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Linearisation Instabilities Quantisation Quantum Gravity and Supergravity Conclusion

Linearisation Instabilities

I Interesting equations in physics are hard to solve. Typically
we resort to perturbing around a few known solutions.

I Linearised equations determining first order perturbations
around a given background are often easier to solve while
still containing interesting physics.

I Linearisation instabilities: Not all solutions to the linearised
equations can be extended to solutions of the non-linear
equations.
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Linearisation Instabilities: An Example

I Let (x, y) ∈ R2 and consider the equation

x(x2 + y2) = 0, (1)

this has solutions (0, y), for any y.

I Making a perturbation (x0 + δx, y0 + δy) we obtain

(3x2
0 + y0)δx+ 2x0y0δy = 0. (2)

Given a solution (x0, y0), this determines (δx, δy).
I If we choose (0, 0) as the background, (δx, 0) is a possible

solution, but can not be a linearisation of an exact solution.
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Linearisation Instabilities: Electrodynamics

I Take a closed universe: Cauchy surface Σ with no
boundary. Think: Pac-Man: flat R× Tn or de Sitter R× S3.

I Equip the universe with scalar electrodynamics. The total
charge Q has to vanish as we can express it as a
boundary integral

Q = −
∫

Σ
?J =

∫
∂Σ
?F = 0. (3)

I This charge is quadratic in the scalar field Φ.
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Linearisation Instabilities: Electrodynamics

I Start with an empty universe, start perturbatively filling it:

Φ = Φ(1) + Φ(2) + . . . (4)

I The total charge must vanish order by order in the
perturbation. At second order

Q(2) = ie

∫
Σ
?
(

Φ(1)∗dΦ(1) − Φ(1)dΦ(1)∗
)

= 0. (5)

I This imposes a quadratic constraint on Φ(1), which does
not follow from the linearised theory alone.
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Linearisation Instabilities: Einstein Gravity

I In Einstein gravity, initial data (g, π) on Σ must obey the
Hamiltonian H = 0, and momentum Hi = 0, constraints.

I Smearing against a vector field X allows us to consider

ΨX =

∫
Σ

d3~x (X⊥H+Xi
‖Hi). (6)

I Now perturb around a background (g(0), π(0)) as

g = g(0) + h(1) + h(2) + . . . , (7)

π = π(0) + p(1) + p(2) + . . . . (8)
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Linearisation Instabilities: Einstein Gravity

I When the background has Killing Vectors X, first order
term in ΨX vanishes for all perturbations.

I Consequently, the second order term in ΨX imposes a
quadratic constraint on the perturbations (h(1), p(1)).

I The imposed constraint is precisely that the conserved
generator QX of the symmetry vanishes.

I The vanishing of these generators must be imposed as
linearisation stability conditions on the linear theory

[Brill & Deser, Moncrief, Fisher & Marsden]
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Linearisation Instabilities: Supergravity
I Linearisation Instabilities in the presence of a Supergroup.

I Expanding around a toroidal background

ds2 = −dt2 + dx2 + dy2 + dz2, 0 ≤ x, y, z ≤ L, (9)

I At linear level have a graviton hµν and a gravitino Ψµα

S[h,Ψ] = SFP [h] + SRS [Ψ], (10)

related by a supersymmetry transformation.
I From the non-linear theory get linearisation stability

conditions:

H = ~P = Qα = 0. (11)
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Canonical Quantisation with Constraints

I Now quantise the system subject to the linearisation
stability constraints.

I In Dirac quantisation, the constraints Q imposed as
conditions on physical states:

Q |phys〉 = 0. (12)

I This can make construction of the physical Hilbert space
non-trivial.

I For linearised gravity in de Sitter, this would mean the only
physical state is the vacuum.
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Refined Algebraic Quantisation: Example
I As Flatlanders, we naturally consider Quantum Mechanical

states ψ(x, y) ∈ L2(R2):∫
dxdy |ψ(x, y)|2 <∞. (13)

I To consider a one dimensional system, do not care about
position of the system in the y direction. Impose constraint

pyψphys(x, y) = 0. (14)

I But there are no non-trivial ψphys ∈ L2(R2).
I How can we systematically get to the physical Hilbert

space - L2(R) for Quantum Mechanics on a line?
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Refined Algebraic Quantisation:

I To obtain a physical Hilbert space in presence of symmetry
group: [Higuchi, Moncrief]

1. Make invariant, non-normalisable states |ψ) from
non-invariant normalisable |φ〉 by integrating

|ψ) =

∫
dc U(c) |φ〉. (15)

2. Redefine inner product on the physical states:

(ψ1|ψ2) =

∫
dc 〈φ1 | U(c) |φ2〉. (16)
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Refined Algebraic Quantisation: Example

I Returning to our example, the invariant states are

ψ(x) =

∫
dy e−ipyyφ(x, y). (17)

I The averaged inner product on the new states is

(ψ1, ψ2) =

∫
dxdy1dy2 φ1(x, y1)∗e−ipy2y2φ2(x, y2)

=

∫
dx ψ1(x)∗ψ2(x), (18)

which we recognize as the correct inner product for L2(R).
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Linearised Quantum Gravity

I If the invariance under the de Sitter group was imposed
directly on the Hilbert space of linearised gravity, only the
Euclidean vacuum state would survive for de Sitter.

I This procedure can be carried out for linearised gravity on
a torus and for de Sitter space, to obtain non-trivial Hilbert
spaces of physical states. [Higuchi]
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Linearised Quantum Supergravity

I In the supersymmetric case, have to incorporate an
additional fermionic constraint into the theory

Qα |phys〉 = 0. (19)

I We can obtain a modified inner product on the physical
Hilbert space by averaging over the supergroup of
background symmetries.

I We can explicitly construct non-trivial physical states,
obeying the constraints.

Lasse Schmieding University of York

Linearisation Instabilities 14 / 15



Linearisation Instabilities Quantisation Quantum Gravity and Supergravity Conclusion

Linearised Quantum Supergravity

I In the supersymmetric case, have to incorporate an
additional fermionic constraint into the theory

Qα |phys〉 = 0. (19)

I We can obtain a modified inner product on the physical
Hilbert space by averaging over the supergroup of
background symmetries.

I We can explicitly construct non-trivial physical states,
obeying the constraints.

Lasse Schmieding University of York

Linearisation Instabilities 14 / 15



Linearisation Instabilities Quantisation Quantum Gravity and Supergravity Conclusion

Linearised Quantum Supergravity

I In the supersymmetric case, have to incorporate an
additional fermionic constraint into the theory

Qα |phys〉 = 0. (19)

I We can obtain a modified inner product on the physical
Hilbert space by averaging over the supergroup of
background symmetries.

I We can explicitly construct non-trivial physical states,
obeying the constraints.

Lasse Schmieding University of York

Linearisation Instabilities 14 / 15



Linearisation Instabilities Quantisation Quantum Gravity and Supergravity Conclusion

Thank You

I Thank You!
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