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Why parton showers?

▪Parton showers approximate the cascade of emissions 
we see at colliders. These cascades produce jets. 
This is the nice intuitive picture at least.

▪Really parton showers approximate resummations.

▪Resummations are crucial for making accurate 
predictions with QCD. However they are difficult to 
perform.

Höche, arXiv:1411.4085
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Why resummations?
Let’s look at the types of divergences.

▪Position space: probing smaller length scale with higher momentum (UV divergence)

▪Momentum space: either the energy goes to 0 (soft IR divergence) or (𝑝 − 𝑘)2 goes to 0 
(collinear IR divergence).
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Why resummations?
How do we sort this? Let’s look at an UV divergence.

▪We renormalize the theory. This is a clever trick that introduces terms that exactly cancel 
divergences by definition. To do this we add a new parameter, the scale the theory is defined at, 
𝜇.

▪We can do a second clever trick. We can make 𝜇 be a variable so that we can use the theory at 
any scale.

Part 1

− ~ ln
𝑄

𝜇



Why resummations?
▪This gives the running couplings. This can be viewed as a resummation of the logarithms 
involved.

▪We could actually derive this result simply by looking at the diagrams involved and trying to find 
some careful statements that are true to all orders. We can also use RG flow.
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Why resummations?
What about the IR divergences?

▪These look a little different. The Bloch-Nordsieck theorem guarantees exact cancelations of 
divergences from emissions against those from loops. (The real part at least)

▪However the functional form of terms containing the real emissions depends on your 
observable. Therefore every observable has unique cancellations!

▪The cancelations generate logarithms dependant on your observable.

▪This is the hard part of perturbative QCD!
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Why resummations?
Consider a simple example.

▪You want to accept jets into your analysis and veto everything else. 

▪However your detector has a minimum energy it is sensitive to, 𝑄0.

▪Perform this calculation and logarithms emerge ln
𝑄

𝑄0
≫ 1.

▪In fact they emerge at each order in 𝛼𝑠 as 𝛼𝑠
𝑛 ln

𝑄

𝑄0

𝑛
. This can completely spoil convergence.
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Why parton showers?
▪In order to restore convergence we want to resum them to all orders just as we did with the 
running coupling. However the is time consuming to do analytically. We need an algorithm for 
calculating arbitrary resummations.

▪This is been achieved exactly at NLL at leading colour for global observables. CAESAR by Banfi et 
al, arXiv:0304148 (2003)

▪Parton showers are approximations to resummations. Not analytically derived! Pieced together 
by intuition and tuned to match resummations/data. Recent studies question their accuracy. 
Dasgupta et al, arXiv:1805.09327 (2018)

▪We want an analytically correct algorithm that exactly reproduces resummations at LL and with 
full colour but can also be used as a parton shower!
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Why our parton shower?
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Jet hemisphere mass 

resummation

arXiv:1507.07641



The tool box
Known structures and good ansatzes
▪ Double logarithms -> Pole of order 𝜖−2𝑛𝛼𝑛. From the soft-collinear region. 𝐿2𝑛−2𝑚𝛼𝑛, 𝑚 ∈ ℤ+.

▪ Single -> Poles of order 𝜖−𝑛𝛼𝑛. From hard collinear or wide angle soft regions. 𝐿𝑛−𝑚𝛼𝑛, 𝑚 ∈ ℤ+.

▪ Combined we get 𝐿2𝑛−𝑚𝛼𝑛, 𝑚 ∈ ℤ+ the full spectrum.

▪ Global logarithms. 
Catani et al, Nuclear Physics B407 (1993) 3-42

▪ Non-global logarithms 
Dasgupta et al, arXiv:hep-ph/0104277 (2001)

▪ Superleading logarithms 
Forshaw et al, arXiv:0808.1269 (2008)

▪ Well known fixed order results back these up: cusp anomalous dimensions, calculations to 𝛼5, etc

▪ All order results and evolution equations: SCET
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The tool box
Factorisation:

▪ Soft limit 𝑝𝑗~ = 𝜆𝑝𝑗 where 𝜆 → 0. We find an Eikonal current

▪ Collinear limit 𝑝𝑖 ≅ 𝑧(𝑝𝑖 + 𝑝𝑗) where 𝑝𝑗 T → 0. We find splitting functions
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The tool box
Playing with colour:

▪Fierz Identity

Dixon et al, arXiv:1310.5353 (2013)
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The tool box
Playing with colour:

▪Basis independent notation
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The tool box
Playing with colour:

▪Colour flow basis

Martínez et al, arXiv:1802.08531
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Slide taken from 
Jeff Forshaw’s 
2017 
presentation at 
Lund
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René Ángeles-Martínez: PhD thesis

Ángeles-Martínez , JRF, Seymour: 

arXiv:1510.07998

Slide taken from 
Jeff Forshaw’s 
2017 
presentation at 
Lund
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http://arxiv.org/abs/arXiv:1510.07998


Our algorithm
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†𝐃1 𝐃1
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†

J. Forshaw, M. Seymour, R. Angeles, M. De Angelis, S. Plätzer, J. Holguin, and more.



Our algorithm
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Our algorithm
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Our algorithm
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With this algorithm we have:
1. Reproduced collinear factorisation theorems.

2. Reproduced several analytic resummations
◦ Thrust

◦ BMS evolution

◦ DGLAP evolution

◦ Gaps between Jets

◦ Jet hemisphere mass

◦ Fragmentation evolution

3. Performed fixed order cross checks, over 1000 
diagrams.

4. Made substantial progress producing a 
functioning code for this algorithm. CVolver.

5. Performed numerical studies of the sub-leading 
colour. More coming.

6. Derived several alternative algorithms, each 
suited to different tasks (i.e. global observables, 
simplifying collinear colour structures, super-
leading log insensitive observables).

7. Currently analysing and mapping onto other 
work with spin. 

8. Hopefully several more papers coming soon 
with more details.

Martínez et al arXiv:1802.08531 (2018)

Martínez et al arXiv:1510.07998 (2015)


