Single top quark + Dark Matter

Charanjit Kaur Khosa

University of Sussex

YTF 2018, Durham

1 / 16

Dark matter searches at colliders

Simplified dark matter models

$$\mathcal{L}_{S} = \mathcal{L}_{SM} + \frac{1}{2} (\partial_{\mu} \phi)^{2} - \frac{1}{2} m_{\phi}^{2} \phi^{2} + i \bar{\chi} \partial \!\!\!/ \chi - m_{\chi} \bar{\chi} \chi - g_{\chi} \phi \bar{\chi} \chi - \sum_{\text{fermions}} g_{v} \frac{y_{f}}{\sqrt{2}} \phi \bar{f} f ,$$

$$\mathcal{L}_{A} = \mathcal{L}_{SM} + \frac{1}{2} (\partial_{\mu} A)^{2} - \frac{1}{2} m_{A}^{2} A^{2} + i \bar{\chi} \partial \!\!/ \chi - m_{\chi} \bar{\chi} \chi - i g_{\chi} A \bar{\chi} \gamma^{5} \chi - \sum_{\text{fermions}} i g_{v} \frac{y_{f}}{\sqrt{2}} A \bar{f} \gamma^{5} f$$

Figure: taken from ATLAS-CONF-2018-051□ > < ⓓ > < ≧ > < ≧ > < ≧ > < ≧ > < ≥ <

Associated production of DM with single top quark¹

Polarized top quark

¹Pinna et al, Phys. Rev. D 96, 035031 (2017), T. Plehn, J. Thompson and S. Westhoff, Phys. Rev. D 98 (2018), 015012 , C

Figure: Cross-section for the $t/\bar{t}+$ DM processes² ($g_v=g_\chi=1$)

²Pinna et al, Phys. Rev. D 96, 035031 (2017)

▲□▶ ▲圖▶ ▲ 圖▶ ▲ 圖▶ → 圖 → ���

Kinematic distributions

5 / 16

Impact on exclusion limit³

³Pinna et al, Phys. Rev. D 96, 035031 (2017)

| ◆ □ ▶ ◆ ■ ▶ ◆ ■ ▶ ◆ ■ ◆ の Q @

CMS-PAS-EXO-18-010

Various improvements are incorporated into this search that are designed to enhance the sensifivity to the t/t + DM final state over that of previous analyses. Similar to previous searches [16], several orthogonal signal regions (SR) are defined and statistically combined in a simultaneous global fit of the p_{T}^{miss} spectrum. Events are separated into orthogonal categories based on the number of b jets (n_b), with $n_b = 1$ or $n_b \ge 2$, and additional requirements on the number of forward jets are placed (0 or ≥ 1 forward jet). The minimum requirements on the number of jets is also lowered to enhance the sensitivity specifically to the t/t + DM model. Control regions (CR) enriched in the major background processes are included in the fit in order to improve the estimates of the background contributions.

2HDM and a pseudoscalar mediator⁴

⁴P. Pani and G. Polesello, Phys. Dark Univ. 21, 8 (2018)

<ロ> <四> <四> <三</p>

8 / 16

⁵P. Pani and G. Pole<u>sello, Phys. Dark Univ.</u> 21, 8 (2018)

CP nature of a mediator via single top channel⁶

Mediator (spin 0) couplings to the SM fermions and DM :

$$\mathcal{L}_{\Phi} = g_{\chi} \Phi \bar{\chi} (\cos \theta + i \sin \theta \gamma^5) \chi + \frac{g_{\nu} \Phi}{\sqrt{2}} \sum_{f=t,b} \left(\frac{m_f}{\nu} \bar{f} (\cos \theta + i \sin \theta \gamma^5) f \right) - \frac{1}{2} m_{\Phi}^2 \Phi^2 - m_{\chi} \bar{\chi} \chi,$$

 θ : CP phase parameter, θ =0 \rightarrow pure scalar state, $\theta=\frac{\pi}{2}$ \rightarrow pure pseudoscalar state, ν = 174 GeV

Simultaneous determination of cross-section and top polarization

⁶Ongoing work, In collaboration with : Genevieve Belanger, Rohini M. Godbole, and Saurabh D. Rindani, arxiv:1811.11048(hep-ph) ← □ → ← (□) → (□) → ← (□) → ← (□) →

- Model parameters: $m_{\chi}, m_{\Phi}, g_{\chi}$, and $g_{v} = 1$
 - BP1 ($m_{\phi} \approx 2m_b$): m_{Φ} =10 GeV, m_{χ} =4.5 GeV, g_{χ} =0.35

• BP2 :
$$m_{\Phi}$$
=100 GeV, m_{χ} =49 GeV, g_{χ} =0.5

- BP3 : m_{Φ} =400 GeV, m_{χ} =180 GeV, g_{χ} =1
- Model files are generated using FeynRules and cross-section is calculated using MadGraph
- Top polarization

$$P = \frac{\sigma_+ - \sigma_-}{\sigma_+ + \sigma_-}$$

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

Cross-section and polarization

Figure: Cross-section (including both t and \bar{t} processes) for single top in association with DM (left panel), Top polarization for $pp \rightarrow$ single top + DM processes(right panel)

Polarization as a function of θ behaves differently than the cross-section

- ∢ ≣ →

A 🕨 🔺

Observables which reflect polarization : angular observables are robust measures of polarization 7

Polar asymmetry

$$A_{l}^{\theta} = \frac{\sigma(\cos\theta_{l} > 0) - \sigma(\cos\theta_{l} < 0)}{\sigma(\cos\theta_{l} > 0) + \sigma(\cos\theta_{l} < 0)}$$

 θ_l : angle of the charged lepton (from top decay) with top direction of motion

Azimuthal asymmetry (about the top quark production plane)

$$egin{aligned} \mathcal{A}^{\phi}_{I} &= rac{\sigma(\cos \phi_{I} > 0) - \sigma(\cos \phi_{I} < 0)}{\sigma(\cos \phi_{I} > 0) + \sigma(\cos \phi_{I} < 0)} \end{aligned}$$

⁷Godbole et al, JHEP 0612 (2006) 021)

Figure: Charged lepton polar asymmetry (left panel) and azimuthal asymmetry for $pp \rightarrow$ single top + DM processes(right panel)

Associated top pair channel⁸

Figure: Normalised differential distribution of $\Delta \phi_{II}$

- Single top quark and DM channel improves the experimental reach
- It could also be used to study the CP property of a mediator
 - Cross-section and top polarization have a different behaviour with respect to the CP phase θ and thus offers complementary discriminatory power

Thank you