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Fixed Order Perturbative QCD

* Expand in strong coupling constant — High
energy regime so coupling ~ 0.118

 Each order adds 1 loop (virtual)/radiative (real)

emission W
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Fixed Order Perturbative QCD

* Expand in strong coupling constant — High
energy regime so coupling ~ 0.118

 Each order adds 1 loop (virtual)/radiative (real)
emission

» Calculate order by order to improve prediction

* Reduces scale dependence, improved
description of kinematics across phase space

 More orders, better science!

Goal: Improve predictions faster than experimental results
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Some Jargon

« LO ~ Leading Order

« NLO < Next-to-Leading Order

« NNLO < Next-to-next-to-Leading Order

« N3LO < Next-to-next-to-next-to-Leading Order

* Inclusive calculation
- Often in closed analytic form
- Final state information integrated out over full phase space
» Exclusive calculation
- Generally require numerical integration
- Full control of final state kinematics over arbitrary phase space
region
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Perturbative QCD — State of the Art

 NLO exclusive automated in multiple programs

e Exclusive NNLO benchmark for2 -1 and2-2
scattering from many groups

 N3LO available inclusively for DIS, ggH and VFH(H)

e e+e- — 2] known inclusively to N4LO

e Exclusive is the gold standard for usable predictions!
Gives full control over all kinematics, allowing:
- Arbitrary cuts/jet algorithms
- Direct map to the phase space coverage of
experiment rather than extrapolating

NNLOJET includes many state of the art NNLO calculations:
pp—- V,VJ, ggH, ggHJ, VFH JJ, G, GJ, JJ, GG

ep ~ 1 Now interfacing with resummation,
ee - 3j EW corrections for even more N
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IR Singularities

 Beyond LO, real and virtual contributions contain
divergences

* Real singularities implicit (appear after PS integration)
- come from soft, collinear QCD emissions

» V divergences explicit (Laurent expansion in regulator
coming from loop calculations)

» Cancel order by order for meaningful predictions! But...

Live in different phase spaces. Can’t do this directly or
numerically. Need to be clever!
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Antenna Subtraction s,

 Idea - replicate divergent structure of real contribution using e,
known functions that can be integrated analytically + reduced
matrix element (requires factorisation theorem for phase space)

- Easiest functions to use? Matrix elements from well known
processes.

« Antenna subtraction — Use ratios of matrix elements from
simplest processes to construct divergent limits (ggH, inclusive Z)

- All necessary subtraction terms known for NNLO massless
QCD with 0,1,2 incoming partons

« Add these (analytically) integrated values back in at virtual level
to achieve two finite integrals. Job done!

dONLO:fN+1 [doR—dOS]+fN[dOV—doT] fN+1dOS+fN do;=0
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NLO to NNLO

 |dea the same, but much more complicated!
 Now have RR, RV and VV contributions

 Becomes a real technical challenge to implement, but now mostly
solved for 2 -2

- For all cases where there are 2 loop matrix elements available at
least.
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NLO to NNLO

Example: H+J subtraction terms

~ 75 pages of LaTeX.

~ 400k lines of FORTRAN

Not trivial to implement without typos/bugs!

Lots of automation and testing required to get it all right
(but we’'ve managed).

dé? -
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To N3LO?

* New loop and real radiation contributions

» Subtraction counterterms required for finiteness

* Numerical integration expected to be much
more challenging

— Projection to Born!
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Projection To Born

Combine exclusive X+J @ N*~11,0 with inclusive
N3LO to get fully exclusive N3LO

Requires a kinematic mapping from X+J phase space
to inclusive phase space

40 222, 405

This mapping takes X+J into the limit where J is fully
unresolved (soft/collinear)

Mapping Is process dependent
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Projection To Born

* |dea - Use Born (LO) kinematics to define subtraction
term, weight ME (mapped to Born) for X+J calculation

» Perfectly cancels divergences we can’t handle, where we
become Born like (radiation in X+J becomes soft/collinear)

 Then inclusive calculation becomes the Born level
subtraction term+ME!

Inclusive N°LO i Exclusive N2LO RR Born-Projected N°LO RR
RR RRV R RV R RV
R RV RVV LO \ \AY, LO \% vV
o v ow o ow [ B
LO NLO NZ?LO N®LO LO NLO NZ?LO LO NLO NZ?LO
oy as o al ag  As  af Al ag 05 af  ad
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Projection To Born

e |dea — Use Born kinematics to define subtraction
term, weight ME (mapped to Born)

» Perfectly cancels divergences we can’t handle, where
we become Born like

e Then inclusive calculation becomes the Born level

subtraction term+ME! Exclusive N3LO RRR
o] | k .
dO)N(kLO - U})\f(ﬂ_ LO U§+j LO i 0)N< LO,incl RR  RRV
dO i dO dOB dOB R RV RVV
LO V VvV \VAVAY/
LO NLO N2LO N3LO

0
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Projection To Born

« Works independent of order! N*L.O subtraction here we
come...

 However, only works for processes with unambiguous
mapping and inclusive calculation available

(pp - V, pp—H, pp-VHF, DIS, ete- - 2))
e Easy/fast to implement

- Just need to map kinematics so no need for large
numbers of boutique subtraction terms for N*L.O

* Numerically challenging — integrating a function that = 0
much of the time, so hard to adapt to integrand
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Charged Current DIS

* Deep Inelastic Scattering
— |epton + proton collisions
- Lower energy than proton-proton collisions
— More precise QCD (only one proton)
 Charged Current — W boson exchange

— Cross section decomposes into 3 structure
functions Fs, I3, Iy

q > q

§W
[ >
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? Charged Current DIS

PDFs — great for quark content &£ T
Chiral SM test through polarised results q q

LheC [if it happens...]
VFH production in pp collisions (DIS approximation)

Dijet calculation calculated to NNLO (by us)
Structure Functions available to N3LO - Have
Inclusive results.

|deal for P2B!

q q

W

l
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Charged Current DIS Mapping

Standard DIS variables: p(P) + (k) = v(k") + X(px)

‘7":2%2 q=k—F

Q°=—q° >0

DIS Mapping to Born PS:  Pin,B = TP

Pout.B = TP +q
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RATIO TO NNLO

hep-ph/1812.06104

500,000 CPU hours

ReSUItsl later...
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Conclusions / Outlook

* Projection to Born is a useful all orders
subtraction scheme for IR divergences, and
very simple to implement

* Using N3LO inclusive results plus CC DIS dijet
calculation, both implemented in NNLOJET, we
now have exclusive N3LO CC DIS

* Next stop: exclusive VBF @ N3LO!
 More orders, better science!

ncan Walker, Durham U. YTF 11



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26

