.05 \pm 0.06 \pm 0.04$	$-0.19 \pm 0.16 \pm 0.09$	$0.16 \pm 0.10 \pm 0.04$	$0.01 \pm 0.08 \pm 0.05$	$0.15 \pm 0.13 \pm 0.10$
[1.1, 6.0]	$0.56 \pm 0.07 \pm 0.06$	$-0.04 \pm 0.07 \pm 0.03$	$0.03 \pm 0.14 \pm 0.07$	$0.00 \pm 0.10 \pm 0.03$	$0.02 \pm 0.08 \pm 0.06$	$0.09 \pm 0.11 \pm 0.08$
[0.04, 6.0]	$0.50 \pm 0.06 \pm 0.04$	$-0.04 \pm 0.06 \pm 0.03$	$0.03 \pm 0.13 \pm 0.07$	$0.14 \pm 0.09 \pm 0.03$	$0.02 \pm 0.07 \pm 0.05$	$0.05 \pm 0.10 \pm 0.07$

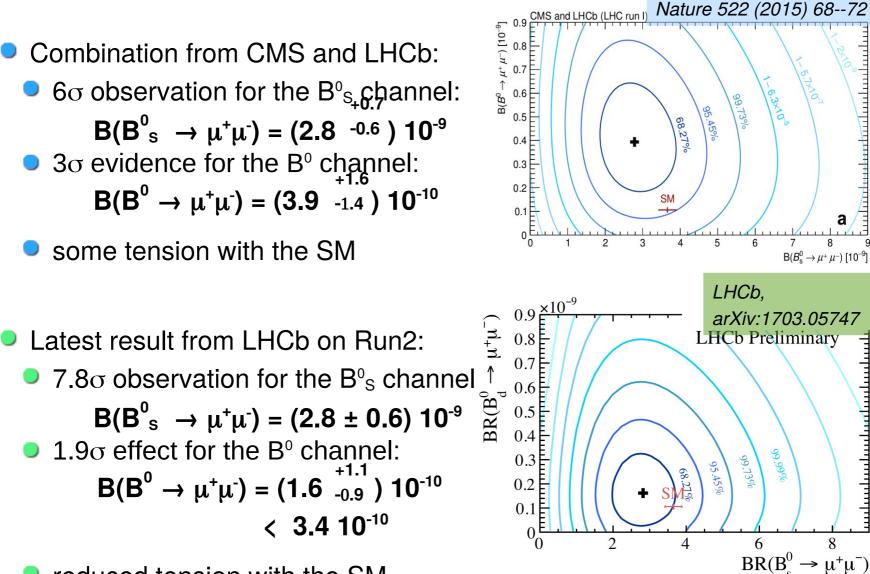
0	1				
$q^2 \; [{ m GeV}^2]$	P_1	P_4'	P_5'	P_6'	P'_8
[0.04, 2.0]	$-0.06 \pm 0.30 \pm 0.10$	$0.39 \pm 0.51 \pm 0.25$	$0.67 \pm 0.26 \pm 0.16$	$-0.18 \pm 0.21 \pm 0.04$	$-0.22 \pm 0.38 \pm 0.14$
[2.0, 4.0]	$-0.78 \pm 0.51 \pm 0.42$	$-0.96 \pm 0.39 \pm 0.26$	$-0.33 \pm 0.31 \pm 0.13$	$0.31 \pm 0.28 \pm 0.19$	$0.84 \pm 0.32 \pm 0.31$
[4.0, 6.0]	$0.00 \pm 0.47 \pm 0.26$	$0.81 \pm 0.42 \pm 0.24$	$0.26 \pm 0.35 \pm 0.17$	$0.06 \pm 0.27 \pm 0.13$	$-0.19 \pm 0.33 \pm 0.07$
[0.04, 4.0]	$-0.22 \pm 0.26 \pm 0.16$	$-0.38 \pm 0.31 \pm 0.22$	$0.32 \pm 0.21 \pm 0.10$	$0.01 \pm 0.17 \pm 0.10$	$0.30 \pm 0.26 \pm 0.19$
[1.1, 6.0]	$-0.17 \pm 0.31 \pm 0.14$	$0.07 \pm 0.28 \pm 0.18$	$0.01 \pm 0.21 \pm 0.07$	$0.03 \pm 0.17 \pm 0.11$	$0.18 \pm 0.22 \pm 0.16$
[0.04, 6.0]	$-0.15 \pm 0.23 \pm 0.10$	$0.07 \pm 0.26 \pm 0.18$	$0.27 \pm 0.19 \pm 0.07$	$0.03 \pm 0.15 \pm 0.10$	$0.11 \pm 0.21 \pm 0.14$

Systematic uncertainties

- Main systematic uncertainties come from backgrounds:
 - \mathbf{O} cos $\theta_{\mathbf{K}}$ ~ 1 peaking component:
 - \bullet B \rightarrow K/ π µµ + X and combinatoric K π (fake K*)

 \bigcirc veto on three-body mass or $\cos\theta_{K}$ cut

- $|\cos\theta_L| \sim 0.7$ peaking component:
 - \bigcirc partially reconstructed B \rightarrow D \rightarrow X decays
 - veto around the charmed meson masses.
- background shape choice
- acceptance functions, alignment and B-field calibration
- S-wave contributions (~5%) result in a small systematic error.
- Other backgrounds from exclusive mode neglected in the fit are included and the systematic uncertainty assessed
- → F_L : largest systematic from cos θ_K and cos θ_L , backgrounds: 0.11 → S_i : systematics also from background uncertainties: 0.01-0.13


Systematic table for $K^*\mu\mu$ angular analysis

Source	F_L	S_3	S_4	S_5	S_7	$\overline{S_8}$
Combinatoric $K\pi$ (fake K^*) background	0.03	0.03	0.05	0.03	0.06	0.13
$D \text{ and } B^+ \text{ veto}$	0.11	0.04	0.05	0.03	0.01	0.05
Background p.d.f. shape	0.04	0.04	0.03	0.02	0.03	0.01
Acceptance function	0.01	0.01	0.07	0.01	0.01	0.01
Partially reconstructed decay background	0.03	0.05	0.02	0.06	0.05	0.05
Alignment and B field calibration	0.02	0.04	0.05	0.03	0.04	0.03
Fit bias	0.01	0.01	0.02	0.02	0.01	0.04
Data/MC differences for p_T	0.02	0.02	0.01	0.01	0.01	0.01
S-wave	0.01	0.01	0.01	0.01	0.01	0.02
Nuisance parameters	0.01	0.01	0.01	0.01	0.01	0.01
Λ_b, B^+ and B_s background	0.01	0.01	0.01	0.01	0.01	0.01
Misreconstructed signal	0.01	0.01	0.01	0.01	0.01	0.01
Dilution		_	0.01	0.01	_	

 $B(B_s^0 \to \mu^+ \mu^-)$ [10⁻⁹]

CMS and LHCb,

Previous and latest results

reduced tension with the SM

=×10⁻⁹

8