

Searches for heavy neutral lepton production & decays

Evgueni Goudzovski

(University of Birmingham)

Outline:

1) Introduction: GeV-scale heavy neutral leptons
 2) HNL production searches: NA62, E949, PIENU
 3) HNL decay searches: T2K, NA62-dump, SHiP
 4) Summary

UK HEP Forum 2018 Abingdon • 28 November 2018

Introduction

A generic possibility of **k** sterile neutrino mass states:

$$\nu_{\alpha} = \sum_{i=1}^{3+k} U_{\alpha i} \nu_i \quad (\alpha = e, \mu, \tau),$$

The vMSM: most economical theory accounting for v masses and oscillations, baryogenesis, and dark matter. [Asaka, Blanchet, Shaposhnikov, PLB 631 (2005) 151]

Three Heavy Neutral Leptons (HNLs): m₁~10 keV [DM candidate]; m_{2.3}~1 GeV/c².

GeV-scale HNLs observable via their **production** and **decay**.

E. Goudzovski / UK HEP Forum, 28 November 2018

Boyarsky et al., Ann. Rev. Nucl. Part. Sci. 59 (2009) 191

Scope of this talk

Conservative limits on couplings assuming HNL decays cannot be observed

RICH phenomenology, depending on mass & couplings:

- \Leftrightarrow neutrinoless double β decay;
- lepton universality tests;
- lepton universality tests;
 LFV decays and µ–e conversion;
- \bigstar invisible Z⁰ decays (m₄>m₇);
- neutrino oscillations.

This talk: constraints on HNL couplings assuming GeV mass scale:

- production searches in meson decays (e.g. $K^+ \rightarrow e^+ N$);
- decay searches in beam dump experiments (e.g. $N \rightarrow \pi^+ \mu^-$).

De Gouvêa and Kobach, PRD93 (2016) 03300

HNL production searches: NA62, E949, PIENU

PLB778 (2018) 137; PRD91 (2015) 052001; PRD97 (2018) 072012

HNL production in K⁺ decays

 $K^+ \rightarrow \ell^+ N$

HNL production is enhanced kinematically wrt SM decays.

☆ A dramatic $f \sim 10^5$ enhancement in the K⁺→e⁺N case, as the helicity suppression is relaxed!

JINST 12 (2017) P05025

NA62 at CERN SPS

- ♦ Main goal: $K^+ \rightarrow \pi^+ vv$ measurement to ~10% precision.
- Single event sensitivities for K^+ decays: down to **BR~10**⁻¹².
- Currently, 1 year of operation = 2×10^{18} protons on target; 5×10^{12} K⁺ decays.
- ♦ Hermetic photon veto: $\pi^0 \rightarrow \gamma \gamma$ decay suppression (for $E_{\pi 0} > 40$ GeV) = 3×10⁻⁸.
- ✤ Particle ID (RICH+LKr+HAC+MUV): ~10⁻⁸ muon suppression.

E. Goudzovski / UK HEP Forum, 28 November 2018

NA62 data collection

- Commissioning run 2015: minimum bias data (~3×10¹⁰ protons/pulse).
- Physics run 2016 (~1.3×10¹² ppp): 10¹¹ useful K⁺ decays. [arXiv:1811.08508]
- Physics run 2017 (~2.0×10¹² ppp): ~3×10¹² useful K⁺ decays.
- ✤ Physics run 2018 (~2.3×10¹² ppp): ~5×10¹² useful K⁺ decays.
- Restarting data taking after LS2 in 2021.

E. Goudzovski / UK HEP Forum, 28 November 2018

$K^+ \rightarrow \ell^+ N$ data samples

- Minimum bias data (1% intensity); 12k SPS spills (=5 days) in 2015.
- Numbers of K⁺ decays in fiducial volume: N_K=(3.01±0.11)×10⁸ in positron case; N_K=(1.06±0.12)×10⁸ in muon case.
- Beam tracker not available: beam average kaon momentum is used.
- HNL production signal: a spike above continuous missing mass spectrum.

$K^+ \rightarrow \ell^+ N$: resolution & acceptance

 ♦ Selection for each HNL mass hypothesis (m_{HNL}) includes the "mass window" condition: |m−m_{HNL}| <1.5_{om}: background is proportional to mass resolution.
 ♦ Also, resolution is crucial to resolve possible HNL mass splitting. [Baryogenesis: 2 quasi-degenerate mass states; Canetti et al., PRD87(2013)093006]
 E. Goudzovski/UK HEP Forum, 28 November 2018

8

Statistical analysis

Expected background (and stat.error) estimated from fits to the sidebands; numbers of observed and expected events converted into limits for the signal.

Background simulations used to certify the absence of peaking structures.

✤ Full MC background estimate would allow searches for K⁺→ℓ⁺vvv, K⁺→ℓ⁺vX. *E. Goudzovski / UK HEP Forum, 28 November 2018*

HNL production search: results

PLB778 (2018) 137

HNL production: NA62 prospects

Improvements in 2016-18 wrt 2015:

- Beam tracker (GTK) in operation:
 - ✓ HNL mass resolution σ_m improved by a factor ~2, therefore lower background and broader mass range accessible;
 - ✓ a factor ~3 lower background in the $K^+ \rightarrow e^+ N$ mode ($K^+ \rightarrow \mu^+ \nu$, $\mu^+ \rightarrow e^+ \nu \nu$: muon decays in flight rejected geometrically);
 - \checkmark lower background from upstream decays in the $K^*{\rightarrow}\mu^*N$ mode.
- Much larger datasets:
 - ✓ In the K⁺→e⁺N mode, the main K⁺→ $\pi^+\nu\nu$ trigger is used (with reduced signal acceptance: max calorimetric energy = 30 GeV): expect at O(10⁶) K⁺→e⁺ ν events, i.e. a factor ~1000 improvement.
 - ✓ In the K⁺→ μ^+ N mode, downscaled control trigger (D=400): expect O(10⁹) K⁺→ μ^+ v events, i.e. a factor ~100 improvement.

Expected sensitivities to |U_{{4}|² with 2016–18 data:

better than 10⁻⁸ for both $|U_{e4}|^2$ and $|U_{\mu4}|^2$

Analysis is in progress

PIENU limits on $\pi^+ \rightarrow e^+ N$

- ✤ Pion decay at rest experiment at TRIUMF: collected 10M rare decays $\pi^+ \rightarrow e^+ \nu$ in 4 years.
- Setup: active scintillator target, wire+microstrip chambers, Nal calorimeter.
- Sensitivity to |U_{e4}|² for m_N<130 MeV/c² complementary to NA62. PRD97 (2018) 072012

Positron energy spectrum and (Data-Bkg) residuals

HNL decays at T2K

M. Lamoureux @ ICHP 2018

- ✤ Analysis is based on 1.8×10²¹ pot (30 GeV) collected up to April 2017.
- ✤ Search for decays of HNLs produced in K[±] decays.
- ✤ Mass range is complementary to that accessible in charm decays.

T2K: HNL exclusion (preliminary)

HNL production at SPS energies

NA62 sensitivity to HNL decays

 $|U_{10} - e_4|^2$

E949

 10^{-3}

 10^{-4}

 10^{-5}

 10^{-6}

 10^{-7}

 10^{-8}

 10^{-9}

 10^{-2}

Dump operation: target removed; 400 GeV protons dumped into a $20\lambda_1$ Fe/Cu collimator at $z \approx 25$ m.

- Existing muon sweeping system can be modified: factor ~4 flux reduction.
- Expected sensitivities assuming zero background are presented in the e, μ and τ dominated scenarios. [Drewes et al., JHEP 1807 (2018) 105]

E. Goudzovski / UK HEP Forum, 28 November 2018

NA62: background in dump mode

Key issue: the muon halo background (~50 kHz). A dedicated study with 2017+18 dump data, 2×10¹⁶ pot

NB: also $\sim 10^{17}$ pot collected along with K^+ data taking

- ↔ Background demonstrated to be negligible for fully reconstructed final states (e.g. $N \rightarrow \pi^+ \mu^-$).
- ✤ For open channels (e.g. N→ℓ⁺ℓ⁻ν), an ANTIO veto hodoscope required for background suppression.
- ANTIO installation by 2021 has been approved.

SHiP project at CERN

SHiP experiment at the Beam Dump Facility at CERN SPS North Area: ultimate sensitivity to HNL decays

- ✤ High intensity 400 GeV/c proton beam: 4×10¹³ ppp (NA62-dump ×10).
- Up to 4×10^{19} pot/year, and 2×10^{20} pot in 5 years (NA62-dump ×200).
- ✤ Heavy flavour yields: N_D ≈ 1.6×10¹⁸, N_B ≈ 1×10¹⁴ (including cascade enhancement factors ~2).
- Compatible with current and planned SPS experiments.
- Currently, major engineering design and prototyping work.

Current schedule: commissioning at the start of LHC Run 4 (assuming approval in 2020–21)

Accelerator schedule	2015 2016 2017 2018	2019 2020	2021 2022 2023	2024 2025 2026 2027
LHC	Run 2	LS2	Run 3	LS3 Run 4
SPS				NA stop SPS stop
SHiP / BDF	Comprehensive Design	Prototyping, design	Production / Constru	cton / Installation
Milestones	TP CDS	ESPP	TDR	CwB Data taking

Muon background

- Pions, kaon and short-lived resonance decays in the production target:
 O(10 GHz) muon and neutrino flux.
- Muon shield is based on magnetic sweeping.
- Expect O(10 kHz) muon flux on detector.
- Combinatorial background suppressed by 100ps timing.

SHiP: backgrounds

HNL decays: 15 years from now

***** HNL production searches in K/ π decays

- $\checkmark\,$ No assumptions on HNL nature and HNL decays.
- ✓ HNL mass range accessible: 50–450 MeV/c².
- ✓ Sensitivity to $|U_{\ell_4}|^2 \sim 1/Luminosity$. [limited by bkg systematics]
- ✓ Major progress in the last few years as secondary goals: BNL E949, CERN NA62, PIENU@TRIUMF.
- ✓ Powerful constraints on $|U_{e4}|^2$ and $|U_{\mu4}|^2$ (below 10⁻⁸).
- $\checkmark\,$ Further progress foreseen soon at NA62.

HNL decay searches in beam dump experiments

- ✓ HNL mass range accessible: up to the B-meson (~ 5 GeV/c²) scale.
- ✓ Sensitivity to $|U_{\ell_4}|^2 \sim (1/Luminosity)^{1/2}$.
- ✓ Expect ~10⁻⁹ sensitivity on all $|U_{ℓ4}|^2$ in 15 years time.