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Problems with the Higgs

Like other particles in QFT, the Higgs boson acquires loop corrections
to its mass:

Figure 1: Loop Corrections to the Higgs Mass1.

Left to right: fermion loop (dominated by the top quark), weak boson
loop, self coupling loop.

1Panico and Wulzer, The Composite Nambu-Goldstone Higgs, 2015
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Problems with the Higgs

If we insert an ultraviolet cutoff, ΛUV, the aforementioned loop
corrections give rise to a quadratic divergence in the correction to the
Higgs mass:

δm2
H =

3Λ2
UV

8π2

[
y2
t − g2

W

(
1

4
+

1

8 cos2 θW

)
− λ

]
where yt, gW and λ are the Higgs couplings to the top quark, W
bosons and Higgs respectively2.

If the Standard Model is valid up to a finite energy then new physics
emerges above ΛUV. The corrections to the Higgs mass at these higher
energies come from a priori unrelated terms. In order to produce the
observed Higgs mass of 125 GeV, these two terms must cancel out
correctly to 1 part in 1024.

2Panico and Wulzer, The Composite Nambu-Goldstone Higgs, 2015
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The Naturalness Problem

This problem of fine tuning is known as the “Naturalness Problem”.
Such incredible precision between two independent terms seems
unlikely to occur.

Not only is fine tuning on this scale “unnatural” but it is almost
certainly impossible to measure experimentally.
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A Composite Particle

Figure 2: Proton’s
Internal Structure

A solution to the
Naturalness Problem would be to treat the Higgs
not as a fundamental particle but as a composite
object similar to the proton as shown in figure [2]3.

An analogy can be made
by the scattering electrons off a proton. When
a soft electron collides with a proton, we may
approximate the proton as being a point charge.
As the electron’s energy increases, the proton goes
from being a point charge to being an extended
charge to a triplet of quarks to a sea of partons.

3Image from Philip Clark, Edinburgh University Lecture Notes, 2016
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Fermi Theory

Another example of such approximation is that of an effective field
theory (EFT). Fermi’s theory of β-decay is an example of an EFT.

The interaction term in Fermi’s Theory is

Lint =
GF√

2


 ψe︸︷︷︸

e−

γµ(1− γ5)

νe︷︸︸︷
ψν

 gµν

 ψu︸︷︷︸
u-quark

γν(1− γ5)

d-quark︷︸︸︷
ψd




where GF is the Fermi constant.

If we examine this closely, we see that – in (3+1) dimensions – GF has
negative mass dimension which signals non-renormalisability. However
this is not a problem since the theory is only a low energy
approximation of β-decay which has since been replaced by our modern
understanding of the Weak Force.
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Fermi Theory

The Lagrangian for the Weak interaction is given by

Lint = −
g2
W

2

[
ψe

1

2
γµ(1− γ5)ψν

] [
gµν − qµqν/m2

W

q2 −m2
W

] [
ψu

1

2
γν(1− γ5)ψd

]

In the low energy limit (q2 � m2
W ) this reduces to

Lint =
g2
W

8m2
W

[
ψeγ

µ(1− γ5)ψν
]
gµν

[
ψuγ

ν(1− γ5)ψd
]

giving the familiar formula GF√
2

=
g2W

8m2
W

.

The same approximation can be made in the process of muon decay:
µ− → e−νeνµ which is how GF is measured experimentally.
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A Resolution to the Naturalness Problem

The foregoing arguments show that a composite Higgs can be
approximated as punctiform at low energies. Thus the quadratic
divergence δm2

H ∝ Λ2
UV is merely an artifice of an approximation being

pushed beyond the point of reliability.
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Goldstone’s Theorem

The compositeness takes care of the fine tuning but how can we ensure
that the corresponding Higgs has the observed low mass?

Goldstone’s Theorem

If symmetry group G is spontaneously broken to symmetry
group H, there exist at least dim(G)− dim(H) massless Nambu-
Goldstone bosons (NGBs) where dim(X) is the dimension of
group X.

A corollary of this is that if the symmetry breaking is explicit the
corresponding bosons have a low mass. These are known as pseudo
Nambu-Goldstone bosons (pNGBs). An example is chiral symmetry
breaking in two-flavour (“very-low-energy”) QCD.
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Chiral Symmetry Breaking

In two flavour QCD, the fermionic sector is governed by

Lferm =
∑
f=u,d

ψf (i /D −mf )ψf

where f is a flavour index corresponding to the up (u) or down (d)
quark. When {mf} = 0, the theory is invariant under chiral

transformations ψf → eiαγ
5
ψf .

We can separate each spinor into left- and right-handed components:[
ψu
ψd

]
L

=

(
1− γ5

2

)[
ψu
ψd

]
,

[
ψu
ψd

]
R

=

(
1 + γ5

2

)[
ψu
ψd

]
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Chiral Symmetry Breaking

In the massless (chiral) limit, these two components are independent
and, hence, can be transformed independently.[

ψu
ψd

]
L

−→ UL

[
ψu
ψd

]
L

,

[
ψu
ψd

]
R

−→ UR

[
ψu
ψd

]
R

where the U ’s are, in general, different elements of SU(2). This gives
an underlying SU(2)L ⊗ SU(2)R symmetry.

When the mass term is included, the left- and right-handed components
of the spinors are mixed and the above transformation now only holds
for UL = UR. Hence SU(2)L ⊗ SU(2)R has been broken to SU(2)V .
By Goldstone’s theorem (corollory), there should exist 3 light bosons
and, indeed, there does: π± and π0.

The interpretation of the Higgs as a pNGB naturally encompasses its
low mass.
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A Candidate Symmetry

A gauge theory with the potential to explain a composite Higgs is the
Symplectic group4, denoted by Sp(2N). A matrix, J , is in Sp(2N) iff

JTΩJ = Ω where Ω =

[
0 1N

−1N 0

]
and 1N is the N ×N identity matrix. The 2N notation emphasises the
fact that the group elements must be of even size though conventions
differ throughout the literature.

4Bennett et. al, Sp(4) Gauge Theory on the Lattice: Towards SU(4)/Sp(4)
Composite Higgs and Beyond, 2017
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Making Predictions

Having justified the theory’s use in describing the Higgs particle, we
now use it to make predictions that can be observed in the lab. One
such observable is the glueball spectrum.

Glueballs are massive particles composed entirely of gluons or – in this
case – the gauge bosons of Sp(2N). By virtue of the gauge group being
non-Abelian, the gauge bosons self interact and, thus, can form bound
states subject to colour-confinement.

A single glueball can be uniquely identified by its spin (J), parity (P )
and charge conjugation (C). These are denoted by JPC .
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The Glueball Spectrum

The Euclidean lattice breaks the continuous rotational symmetry of
SO(3) to the discrete symmetries of a cube denoted by S4.

The task, then, is to construct operators that live in specific
representations of S4: that is closed paths of lattice links that
transform under specific representations of the cubic group. These can
then be combined to form a single operator with specific parity and
charge conjugation constructing a glueball of specific JPC .
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The Glueball Spectrum

In fact, the Sp(2N) groups are pseudo-real and, thus, all glueballs have
positive charge conjugation (a feature that also holds for real groups)
thus the C term can be dropped for brevity.

If we construct such a time-dependent operator, Φ(t), and insert a
complete set of energy eigenstates, we get:

〈Φ†(t)Φ(0)〉 =
∑
n

〈0|Φ†(t) |n〉 〈n|Φ(0) |0〉

CΦΦ(t) ≡
∑
n

〈0| eĤtΦ†(0)e−Ĥt |n〉 〈n|Φ(0) |0〉

CΦΦ(t) =
∑
n

| 〈n|Φ(0) |0〉 |2e−Ent

taking Ĥ |0〉 = 0 =⇒ 〈0| eĤt = 1.
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〈0| eĤtΦ†(0)e−Ĥt |n〉 〈n|Φ(0) |0〉

CΦΦ(t) =
∑
n

| 〈n|Φ(0) |0〉 |2e−Ent
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The Glueball Spectrum

The foregoing gives a correlator equal to a sum of decaying
exponentials. As t increases, the one with the smallest mass – denoted
by E0 – dominates and the sum can be approximated as a single
exponential. This gives

E0 = − lim
t→∞

ln(CΦΦ(t))

t
.

From the above, we can get an estimate of the glueball masses at
different lattice spacings and then extrapolate to the continuum limit.

This process can be repeated for Sp(2N) at increasing values of N in
order to obtain N →∞ extrapolations. Many physical observables
based on SU(N), SO(N) or Sp(2N) coincide in this limit and are
analytically tractable.
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Conclusion

The Naturalness problem arises due to the Higgs’ low mass which
requires extreme fine tuning.

A possible resolution is to treat the Higgs as a (composite) pNGB.
This will remove the need for fine tuning and naturally
encompasses its low mass.

Measuring observable quantities such as the glueball spectrum will
allow us to see the theory’s fingerprints.
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