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Linearisation Instabilities

» Interesting equations in physics are hard to solve. Typically
we resort to perturbing around a few known solutions.

» Linearised equations determining first order perturbations
around a given background are often easier to solve while
still containing interesting physics.
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Linearisation Instabilities

» Interesting equations in physics are hard to solve. Typically
we resort to perturbing around a few known solutions.

» Linearised equations determining first order perturbations
around a given background are often easier to solve while
still containing interesting physics.

» Linearisation instabilities: Not all solutions to the linearised
equations can be extended to solutions of the non-linear
equations.
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Linearisation Instabilities: An Example

» Let (z,y) € R? and consider the equation
z(a? +y%) =0, (1)

this has solutions (0, y), for any y.
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Linearisation Instabilities: An Example

» Let (z,y) € R? and consider the equation
$($2+y2) =0, (1)

this has solutions (0, y), for any y.
» Making a perturbation (zo + dx, yo + dy) we obtain

(31‘% + yo)dz + 2x0y0dy = 0. 2)

Given a solution (zg, yo), this determines (dz, dy).
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Linearisation Instabilities: An Example

» Let (z,y) € R? and consider the equation
$(332+y2) =0, (1)

this has solutions (0, y), for any y.
» Making a perturbation (zo + dx, yo + dy) we obtain

(31‘% + yo)dz + 2x0y0dy = 0. 2)

Given a solution (zg, yo), this determines (dz, dy).

» If we choose (0,0) as the background, (dz,0) is a possible
solution, but can not be a linearisation of an exact solution.
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Linearisation Instabilities: Electrodynamics

» Take a closed universe: Cauchy surface ¥ with no
boundary. Think: Pac-Man: flat R x T™ or de Sitter R x S>.

Lasse Schmieding University of York

Linearisation Instabilities 4/15



Linearisation Instabilities
[e]e] lelele]e]

IVERSITY

Linearisation Instabilities: Electrodynamics

» Take a closed universe: Cauchy surface ¥ with no
boundary. Think: Pac-Man: flat R x T™ or de Sitter R x S>.

» Equip the universe with scalar electrodynamics. The total
charge @ has to vanish as we can express it as a
boundary integral

Q:—/E*J:/aE*F:O. 3)

» This charge is quadratic in the scalar field ®.
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Linearisation Instabilities: Electrodynamics

> Start with an empty universe, start perturbatively filling it:
o =00 0@ 4 (4)

» The total charge must vanish order by order in the
perturbation. At second order

QO — 2-6/ . <¢<1)*d¢<1> N ¢<1>d¢(1>*> _o. (5)
>

» This imposes a quadratic constraint on @), which does
not follow from the linearised theory alone.
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Linearisation Instabilities: Einstein Gravity

» In Einstein gravity, initial data (g, ) on ¥ must obey the
Hamiltonian # = 0, and momentum H; = 0, constraints.

» Smearing against a vector field X allows us to consider

Wy = [ 7 (A X, (6)
by
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Linearisation Instabilities: Einstein Gravity

» In Einstein gravity, initial data (g, ) on ¥ must obey the
Hamiltonian # = 0, and momentum H; = 0, constraints.

» Smearing against a vector field X allows us to consider

Wy = [ 7 (A X, (6)
by

» Now perturb around a background (¢(?, 7(9) as

9=90 +h® 4?4 )
7T:7r(0)+p(1)+p(2)+"" (@)
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» When the background has Killing Vectors X, first order
term in ¥ x vanishes for all perturbations.

Linearisation Instabilities: Einstein Gravity
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Linearisation Instabilities: Einstein Gravity

» When the background has Killing Vectors X, first order
term in ¥ x vanishes for all perturbations.

» Consequently, the second order term in ¥y imposes a
quadratic constraint on the perturbations (A}, p(1)).
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Linearisation Instabilities: Einstein Gravity

» When the background has Killing Vectors X, first order
term in ¥ x vanishes for all perturbations.

» Consequently, the second order term in ¥y imposes a
quadratic constraint on the perturbations (A}, p(1)).

» The imposed constraint is precisely that the conserved
generator @ x of the symmetry vanishes.

» The vanishing of these generators must be imposed as
linearisation stability conditions on the linear theory

[Brill & Deser, Moncrief, Fisher & Marsden]
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> Linearisation Instabilities in the presence of a Supergroup.

Linearisation Instabilities: Supergravity
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Linearisation Instabilities: Supergravity

> Linearisation Instabilities in the presence of a Supergroup.
» Expanding around a toroidal background

ds? = —dt* + dz? +dy? +d2%, 0<az,y,2<L, (9)
» At linear level have a graviton b, and a gravitino ¥,
S[h, ¥] = Skplh] + Srs[V], (10)

related by a supersymmetry transformation.
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Linearisation Instabilities: Supergravity

> Linearisation Instabilities in the presence of a Supergroup.
» Expanding around a toroidal background

ds? = —dt* + dz? +dy? +d2%, 0<az,y,2<L, (9)
» At linear level have a graviton b, and a gravitino ¥,
S[h, ¥] = Skplh] + Srs[V], (10)

related by a supersymmetry transformation.

» From the non-linear theory get linearisation stability
conditions:

H=P=Qu=0. (11)
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Canonical Quantisation with Constraints

» Now quantise the system subject to the linearisation
stability constraints.

» In Dirac quantisation, the constraints ) imposed as
conditions on physical states:

@ |phys) = 0. (12)
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Canonical Quantisation with Constraints

» Now quantise the system subject to the linearisation
stability constraints.

» In Dirac quantisation, the constraints ) imposed as
conditions on physical states:

@ |phys) = 0. (12)

» This can make construction of the physical Hilbert space
non-trivial.

» For linearised gravity in de Sitter, this would mean the only
physical state is the vacuum.
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» As Flatlanders, we naturally consider Quantum Mechanical
states ¢(z, y) € L2(R?):

/ dedy [¢(z, ) < oo. (13)

Refined Algebraic Quantisation: Example
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Refined Algebraic Quantisation: Example

» As Flatlanders, we naturally consider Quantum Mechanical
states ¢(z, y) € L2(R?):

/ dedy [¢(z, ) < oo. (13)

» To consider a one dimensional system, do not care about
position of the system in the y direction. Impose constraint

py¢phys($ay) = 0. (14)
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Refined Algebraic Quantisation: Example

» As Flatlanders, we naturally consider Quantum Mechanical
states ¢(z, y) € L2(R?):

/ dedy [¢(z, ) < oo. (13)

» To consider a one dimensional system, do not care about
position of the system in the y direction. Impose constraint

pyﬂ)phys(l} y) = 0. (14)

> But there are no non-trivial Ypnys € £2(R?).

> How can we systematically get to the physical Hilbert
space - £2(R) for Quantum Mechanics on a line?
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Refined Algebraic Quantisation:

» To obtain a physical Hilbert space in presence of symmetry
group: [Higuchi, Moncrief]

1. Make invariant, non-normalisable states |) from
non-invariant normalisable | ¢) by integrating

0) = [deU(e) |9, (15)
2. Redefine inner product on the physical states:
(k) = [ de (1] U(e) | o). (16)
Lasse Schmieding University of York

Linearisation Instabilities 11/15



Quantisation
[e]e]e] )

Fonl /,/ UNIVERSITY

Refined Algebraic Quantisation: Example
» Returning to our example, the invariant states are
_ / dy e~ PV (x, y). (17)
» The averaged inner product on the new states is
(V1,92) = /dwdy1dy2 p1(w,y1) e Pr2Y o (, 12)
— [ o vi(@) vate) (18)

which we recognize as the correct inner product for £2(R).
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Linearised Quantum Gravity

» If the invariance under the de Sitter group was imposed
directly on the Hilbert space of linearised gravity, only the
Euclidean vacuum state would survive for de Sitter.
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Linearised Quantum Gravity

» If the invariance under the de Sitter group was imposed
directly on the Hilbert space of linearised gravity, only the
Euclidean vacuum state would survive for de Sitter.

» This procedure can be carried out for linearised gravity on
a torus and for de Sitter space, to obtain non-trivial Hilbert
spaces of physical states. [Higuchi]
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» In the supersymmetric case, have to incorporate an
additional fermionic constraint into the theory

Qa |phys) = 0. (19)

Linearised Quantum Supergravity
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Linearised Quantum Supergravity

» In the supersymmetric case, have to incorporate an
additional fermionic constraint into the theory

Qa [phys) = 0. (19)

» We can obtain a modified inner product on the physical
Hilbert space by averaging over the supergroup of
background symmetries.
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Linearised Quantum Supergravity

» In the supersymmetric case, have to incorporate an
additional fermionic constraint into the theory

Qa [phys) = 0. (19)

» We can obtain a modified inner product on the physical
Hilbert space by averaging over the supergroup of
background symmetries.

» We can explicitly construct non-trivial physical states,
obeying the constraints.
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Thank You

» Thank You!
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