High Precision QCD in NNLOJET

hep-ph/1812.06104

Duncan Walker (IPPP, Durham U.)

Part of the NNLOJET Collaboration

Xuan Chen, Juan Cruz-Martinez, James Currie, Rhorry Gauld, Thomas Gehrmann, Aude Gehrmann-De Ridder, Nigel Glover, Marius Höfer, Alexander Huss, Imre Majer, Jonathan Mo, Tom Morgan, Jan Niehues, Joao Pires, DW, James Whitehead

Fixed Order Perturbative QCD

- Expand in strong coupling constant High energy regime so coupling ~ 0.118
- Each order adds 1 loop (virtual)/radiative (real) emission

Fixed Order Perturbative QCD

- Expand in strong coupling constant High energy regime so coupling ~ 0.118
- Each order adds 1 loop (virtual)/radiative (real) emission
- Calculate order by order to improve prediction
- Reduces scale dependence, improved description of kinematics across phase space
- More orders, better science!

Goal: Improve predictions faster than experimental results

Some Jargon

- LO ↔ Leading Order
- NLO ↔ Next-to-Leading Order
- NNLO ↔ Next-to-next-to-Leading Order
- N3LO ↔ Next-to-next-to-next-to-Leading Order

• • •

- Inclusive calculation
 - Often in closed analytic form
 - Final state information integrated out over **full** phase space
- Exclusive calculation
 - Generally require numerical integration
 - Full control of final state kinematics over **arbitrary** phase space region

Perturbative QCD – State of the Art

- NLO exclusive automated in multiple programs
- Exclusive NNLO benchmark for 2 \rightarrow 1 and 2 \rightarrow 2 scattering from many groups
- N3LO available inclusively for DIS, ggH and VFH(H)
- e+e- → 2j known inclusively to N4LO
- Exclusive is the gold standard for usable predictions! Gives full control over all kinematics, allowing:
 - Arbitrary cuts/jet algorithms
 - Direct map to the phase space coverage of experiment rather than extrapolating

```
NNLOJET includes many state of the art NNLO calculations:

pp \rightarrow V,VJ, ggH, ggHJ, VFH JJ, G, GJ, JJ, GG

ep \rightarrow j, jj

ee \rightarrow 3j

Now interfacing with resummation,

EW corrections for even more N
```

IR Singularities

- Beyond LO, real and virtual contributions contain divergences
- Real singularities implicit (appear after PS integration)
 - come from soft, collinear QCD emissions
- V divergences explicit (Laurent expansion in regulator coming from loop calculations)
- Cancel order by order for meaningful predictions! But...
 Live in different phase spaces. Can't do this directly or numerically. Need to be clever!

Antenna Subtraction

- Shown at YTE many times in the last Shown at Y IF many times in the last won't go into too much detail! • Idea \rightarrow replicate divergent structure of real contribution using known functions that can be integrated analytically + reduced matrix element (requires factorisation theorem for phase space)
 - Easiest functions to use? Matrix elements from well known processes.
- Antenna subtraction → Use ratios of matrix elements from simplest processes to construct divergent limits (ggH, inclusive Z)

- All necessary subtraction terms known for NNLO massless QCD with 0,1,2 incoming partons

 Add these (analytically) integrated values back in at virtual level to achieve two finite integrals. Job done!

$$d\sigma_{NLO} = \int_{N+1} \left[d\sigma_R - d\sigma_S \right] + \int_N \left[d\sigma_V - d\sigma_T \right] \qquad \int_{N+1} d\sigma_S + \int_N d\sigma_T = 0$$

NLO to NNLO

- Idea the same, but **much** more complicated!
- Now have RR, RV and VV contributions
- Becomes a real technical challenge to implement, but now mostly solved for $2 \rightarrow 2$
 - For all cases where there are 2 loop matrix elements available at least.

NLO to NNLO

- Idea the same, but **much** more complicated!
- Now have RR, RV and VV contributions
- Becomes a real technical challenge to implement, but now mostly solved for $2 \rightarrow 2$
 - For all cases where there are 2 loop matrix elements available at least.

NLO to NNLO

Example: H+J subtraction terms

- ~ 75 pages of LaTeX.
- ~ 400k lines of FORTRAN

Not trivial to implement without typos/bugs!

Lots of **automation** and **testing** required to get it all right (but we've managed).

To N3LO?

- New loop and real radiation contributions
- Subtraction counterterms required for finiteness
- Numerical integration expected to be much more challenging

→ Projection to Born!

- Combine exclusive X+J @ N^{k-1}LO with inclusive N³LO to get fully exclusive N³LO
- Requires a kinematic mapping from X+J phase space to inclusive phase space

$$\mathrm{d}\mathcal{O} \xrightarrow{\mathrm{P2B}} \mathrm{d}\mathcal{O}_B$$

- This mapping takes X+J into the limit where J is fully unresolved (soft/collinear)
- Mapping is process dependent

- Idea → Use Born (LO) kinematics to define subtraction term, weight ME (mapped to Born) for X+J calculation
- Perfectly cancels divergences we can't handle, where we become Born like (radiation in X+J becomes soft/collinear)
- Then inclusive calculation becomes the Born level subtraction term+ME!

- Idea → Use Born kinematics to define subtraction term, weight ME (mapped to Born)
- Perfectly cancels divergences we can't handle, where we become Born like
- Then inclusive calculation becomes the Born level subtraction term+ME! Exclusive N³LO

RRR

- Works independent of order! $\mathrm{N}^k\mathrm{LO}$ subtraction here we come...
- However, only works for processes with unambiguous mapping and inclusive calculation available

(pp \rightarrow V, pp \rightarrow H, pp-VHF, DIS, e+e- \rightarrow 2j)

• Easy/fast to implement

- Just need to map kinematics so no need for large numbers of boutique subtraction terms for ${\rm N}^k{\rm LO}$

 Numerically challenging – integrating a function that = 0 much of the time, so hard to adapt to integrand

- Deep Inelastic Scattering
 - \rightarrow lepton + proton collisions
 - \rightarrow Lower energy than proton-proton collisions
 - → More precise QCD (only one proton)
- Charged Current W boson exchange

→ Cross section decomposes into 3 structure functions F_2, F_3, F_L

- PDFs great for quark content
- Chiral SM test through polarised results
- LheC [if it happens...]
- VFH production in pp collisions (DIS approximation)
- Dijet calculation calculated to NNLO (by us)
- Structure Functions available to N3LO \rightarrow Have inclusive results.

Ideal for P2B!

- PDFs great for quark content
- Chiral SM test through polarised results
- LheC [if it happens...]
- VFH production in pp collisions (DIS approximation)
- Dijet calculation calculated to NNLO (by us)
- Structure Functions available to N3LO \rightarrow Have inclusive results.

Ideal for P2B!

- PDFs great for quark content
- Chiral SM test through polarised results
- LheC [if it happens...]
- VFH production in pp collisions (DIS approximation)
- Dijet calculation calculated to NNLO (by us)
- Structure Functions available to N3LO \rightarrow Have inclusive results.

Ideal for P2B!

- PDFs great for quark content
- Chiral SM test through polarised results
- LheC [if it happens...]
- VFH production in pp collisions (DIS approximation)
- Dijet calculation calculated to NNLO (by us)
- Structure Functions available to N3LO \rightarrow Have inclusive results.

Ideal for P2B!

Charged Current DIS Mapping

Standard DIS variables: $p(P) + l(k) \rightarrow \nu(k') + X(p_X)$

$$x = \frac{Q^2}{2P \cdot q} \qquad q = k - k'$$
$$Q^2 = -q^2 > 0$$

 $p_{in,B} = xP$ DIS Mapping to Born PS: $p_{out,B} = xP + q$

hep-ph/1812.06104

Results!

500,000 CPU hours later...

Scale variation band is 0.2% on total x-section

Conclusions / Outlook

- Projection to Born is a useful all orders subtraction scheme for IR divergences, and very simple to implement
- Using N3LO inclusive results plus CC DIS dijet calculation, both implemented in NNLOJET, we now have exclusive N3LO CC DIS
- Next stop: exclusive VBF @ N3LO!
- More orders, better science!