UK HEP FORUM: THE SPICE OF FLAVOUR COSENER'S HOUSE, NOVEMBER 27-28 2018 FRANCESCA DI LODOVICO (QMUL)

LONG BASELINE NEUTRINO EXPERIMENTS: T2K, T2K–II, HYPER–KAMIOKANDE (JAPAN, AND JAPAN+KOREA FAR DETECTORS)

INTRODUCTION

- The T2K, T2K-II and Hyper-Kamiokande (T2HK and T2HKK) experiments provide a continuous period of data-taking in Japan from ~2010 for the next decades.
- They address crucial open questions in particle physics.
- Increase in powerful detectors and high powered beams.
- There is a strong track-record in neutrino experiments in Japan.
- Proven technology but very challenging: largest cavern and WC detector in the world
- Short baseline, high statistics, main interaction CC quasi-elastic, simple topology.

OPEN QUESTIONS

Neutrino flavours are a mix of mass eigenstates: |v_α> = U_{PMNS} |v_i>
Main Open Questions to be answered: what is the value of δ^{CP}? what is the mass ordering? what is the value of θ₂₃?

- Long baseline neutrino experiments
 - Baseline in Japan: ~295km
 - Baseline in Korea: ~1000km
- Beam from J-PARC
 - 2.5deg off-axis beam with peak energy around 0.6GeV
- Near detectors:
 - ND280 (T2K)
 - ND280 upgraded (T2K-II)
 - ND280 upgraded and WC intermediate detector (Hyper-K)

- Far detector:
 - Super-K (T2K and T2K-II)
 - Hyper-K (T2HK)
 - Hyper-K and Korean detector (T2HKK)

^ĸ€60km

Main Ring

ΤΟΚΥΟ

LINAC 400 MeV

Neutrino Beam to Kamioka

NEAR DETECTOR

Rapid Cycle Synchrotron Energy : 3 GeV Repetition : 25 Hz Design Power : 1 MW

Currently 0.525 MW

Material and Life Science Facility

m

Currently 0.485 MW(FX) and 0.051 MW (SX)

Top Energy: 30 GeV FX Design Power: 0.75 MW SX Power Expectation: > 0.1 MW

OFF-AXIS NEAR DETECTOR ND280

- PiØ Detector (PØD): optimized for π⁰ detection, includes H2O target
 - Tracker: 2 Fine-Grained Detectors (FGD), H2O target, 3 TPCs: measure fluxes before oscillation
- ECAL: surrounding PØD and Tracker, measure EM activity
- Side Muon Range Detector: in the magnet yokes, identify muons

SUPER-KAMIOKANDE

50 KT WATER CHERENKOV • 11129 20-INCH PMTS IN INNER DETECTOR; 1885 8-INCH PMTS IN OUTER VETO DETECTOR

ORIGINALLY COMMISSIONED 1997 UNDERGOING REFURBISHMENT NOW (TANK IS OPEN) RECOMMISSIONING AROUND END OF 2018 GADOLINIUM DOPING TO BEGIN NEXT YEAR

TOKAI-TO-KAMIOKA (T2K)

NEUTRINO PHYSICS RUNS

Beam delivery since 2010

3.16x10²¹ protons on target so far

Steadily increasing beam power:

- Have exceeded 500 kW
- Steady running now at
 485 kW

TINEUTRINO DATA

T2K MEASUREMENTS

Enhanced for v if -π<δ_{CP}<0
NO/NH also enhances v

10

OSCILLATION ANALYSIS MODELS

NEUTRINO BEAM FLUX PREDICTION

- A priori prediction of unoscillated flux at Super-Kamiokande
- Uses hadron production data from NA61/SHINE
- Hadron production uncertainties still dominate — but new NA61 replica target data will improve this soon
- Absolute flux errors are <10% over most neutrino energies
- Use near detector constraint to improve event rate prediction at SK further

12

NEAR DETECTOR SAMPLES USED IN OSCILLATION FIT

ND280 DATA USED FOR OSCILLATION FIT

v-mode

\overline{v} -mode

FITTING THE ND280 DATA

- Fitted flux and cross-section parameters vs. pre-fit (shown for one sample and channel only: v_µ CC0π)
- Note improvement in flux error; higher 2p2h (scattering off correlated nucleon pairs) vs raw model by Nieves et al
- Data fit result reduces error on SK event rate predictions to about 5-9% depending on channel

	1-ring µ-like		1-ring e-like			
Error source	v-mode	v-mode	v-mode	⊽-mode	v-mode CC1π	Ve/Ve
SK Detector	2.40	2.01	2.83	3.79	13.16	1.47
SK FSI+SI+PN	2.20	1.98	3.02	2.31	11.44	1.58
Flux + Xsec constrained	2.88	2.68	3.02	2.86	3.82	2.31
Eb	2.43	1.73	7.26	3.66	3.01	3.74
σ(v _e)/σ(v _μ)	0	0	2.63	1.46	2.62	3.03
NC1y	0	0	1.07	2.58	0.33	1.49
NC Other	0.25	0.25	0.14	0.33	0.99	0.18
Osc	0.03	0.03	3.86	3.60	3.77	0.79
All Systematics	4.91	4.28	8.81	7.03	18.32	5.87
All with osc	4.91	4.28	9.60	7.87	18.65	5.93

SUPER-KAMIOKANDE SAMPLES

SUPER-KAMIOKANDE EVENT DISTRIBUTION

RHC

1R-μ

1**R-***e*;

SUMMER 2018 RESULTS – EVENTS RATES

Sampla	Expect	Obconvod			
Sample	$-\pi/2$	0	π	$+\pi/2$	Observed
FHC 1R-μ	268.5	268.2	268.9	268.9	243
RHC 1R-µ	95.5	95.3	95.8	95.5	102
Sum of 1R-μ	364.0	363.5	364.7	364.5	345
FHC 1R-e	73.8	61.6	62.2	50.0	75
FHC 1R- <i>e</i> +d.e.	6.9	6.0	5.8	4.9	15
RHC 1R-e	11.8	13.4	13.2	14.9	9

See fewer v_{μ} like events than expected,

⇒ fit will prefer maximal disappearance

See more v_e and fewer \bar{v}_e than expected, even for $\delta = -\pi/2$ \Rightarrow fit will have a strong preference for CP-

violation that enhances neutrino rates

•Excess in d.e. sample has $p \sim 1\%$, but does not have big impact on fit

SUMMER 2018 RESULTS: Θ₂₃ AND ΔM²₃₂ MEASUREMENT

Parameter fit with reactor constraint Consistent with maximal mixing (θ=45°)

	NH (Δm² ₃₂ >0)	IH (∆m² ₃₂ <0)
sin²θ ₂₃	$0.536^{+0.031}_{-0.046}$	$0.536\substack{+0.031\\-0.041}$
I∆m ² 32I (10 ⁻³ eV ² /c ⁴)	2.434 ± 0.064	$2.410^{+0.062}_{-0.063}$

SUMMER 2018 RESULTS: CONSTRAINT ON δ_{CP}

Binned-likelihood oscillation fits to all far-detector samples simultaneously.
Two oscillation fits: 1) T2K-only 2)T2K+2016 PDG reactor data as constraint
2σ interval calculated w/ Feldman&Cousins
CP conserving values (0, ±π) outside of 2σ region for both hierarchies

Mass ordering	Best fit δ_{CP}	2σ interval	
Normal	-1.82 (-0.58π)	[-2.91, -0.64]	
Inverted	-1.38 (-0.44π)	[-1.57, -1.16]	

T2K-II aims to reach a >3 σ sensitivity for CP violation if near current best fit

Extension of T2K run (approved 7.8x10²¹ POT) to 20 x 10²¹ POT

- T2K upgrade details:
 Beamline upgrade toward 1.3 MW beam power
 Near Detector upgrade to achieve a systematic error improvement 6% → 4%
- •Analysis improvement (enlarging fiducial volume and v_e CC1 π sample)

BEAM UPGRADE FOR T2K-II

Beam power to reach 1.3 MW
Strategy

MR Bei

Method:

Higher rep rate:

- MR magnet power supply upgrade
- MR RF upgrade (High grad/PS)
- MR Fast Extraction Kicker upgrade Higher #p/p:
- MR RF upgrade (PS)

- J-PARC plan to upgrade to 750kW and then 1.3MW
- Funding for 750kW is started (FY2016-)
- Modest upgrade and budget from 750kW to 1.3MW

Highest priority project in KEK-PIP

Higher beam power should also be pursued

SECOND PHASE OF T2K (T2K-II)

•T2K-II goal: reduce detector systematics to ~4% -> improve acceptance, timing, efficiency for short tracks.

- •Re-design of the upstream part of ND280
- •Down-stream tracker (FGD+TPCs) unchanged

arXiv:1609.04111

SK-Gd phase:

Add gadolinium (Gd) to enhance neutron tagging efficiency of the SK detector.

T0: Start SK detector refurbishment (May 31, 2018)

- Jun. ~ Dec. 2018: refurbishment & water filling
- Jan. 2019 ~: pure water run

T1: Load first 10 ton Gd2(SO4)3 [0.01% Gd, 50% eff.]

• First possible T1 is ~2019/2020 (will be decided with T2K/J-PARC v beam)

T2: Load additional 90 ton Gd2(SO4)3[0.1% Gd, 90% eff.]

SK-GD REFURBISHMENT

Works in the outer detector. The outer detector is about 2m wide..

HYPER-KAMIOKANDE

HYPER-KAMIOKANDE: A MULTIPURPOSE EXPERIMENT

- Excellent capability for a broad area of science.
- Proven technology but very challenging: largest cavern and WC detector in the world
- Full picture of neutrino oscillation with precise measurement of CP and mixing parameters

NEUTRINO SOURCES AND FLUXES

HYPER-KAMIOKANDE

APPROVED EXCAVATION OF THE CAVERN TO START IN 2020

detector (E61)

- 1tank: 10 times larger than SK
- •1.3MW beam power
- •near detector (possible) upgrade
- new intermediate (~1km) Water Cherenkov detector (see M. Scott's talk)
- staged second far detector

HYPER-KAMIOKANDE

NEXT GENERATION WATER CHERENKOV DETECTOR

- •Construct two detectors in stage
- •Build the **first detector as soon as possible**
- •An option of second detector in Korea

JFY 2023 2018 2020 2021 2022 2024 2025 2019 2026 **Geological Survey** Cavern & tank design Cavern excavation Tank liner PMT Installation Wate Filling Takino

FIRST DETECTOR (JAPAN)

Φ74m x H60m
260 kton total mass
190 kton fiducial volume
~10 x Super-K fiducial mass
40% Photo coverage (ID)
40,000 x new 20" PMTs
x2 higher photon detection efficiency

• Comparison between the probabilities: $P(v_{\mu} \rightarrow v_{e}) \text{ vs } P(\overline{\nu}_{\mu} \rightarrow \overline{\nu}_{e})$

• Up to $\sim \pm 30$ % variation at $\delta_{CP} = -90^{\circ}$ in NH (or 90° in IH) wrt $\sin \delta_{CP} = 0$

EXPECTED EVENTS IN HYPER-KAMIOKANDE LBN PROJECT

Expected # of events in $v_e/\overline{\nu}_e$ appearance

Assumption

•
$$v: \overline{v} = 1:3$$

• $\sin^2 2\theta_{13} = 0.1$

Normal hierarchy

A few % stat. uncertainties on $v_{\mu} \rightarrow v_{e} \& \overline{v}_{\mu} \rightarrow \overline{v}_{e}$ signals

For ð=0	Signal $\nu \mu \rightarrow \nu_{e} CC$	Wrong sign appearance	νμ/νμ CC	Beam $\nu_{e}/\overline{\nu}_{e}$ contamination	NC
u beam	1,643	15	7	259	134
$\overline{\nu}$ beam	1,183	206	4	317	196

The results are from the HK Design Report (arXiv:1805.04163 [physics.ins-det])

CP VIOLATION SENSITIVITY

Exclusion of \sin \delta_{CP} = 0

- ► 8σ for $\delta = -90^{\circ}$ (T2K best fit)
- ► 80 % of coverage of δ parameter space for CPV discovery > 3 σ
- After 10 years of running, HK will be able to measure ~50% of the δ_{CP} space to better than 5σ

 δ_{CP} precision measurement

- $22^{\circ} \text{for } \delta = -90^{\circ}$
- 7° for $\delta = 0^{\circ}$

Sensitivity study adopt analysis techniques and systematic uncertainties used in T2K

- Realistic systematic uncertainties plus expected reduction of errors
- 3~4% syst. Error (6~7% in T2K)

MASS HIERARCHY SENSITIVITY

Neutrino Mass Hierarchy

Earth matter effect in upward-going multi-GeV ve sensitive to mass hierarchy

- "Resonance" pattern appears in $v_e(\overline{\nu}_e)$ appearance for NH (IH)
- Combination of atmospheric and beam to determine mass hierarchy
- Determination possible within ~5 years (sin²θ₂₃=0.5) at HK even if MH not determined before HK era.

MASS HIERARCHY SENSITIVITY

Neutrino Mass Hierarchy

Normal hierarchy case (opposite in inverted case)

Octant Determination

HYPER-KAMIOKANDE SENSITIVITIES

Physics Target	Sensitivity	Conditions
Neutrino study w/ J-PARC ν		$1.3\mathrm{MW}$ $ imes$ $10^8\mathrm{sec}$
- CP phase precision	$< 23^{\circ}$	(0) sin ² 2 $\theta_{13} = 0.1$, mass hierarchy known
- CPV discovery coverage	76% $(3\sigma), 57\% (5\sigma)$	(0) sin ² $2\theta_{13} = 0.1$, mass hierarchy known
$-\sin^2 heta_{23}$	± 0.017	$1\sigma @ \sin^2 \theta_{23} = 0.5$
Atmospheric neutrino study		10 years observation
- MH determination	$> 2.2 \sigma$ CL	$@ \sin^2 \theta_{23} > 0.4$
$ \theta_{23}$ octant determination	$> 3 \sigma$ CL	$ @ \theta_{23} - 45^{\circ} > 4^{\circ} $
Atmospheric and Beam Combinati	on	10 years observation
- MH determination	$> 3.8 \sigma$ CL	$@ \sin^2 \theta_{23} > 0.4$
$ \theta_{23}$ octant determination	$> 3 \sigma$ CL	$@ \theta_{23} - 45^{\circ} > 2.3^{\circ}$
Nucleon Decay Searches		$1.9 { m Mton·year exposure}$
$- p \rightarrow e^+ + \pi^0$	$7.8\times10^{34}~{\rm yrs}~(90\%~{\rm CL~UL})$	
	$6.3\times 10^{34}~{\rm yrs}~(3\sigma$ discovery)
$-p \rightarrow \bar{\nu} + K^+$	$3.2\times10^{34}~{\rm yrs}~(90\%~{\rm CL~UL})$	
	2.0×10^{34} yrs $(3 \sigma$ discovery)
Astrophysical neutrino sources		
$ ^8{\rm B}~\nu$ from Sun	130 $\nu{\rm 's}$ / day	$4.5{\rm MeV}$ threshold (visible energy) w/ osc.
$-$ Supernova burst ν	52,000–79,000 $\nu '{\rm s}$	@ Galactic center (10 kpc)
	${\sim}10~\nu{\rm 's}$	@ M31 (Andromeda galaxy)
$-$ Supernova relic ν	70 $\nu{\rm 's}$ / 10 years	$10{-}30{\rm MeV},4.2\sigma$ non-zero significance
– WIMP annihilation in the Eart	l	10 years observation
(σ_{SD} : WIMP-proton spin	$\sigma_{SD}=10^{-40}{\rm cm}^2$	@ $M_{\rm WIMP} = 10 { m GeV}, \chi\chi \to b\bar{b}$ dominant
dependent cross section)	$\sigma_{SD} = 10^{-44} \mathrm{cm}^2$	@ $M_{\rm WIMP} = 50 {\rm GeV}, \chi\chi \to \tau^+ \tau^-$ dominant

FAR DETECTOR SITE

- Tochibora mine in Kamioka
- ~8km south from Super-K
- ▶ Identical baseline (295km) and off-axis angle (2.5₀) to Super-K for J-PARC beam
- Overburden ~650m (~1755m.w.e.) cf. SK ~2700m.w.e.
- The detector site surrounded by faults
 - Identified during the mining in the past
- Confirmed the geological condition (rock quality) good for a large cavern excavation
- Identified the best location for cavern excavation, where has good rock quality and no faults or fracture zone

Hyper-K cavern will be the world largest underground cavern

APPROVED EXCAVATION OF THE CAVERN TO START IN 2020

PHOTOSENSORS R&D

- Sensitivity: 2×SK
- Time resolution: ¹/₂×SK
- Pressure tolerance: 2×SK

Continuous effort for improvements. Noise reduction, cover design, light concentrator, etc. under study

- New 20-inch photo-sensors: higher performance
- Single-photon efficiency: x2
- 1 p.e. timing resolution: $2ns \rightarrow 1ns$
- 1 p.e. charge resolution: $53\% \rightarrow 35\%$
- Large impact on detector performance/physics sensitivity
- 140 new PMT's installed in Super-K during tank opening.

Single-sided mPMT module being investigates as option for inner detector (20"PMT + mPMTs)

SECOND FAR DETECTOR IN KOREA

Second tank option in Korea is being considered (PTEP 2018, 063C01)

Advantages:

- Large CP effect at second oscillation maximum
- Higher mass hierarchy sensitivity with longer baseline

Possible site:

- Mt. Bisul at L=1,088km, OA=1.3°
- Mt. Bohyun at L=1,043km, OA=2.3°

PHYSICS SENSITIVITY WITH KOREAN DETECTOR

An additional far detector in Korea will allow to have:

41

• improved δ_{CP} measurement precision

$$22^{\circ} \rightarrow <15^{\circ}$$
 at $\delta_{CP}=-90^{\circ}$

• a higher mass hierarchy sensitivity $4.5\sigma \rightarrow 9\sigma$ at $\sin^2\theta_{23}=0.5I$

HYPER-KAMIOKANDE

THE INTERNATIONAL ORGANISATION

- International Hyper-K proto-collaboration
 - 15 countries, 73 institutes, ~300 members, ~75% from abroad
 - International project leaders, steering members, WG conveners
- **2 host institutes**: UTokyo/ICRR and KEK/ IPNS (MoU of cooperation for HK)
- UTokyo launched a institute for HK construction: Next Generation Neutrino Science Organization (NNSO)
 - External review by International Advisory Committee (HKAC)

STRONG EUROPEAN CONTRIBUTION TO LBN J-PARC BASED

Several UK leaderships and crucial positions in the collaborations. There is a strong UK contribution in the LBN J-PARC-based LBN experiments.

43

Hyper-Kamiokande Proto-Collaboration

DESIGN REPORT HAS BEEN RELEASED

"Hyper-Kamiokande Design Report", arXiv:1805.04163 May 9, 2018. 333 pp.
 "Hyper-Kamiokande Technical Report" is being internally reviewed -

- timescale for completion 2019
- Other recent references:
 - Physics potentials with the second Hyper-Kamiokande detector in Korea PTEP 2018 (2018) no.6, 063C01

CONCLUSIONS

- The long baseline experiment T2K, T2K-II and Hyper-Kamiokande (with one and two far detectors) provide a continuous excellent physics from 2010 with J-PARC up to the next decades.
- Proven track record of experiments in Japan
- Major open questions are being addressed
 - CP violation search
 - Mixing parameters
 - Mass hierarchy
- T2K is searching for CP violation and measuring the other parameters
- Beam Power is being increased up to 1.3MW (during T2K-II and before Hyper-K)
- Near (and intermediate) T2K/T2K-II/Hyper-K detectors are being constructed (or planned)
- Super-Kamiokande was just refurbished and Gd will be added
- Hyper-Kamiokande will start cavern construction in 2020. It has a large physics potential and will determine CP violation. Open to new collaborators!

ADDITIONAL SLIDES

CONSTRAINTS USING ND280

Analysis uses pairs of samples from 2 active target volumes **Pure scintillator**: **Carbon** (+H) **Water+ scint.: Oxygen** (+C, H) Allows separate constraints for C vs O nuclear effects

Antineutrino beam

•Require 1 muon-like track

•Sub-samples based on muon charge and {0, *n*} extra tracks (Larger 'wrong-sign' B/G in RHC mode)

CROSS SECTION MODEL

Uncertainties come from underlying model parameters and normalisations

CC 1_π

CCQE-like

CC coherent

CC-inclusive

CC other

ND280 EVENT DISPLAYS

ND280 EVENT DISPLAYS PER FINAL STATE INTERACTION

Separate samples according to topologies:

- CC0 π : CC interactions w/ 0 pions in the final state ν beam
- CC1π: CC interactions w/ 1 pion in the final state
- CC Other: anything else

ND280 EVENT DISPLAYS

Examples of antineutrino signal and background events

SUPER-KAMIOKANDE EVENT SELECTION

- Selection categories in Super-Kamiokande: e-like, μ-like events
- New this year:
 - an e-like 1-Michel electron sample in v-dominated beam-this sample is dominated by resonant pion events
 - A new reconstruction algorithm that improves both efficiency and purity for all samples
 - 66% of the data is ν -dominated beam; 34% $\overline{\nu}$ -dominated beam

T2K OSCILLATION ANALYSIS

T2K analysis oscillation fit

To fit use:

- Flux predictions from MC and external data
- Near-detector fits to constrain flux and interaction model
- Data fit result reduces error on SK event rate predictions to about 5-9% depending on channel
- Event predictions at SK
- Event reconstruction and selection at SK
- Obtain combined fit of all oscillation parameters using all data channels

Neutrino Interaction Model

•Relativistic Fermi Gas (RFG) with dipole form factor

- 1p1h (scattering off single nucleon) uses Random Phase Approximation parameters from Valencia group, applied to our RFG model
- 2p2h (scattering off correlated nucleon pairs) model also from Valencia group (Nieves et al.).
- Single- and multi-pion uses models by Rein and Sehgal normalized to match D₂ bubble chamber (resonant, non-resonant) and MINERvA (coherent) data
- Deep Inelastic Scattering through PYTHIA 5.9
- FSI via Salcedo Oset and Bertini cascade models, tuned to external pion nucleon scattering data
- We fit parameters for all these models (and flux model) to the ND280 data

SYSTEMATICS

	FHC 1R-μ	RHC 1R-μ	FHC 1R- <i>e</i>	FHC 1R- <i>e</i> +d.e.	RHC 1R- <i>e</i>	FHC / RHC
ND prediction	2.9%	2.7%	3.0%	2.9%	3.8%	2.3%
Unconstrained	0.3%	0.3%	2.8%	3.0%	2.9%	3.4%
Binding Energy	3.4%	1.7%	7.3%	3.7%	3.0%	2.3%
SK Detector	3.3%	2.8%	4.1%	4.4%	17.4%	2.1%
Total	4.9 %	4.3%	8.8%	7.0%	18.3%	5.9%
Stat $\delta = \pi/2$ \sqrt{N} $\delta = -\pi/2$	6.1%	10.2%	11.6 ~ 14.1%	38.0 ~ 45.1%	29.1 ~ 25.9%	

Indicative errors on the total rate — actual analysis doe not use these!
ND prediction: Extrapolated flux and constrained interaction effects
Unconstrained: Cross-sections not constrained by ND280 [Naïve sum]
Binding Energy: Parameterised residual of effect after ND280 prediction
SK Detector: Reconstruction and re-interactions

CP VIOLATION SENSITIVITY

• Exclusion of $\sin \delta_{CP} = 0$

- > 8σ for $\delta = -90^{\circ}$ (T2K best fit)
- 80 % of coverage of δ parameter space for CPV discovery > 3σ
- After 10 years of running, HK will be able to measure ~50% of the δ_{CP} space to better than 5σ

 δ_{CP} precision measurement

- > 22° for $\delta = -90^{\circ}$
- 7° for $\delta = 0^{\circ}$

Sensitivity study adopt analysis techniques and systematic uncertainties used in T2K

- Realistic systematic uncertainties plus expected reduction of errors
- 3~4% syst. Error (6~7% in T2K)

- Seismic tomography and reflection imaging were conducted for (400 m)³ wide area
- An excellent site was identified

