Lepton Flavour Violation PPAP July 2018

Joel Goldstein University of Bristol

Introduction

- Dedicated charged LFV experiments
 - 1. Mu2e
 - 2. Mu3e
 - 3. COMET
 - \cdot (MEG has no UK involvement)
 - 4. Future
- Thanks for input from Yoshi, Joost and Mark

- LFV already established in the neutrino sector
- Resulting effects in charged lepton decays Br << 10⁻⁵⁰
- Existing limits ~ 10⁻¹²
- Sensitive to multi-TeV scale new physics
 - SUSY, leptoquarks, dark matter....

- LFV already established in the neutrino sector
- Resulting effects in charged lepton decays Br << 10⁻⁵⁰
- Existing limits ~ 10⁻¹²
- Sensitive to multi-TeV scale new physics
 - SUSY, leptoquarks, dark matter....

- LFV already established in the neutrino sector
- Resulting effects in charged lepton decays Br << 10⁻⁵⁰
- Existing limits ~ 10⁻¹²
- Sensitive to multi-TeV scale new physics
 - SUSY, leptoquarks, dark matter....

- LFV already established in the neutrino sector
- Resulting effects in charged lepton decays Br << 10⁻⁵⁰
- Existing limits ~ 10⁻¹²
- Sensitive to multi-TeV scale new physics
 - SUSY, leptoquarks, dark matter....

Mu2e - Status

- DOE approved in July 2016
- UK providing the Stopping Target Monitor (STM)
- STFC-TD to provide the proton target (DOE Funded)

Mu2e - Plans

• First beam in 2020/21; concluding 2025.

Mu2e UK

- Prototype STM irradiated at HZDR.
 - No degradation in resolution
 - 100 Hz signal (60 kHz photon bkgnd)
- DAQ/readout tests at FNAL

Joel Goldstein

Mu3e - Status

- Approved by PSI in 2013
- UK responsible for outer pixel layers
 - HV CMOS Mupix sensor
- Also clock and timing

Mu3e - Plans

- Commissioning late 2019
- Physics operation in 2020
- Recurl stations added 2021
- Phase-II ~2024:
 - Upgraded beam line
 - Increased acceptance
 - Possible e-gamma option

Mu3e UK

- Deliver complete pixel outer tracker by 2020
- Participate in installation and commissioning 2019-21
- Operations and exploitation 2020-2024
- Natural for UK to build Mu3e-II pixel extension

Joel Goldstein

- Phase-I detector systems approaching completion
- UK designed DAQ/fast control
- UK leading software and analysis

Joel Goldstein

COMET - Plans

- Protons to COMET by end 2019
- Phase-II construction in parallel to operations
 - 100x increase in sensitivity
- Growing international collaboration
 - \cdot 16+ countries, 40+institutions

Joel Goldstein

Funding

- Phase I construction:
 - \cdot Support from CG
 - Mu2e and Mu3e supported by STFC project funding
 - Construction of all three experiments fully funded
- Operations
 - $\cdot\,$ Bid for common fund/engineer, travel and RA support in CG
- Phase-II less certain (UK, international)
 - Mu3e-II pixel extension PPRP bid, ...??

Future

- Mu2e Phase II
 - Presented to FNAL PAC yesterday
 - Timescale ~2030, 10x sensitivity
 - Change targets to allow model discrimination
- COMET PRISM
 - FFAG baseline lattice established, larger acceptance (UK)
 - 100x improvement in sensitivity
- TauFV
- Future "combined facility"...?!?
- UK charged lepton "medium" Big Idea proposal

TauFV

- Dedicated search for $(D_s \rightarrow) \tau \rightarrow 3\mu$
- Sensitivity $\sim 10^{-10}$
- Installed at SPS BDF
 - \cdot Parasitic to SHiP

Joel Goldstein

- Smaller, cheaper and faster experiments
- Clear discovery potential
 - No SM backgrounds
- Complimentary to energy frontier
- Maintain breadth and diversity
- Train next generations

MU2E (Mark Lancaster)

Mu2e PPAP Material

Mu2e Status

Full-budget (\$274M) DOE approved in July 2016.

UK PPRP funding from April 2017 – April 2020 to provide the **S**topping **T**arget **M**onitor (STM) & DOE has funded STFC-TD to provide the proton target (\$1M).

HPGe STM detector

Located 34m from aluminium target where muons are captured

UK providing detector(s), readout and collimation system.

Mass Production of solenoids/tracker

Mu2e PPAP Material

Mu2e-II

arXiv:1802.02599

Expression of Interest for Evolution of the Mu2e Experiment[†]

F. Abusalma²³, D. Ambrose²³, A. Artikov⁷, R. Bernstein⁸, G.C. Blazey²⁷, C. Bloise⁹, S. Boi³³, T. Bolton¹⁴, J. Bono⁸, R. Bonventre¹⁶, D. Bowring⁸, D. Brown¹⁶, D. Brown²⁰, K. Byrum¹, M. Campbell²², J.-F. Caron¹², F. Cervelli³⁰, D. Chokheli⁷, K. Ciampa²³, R. Ciolini³⁰, R. Coleman⁸, D. Cronin-Hennessy²³, R. Culbertson⁸, M.A. Cummings²⁵, A. Daniel¹², Y. Davydov⁷, S. Demers³⁵, D. Denisov⁸, S. Denisov¹³, S. Di Falco³⁰, E. Diociaiuti⁹, R. Djilkibaev²⁴, S. Donati³⁰, R. Donghia⁹, G. Drake¹, E.C. Dukes³³, B. Echenard⁵, A. Edmonds¹⁶, R. Ehrlich³³, V. Evdokimov¹³, P. Fabbricatore¹⁰, A. Ferrari¹¹, M. Frank³², A. Gaponenko⁸, C. Gatto²⁶, Z. Giorgio¹⁷, S. Giovannella⁹, V. Giusti³⁰, H. Glass⁸, D. Glenzinski⁸, L. Goodenough¹, C. Group³³, F. Happacher⁹, L. Harkness-Brennan¹⁹, D. Hedin²⁷, K. Heller²³, D. Hitlin⁵, A. Hocker⁸, R. Hooper¹⁸, G. Horton-Smith¹⁴, C. Hu⁵, P.Q. Hung³³, E. Hungerford¹², M. Jenkins³², M. Jones³¹, M. Kargiantoulakis⁸, K. S. Khaw³⁴, B. Kiburg⁸, Y. Kolomensky^{3,16}, J. Kozminski¹⁸, R. Kutschke⁸, M. Lancaster¹⁵, D. Lin⁵, I. Logashenko²⁹, V. Lombardo⁸, A. Luca⁸, G. Lukicov¹⁵, K. Lynch⁶, M. Martini²¹, A. Mazzacane⁸, J. Miller², S. Miscetti⁹, L. Morescalchi³⁰, J. Mott², S. E. Mueller¹¹, P. Murat⁸, V. Nagaslaev⁸, D. Neuffer⁸, Y. Oksuzian³³, D. Pasciuto³⁰, E. Pedreschi³⁰, G. Pezzullo³⁵, A. Pla-Dalmau⁸, B. Pollack²⁸, A. Popov¹³, J. Popp⁶, F. Porter⁵, E. Prebys⁴, V. Pronskikh⁸, D. Pushka⁸, J. Quirk², G. Rakness⁸, R. Ray⁸, M. Ricci²¹, M. Röhrken⁵, V. Rusu⁸, A. Saputi⁹, I. Sarra²¹, M. Schmitt²⁸, F. Spinella³⁰, D. Stratakis⁸, T. Strauss⁸, R. Talaga¹, V. Tereshchenko⁷, N. Tran², R. Tschirhart⁸, Z. Usubov⁷, M. Velasco²⁸, R. Wagner¹, Y. Wang², S. Werkema⁸, J. Whitmore⁸, P. Winter¹, L. Xia¹, L. Zhang⁵, R.-Y. Zhu⁵, V. Zutshi²⁷, R. Zwaska⁸

06 February 2018

Presented to FNAL-PAC yesterday.

To form part of 2020/P5 & CLFV European Strategy document

Will allow running with different targets

Achieve a sensitivity x10 that of Mu2e.

Timescale: 2030.

Mu2e-II

In event of a signal, Mu2e-II would give x10 stats and running with Al, titanium and gold targets would give sensitivity to BSM interaction type.

In absence of signal improve sensitivity by x10.

Mu2e-II challenges

Challenges:

- high resolution tracking in a v. high-rate environment e.g.
 8µm vs 15µm straws required.
- UK interested in developing ASIC/FPGA tracking.
- handling the radiation/power issues from a 100kW (0.8 GeV) PIP-II beam.
 cf. Mu2e (COMET-I) is 8 (3kW).
 Expertise for this is in STFC-TD (C. Densham)

COMET Status

- Phase-I Detector systems approaching completion: physics detector & Phase-II prototypes
- Clarification of schedule by J-PARC/KEK:
 - to ensure Phase-I and II are "competitive internationally"
 - by end of JFY 2019, proton beam line to COMET branch to be completed and detector systems to be ready and tested; beam studies to follow

Main drift chamber, in cosmics testing

- PRISM progress
 - New Fixed Field Accelerator ring baseline lattice established with significantly larger horizontal dynamical acceptance

Left: COMET beam line under construction Far right: existing Kaon beam line

Yoshi.Uchida@imperial.ac.uk COMET Update July 2018

24

COMET: Medium and Long-Term Plans

- Phase-I (×100 improvement to current measurement)
 - No technical or funding issues to achieve completion
 - UK to continue to lead Software and Analysis efforts
 - UK-designed DAQ and Trigger/Fast Control systems being deployed across subdetector systems
 - approximately 13 FC7 boards being used by collaboration
 - will continue to support subdetector and DAQ systems
 - Further intra-European collaboration with Czech Republic, France, Georgia, Germany
- Phase-II (better than ×10000 improvement)
 - 56kW beam power
 - 6×10⁻¹⁷ (90%CL) sensitivity for 2×10⁷ seconds of running
 - Continuing R&D to improve sensitivity beyond current design
 - Start construction soon after Phase-I running
- PRISM (a further ×100 improvement)
 - Long-term plan for muon-to-electron conversion, using PRISM FFAG storage ring
 - R&D by UK-led PRISM Task Force

COMET Funding

COMET Phase-II

- Collaboration growing
 - New institutions in past year:
 - Monash (Australia)
 - Caen (France)
 - Clermont Ferrand (France)
 - Sun Yat Sen University (China)
 - Institute of Nuclear Physics (Kazakhstan)
 - Now at 16 nations + JINR, 40+ institutions
 - UK with participation from Imperial since 2007
- Phase-I: All funding secured to Phase-I completion
 - Recent funding news:
 - German funding granted through to Phase-II (one institution)
 - France to become official IN2P3-funded experiment (four institutions)
- UK Leadership
 - European coordination (funding, European Strategy)
 - TDR executive editor (for publication)
 - Collaboration Board Chair (also Executive Board member)
 - Analysis and Software working group leadership

GENERAL STUFF (Mark L)

Mu2e PPAP Material

Why cLFV ?

Rate in SM is O(10⁻⁵⁰) per muon capture

Observation **IS** new physics

No SM theory systematic How far we can probe is limited by experiment

Why cLFV ?

No new physics observed coupling to quarks at LHC

In light of v-oscillations: is the lepton sector different ?

 $\gamma_1=3\pi/8, \gamma_2=\pi/2$

Gives a portal to the physics potentially explaining anti-matter asymmetry through leptogenesis

Why cLFV ?

Access to mass scales beyond that probed by ATLAS/CMS

Scales of upto 8000 TeV for unity coupling

Mu2e/Mu3e will extend mass reach by factor of 5 compared to MEG

An example: split SUSY

Slepton masses of 300 TeV probed in "Split-SUSY" model.

Present ATLAS direct search limit is 0.6 TeV

Complements LHC at higher scale

Probing similar range of BSM interactions as LHC

Why MEG, Mu2e and Mu3e ?

Ratio of the 3 different CLFV processes is model dependent and BR (ratios) depend on model parameters.

Mu2e probes: lepton and quark BSM couplings; Mu3e only lepton

Both probe non-dipole/loop interactions that MEG doesn't.

Important to make all 3 CLFV measurements.

Mu2e and Mu3e together provide the most detailed study of cLFV in next 10 years.

Model Dependence

Anomalous Higgs Couplings

Aswell as probing extended Higgs: also probe FV Higgs couplings

Possible since Mu2e/Mu3e utilise 10⁷ – 10¹⁰ muons/sec

Extend sensitivity by 8 orders of magnitude vs LHC

Mu2e PPAP Material

Synergy with g-2

For BSM dipole interactions e.g. SUSY Rate (CLFV) $\sim g^2 \times \theta_{e\mu}^2 \times \left(\frac{m_{\mu}}{\Lambda}\right)^2$

 $a_{\mu} \sim g^2 \times \left(\frac{m_{\mu}}{\Lambda}\right)^2$

But no theoretical motivation for any particular $\theta_{e\mu}$ value.

If g-2 anomaly is confirmed then we have evidence for a BSM Muon interaction

Need <u>both</u> measurements to resolve model degeneracy

Reconciling $(g-2)_{\mu}$ and charged lepton flavor violating processes through a doubly charged scalar

Joydeep Chakrabortty, Pradipta Ghosh, Subhadeep Mondal, and Tripurari Srivastava Phys. Rev. D **93**, 115004 – Published 3 June 2016

Physics summary

The two major research themes in the UK:

- BSM searches and Higgs physics at the LHC
- Neutrino mass hierarchy and CPV in neutrino sector

are <u>both</u> extended and complemented by Mu2e/Mu3e

If new physics is observed at the LHC, Mu2/3e is critical to elucidating degenerate models

If the new physics is at a higher scale then Mu2/3e can probe it

Imperial College London

COMET Update for PPAP/

July 2018

Yoshi Uchida