

Sneha Malde, Oxford

The University of Manchester

The BESIII experiment and Collaboration

Cornerstone of the Chinese experimental particle physics programme

Located in Beijing @ BEPCII accelerator

e⁺e⁻ collider √s = 2-4.6 GeV Hermetic detector

Third generation of BES experiments

BESIII first hadrons detected 18/7/2008

10 years ago!

Collaboration size ~450 authors

38 institutes from China
16 from Europe
12 from USA/Other Asia

Oxford and Manchester joined in December 2017, specifically due to expertise in charm strong phase measurements

Broad physics programme

Range of energies \rightarrow Range of physics interests

Light quark studies, QCD, charm, charmonium, tau, "XYZ states", new physics

Top cited publication

Observation of a charged charmonium like state Z(3900) PRL 110 (2013) 252001

Specific UK interests

- UK interests in BESIII are primarily tied to the interests of some flagship LHCb Upgrade (and BELLE II) measurements.
- Production mechanisms at BESIII allow for unique, precise, and vital, charm measurements which essentially cannot be performed elsewhere.
 - CKM angle gamma
 - Charm CPV and mixing
 - |V_{ub}|
 - Lepton Flavour Violation

Charm strong-phase parameters

Branching fractions

- Joint LHCb-BESIII workshop in Feb 2018 to explore mutual benefit (LHCB-PUB-2016-025)
- Perfect fit with the European strategy
- Replicate the success of the UK CLEO-c contribution

Strong phase parameters from $\psi(3770)$

Strong phase parameters relate to differences in the amplitudes and phases between D^0 and $\overline{D^0}$ to a common final state

- Phase measurement requires system with interference
- $e^+e^- \rightarrow \psi(3770) \rightarrow DD$
- Two D mesons are quantum correlated.

 $D \rightarrow K_s \pi \pi$ is one decay mode, of interest. There are many more of interest to LHCb and BELLEII

Strong phase parameter uses

- CKM angle γ is measured in a variety of B decays
- Most of these measurements include a decay of a neutral D
- Strong phase parameters provide input on this part of the decay in a model-independent way → crucial for precision measurement.
- Analyses of BESIII data would open new channels and methods for γ measurement.
- A number of current inputs only possible due to the UK involvement in CLEO-c

CLEO-c precise enough for 2010s, BESIII required for 2020s and 2030s

Dataset	Contribution to $\sigma(\gamma)$	Comment
CLEO-c 0.8 fb ⁻¹	2°	Not precise enough + limited observables
BESIII 3 fb ⁻¹ (2010 + 2011)	Projected : 1°	Data analysis now underway
BESIII 10-20 fb ⁻¹ (planned)	Projected : 0.5°	Essential for LHCb upgrade and BELLE II

Other uses of strong phase parameters

- Validation of amplitude models → interest for QCD
 - Phase information predicted by amplitude models is hard to verify
 - BESIII future measurements could allow for some verification

- Knowledge of charm strong phase parameters also opens new channels and methods for CP violation in charm mixing
 - As yet unobserved, and another key goal of LHCb

Precision branching fractions (1)

Double charm production at BESIII allows for measurement of absolute branching fractions

- Absolute BF measurements are not viable at LHCb
- Current Λ_c and D_s absolute branching fractions do/will form leading experimental systematic uncertainties in LHCb measurements of $|V_{ub}|$.

• Single tag side:

-Tag the charmed baryon flavor via hadronic decays with large branching fractions

Signal side:

- -Hadronic decays
- -(Semi-)leptonic decays

Precision branching fractions (2)

- Testing lepton universality with $B^0 \rightarrow D(*)\tau v$
 - One of the most striking anomalies in HEP
 - Hadronic 3 prong decay of the τ is looking very promising to improve precision.

- Potential backgrounds include any D decay to 3 charged pions + N neutral particles (Ks, π^0 , K_L, η , η')
- Cannot be studied directly at LHCb.
- Possible at BESIII, information would be very useful in constraining bkgs in this type of analysis.

Future plans for BESIII

- Life expectancy of the experiment 5-7 years
 - Detector ageing
 - Chinese funding priorities
- UK focus is on data analysis and software improvements.
- Desired accuracy of strong phase measurements requires more $\psi(3770)$ data
- Current plans indicate accumulation in 2021 + 2022

Group composition & funding

Oxford

- PI : Sneha Malde (RS and ERC funded)
- Guy Wilkinson
- Lei Li (2 yr Newton International Fellow)
- Postdoc (ERC funded) from Autumn 2018

Manchester

- PI: Eva Gersabeck (RS funded)
- 2 Students from Autumn 2018 (RS funded)
- Use of HEP-Blackett Cluster for BESIII jobs

- Both groups actively pursuing further external funding for postdocs & students
 - Primary focus for both groups is charm strong phase parameters
 - Additional resources required to follow other interesting avenues
- Current bulk funding ends for both PI in early 2023
 - Close to end of accumulation of the larger $\psi(3770)$ sample
 - Data analysis would continue for a few years
 - ideally with additional funds for personpower and travel
- Expect important physics results for modest investment.

Summary

- Oxford and Manchester have joined the BESIII collaboration
- Strengthening of UK-China ties in HEP
- Production mechanism at BESIII gives access to parameters difficult/ impossible to measure elsewhere.
 - Many vital measurements → crucial to achieving the goals of (LHCb), LHCb Upgrade, BELLE II
- Physics reach at BESIII has the potential to provide significant positive impact on the UK Beauty and Charm flavour physics programme

Sneha Malde BESIII PPAP

Bigger, Better, & Broader

version of the UK CLEO-c venture

- 1. <u>arXiv:1710.10086</u> Quantum-correlated measurements of $D \rightarrow KOS\pi + \pi \pi O$ decays and consequences for the determination of the CKM angle γ
- 2. <u>arXiv:1709.03467</u> Model-independent determination of the strong phase difference between *D*0 and $D^-0 \rightarrow \pi + \pi \pi + \pi -$ amplitudes
- 3. <u>arXiv:1703.08505</u> Amplitude Analyses of $D0 \rightarrow \pi + \pi \pi + \pi -$ and $D0 \rightarrow K + K \pi + \pi -$ Decays
- 4. <u>arXiv:1611.09253</u> Amplitude analysis of $D0 \rightarrow \pi + \pi \pi + \pi \text{decays}$ using CLEO-c data
- 5. <u>arXiv:1602.07430</u> Improved determination of the $D \rightarrow K \pi + \pi + \pi -$ coherence factor and associated hadronic parameters from a combination of e+e $-\rightarrow \psi(3770) \rightarrow cc^{-}$ and $pp \rightarrow cc^{-}X$ data
- 6. <u>arXiv:1504.05878</u> First determination of the *CP* content of $D \rightarrow \pi + \pi \pi + \pi -$ and updated determination of the *CP* contents of $D \rightarrow \pi + \pi \pi 0$ and $D \rightarrow K + K \pi 0$
- 7. <u>arXiv:1410.3964</u> First determination of the CP content of D->pi+pi-pi0 and D->K+K-pi0
- 8. <u>arXiv:1401.1904</u> New determination of the D0->K-pi+pi0 and D0->K-pi+pi+picoherence factors and average strong-phase differences
- 9. <u>arXiv:1203.3804</u> Studies of the decays D^0 \rightarrow K_S^0K^- π^+ and D^0 \rightarrow K_S^0K^+ π^-
- 10. <u>arXiv:1010.2817</u> Model-independent determination of the strong-phase difference between D^0 and D^0-bar-> K^0_S,L h^+ h^- (h=pi,K) and its impact on the measurement of the CKM angle gamma/phi_3
- 11. <u>arXiv:1201.5716</u> Amplitude analysis of D0->K+K-pi+pi-
- 12. <u>arXiv:0903.4853</u> Determination of the D0 -> K-pi+pi0 and D0 -> K-pi+pi-Coherence Factors and Average Strong-Phase Differences Using Quantum-Correlated Measurements

- In 2006 UK institutes joined CLEO-c with the purpose of making charm strong phase measurements. 12 publications
- Provided inputs essential to the first phase of γ studies at LHCb
- CLEO dataset provides sufficient precision for 2010s
- BESIII data required for 2020s
 & 2030s