

Exploring Flavour Violation in an A_4 -Inspired SUSY GUT

J. Bernigaud¹, B. Herrmann¹, S.F. King² and **S.J. Rowley²**

¹Univ. Grenoble Alpes, CNRS, LAPTh, 9 Chemin de Bellevue, Annecy, France ²SHEP Group, School of Physics and Astronomy, University of Southampton, UK

20th December 2018

- Introduction
- SUSY-breaking and Non-Minimal Flavour Violation
- ▶ SU(5) Unification and A_4
- ► This work NMFV in this scenario
- Results
- Conclusions and Outlook

Introduction

Southampton

Why SUSY?

- Still (mostly) cures the hierarchy problem
- Precise gauge coupling unification
- Rich phenomenology, hints for experimentalists

60 50 40 α¹ 30 20 10 SU(3) 02 4 6 8 10 12 14 16 18

Gauge couplings unify in MSSM^[1]

Why flavour physics?

- Many experimental results hint at departure from SM
- Models can predict mixing how much?

Viable SUSY in nature must be broken

General soft-breaking Lagrangian in the MSSM:

$$\mathcal{L}_{\text{soft}}^{\text{MSSM}} = -\frac{1}{2} (M_1 \widetilde{B} \widetilde{B} + M_2 \widetilde{W} \widetilde{W} + M_3 \widetilde{g} \widetilde{g} + \text{h.c.})$$

$$-M_Q^2 \widetilde{Q}^{\dagger} \widetilde{Q} - M_L^2 \widetilde{L}^{\dagger} \widetilde{L} - M_U^2 \widetilde{U}^* \widetilde{U} - M_D^2 \widetilde{D}^* \widetilde{D} - M_E^2 \widetilde{E}^* \widetilde{E}$$

$$- (A_U \widetilde{U}^* H_u \widetilde{Q} + A_D \widetilde{D}^* H_d \widetilde{Q} + A_E \widetilde{E}^* H_d \widetilde{L} + \text{h.c.})$$

$$- m_{H_u}^2 H_u^* H_u - m_{H_d}^2 H_d^* H_d - (bH_u^* H_d + \text{h.c.})$$

Parameters M_Q , M_L A_U etc. are **3x3 matrices** in 'flavour space'

Viable SUSY in nature must be broken

General soft-breaking Lagrangian in the MSSM:

$$\mathcal{L}_{\text{soft}}^{\text{MSSM}} = -\frac{1}{2} (M_1 \widetilde{B} \widetilde{B} + M_2 \widetilde{W} \widetilde{W} + M_3 \widetilde{g} \widetilde{g} + \text{h.c.})$$

$$-M_Q^2 \widetilde{Q}^{\dagger} \widetilde{Q} - M_L^2 \widetilde{L}^{\dagger} \widetilde{L} - M_U^2 \widetilde{U}^* \widetilde{U} - M_D^2 \widetilde{D}^* \widetilde{D} - M_E^2 \widetilde{E}^* \widetilde{E}$$

$$-(A_U \widetilde{U}^* H_u \widetilde{Q} + A_D \widetilde{D}^* H_d \widetilde{Q} + A_E \widetilde{E}^* H_d \widetilde{L} + \text{h.c.})$$

$$-M_{H_u}^2 H_u^* H_u - M_{H_d}^2 H_d^* H_d - (bH_u^* H_d + \text{h.c.})$$

Parameters M_Q , M_L A_U etc. are **3x3 matrices** in 'flavour space'

Non-Minimal Flavour Violation

Minimal Flavour Violation paradigm \implies diagonal soft parameters.

$$M_Q^2 = \begin{pmatrix} (M_Q)_{11}^2 & 0 & 0 \\ \cdot & (M_Q)_{22}^2 & 0 \\ \cdot & \cdot & (M_Q)_{33}^2 \end{pmatrix} \quad A_U = \begin{pmatrix} (A_U)_{11} & 0 & 0 \\ 0 & (A_U)_{22} & 0 \\ 0 & 0 & (A_U)_{33} \end{pmatrix}$$

Assumption in most analyses, no theory motivation

 $\mathsf{Relax} \ \mathsf{assumption} \ \Longrightarrow \ \textbf{Non-Minimal Flavour Violation} \ (\mathsf{NMFV})$

$$M_Q^2 = \begin{pmatrix} (M_Q)_{11}^2 & (\Delta_{12}^Q)^2 & (\Delta_{13}^Q)^2 \\ \cdot & (M_Q)_{22}^2 & (\Delta_{23}^Q)^2 \\ \cdot & \cdot & (M_Q)_{33}^2 \end{pmatrix} \quad A_U = \begin{pmatrix} (A_U)_{11} & \Delta_{12}^{AU} & \Delta_{13}^{AU} \\ \Delta_{21}^{AU} & (A_U)_{22} & \Delta_{23}^{AU} \\ \Delta_{31}^{AU} & \Delta_{32}^{AU} & (A_U)_{33} \end{pmatrix}$$

In a unified framework, flavour symmetries can generate NMFV

Dimensionless Parametrisation

Southampton Southampton

Reformulate NMFV by normalising to diagonal elements of soft matrices:

$$(\delta_{LL}^{Q})_{ij} = \frac{(\Delta_{ij}^{Q})^{2}}{(M_{Q})_{ii}(M_{Q})_{jj}}, \quad (\delta_{RR}^{U})_{ij} = \frac{(\Delta_{ij}^{U})^{2}}{(M_{U})_{ii}(M_{U})_{jj}}, \quad (\delta_{RR}^{D})_{ij} = \frac{(\Delta_{ij}^{D})^{2}}{(M_{D})_{ii}(M_{D})_{jj}},$$

$$(\delta_{RL}^{U})_{ij} = \frac{v_{u}}{\sqrt{2}} \frac{\Delta_{ij}^{AU}}{(M_{Q})_{ii}(M_{U})_{jj}}, \quad (\delta_{RL}^{D})_{ij} = \frac{v_{d}}{\sqrt{2}} \frac{\Delta_{ij}^{AD}}{(M_{Q})_{ii}(M_{D})_{jj}},$$

$$(\delta_{LL}^L)_{ij} = \frac{(\Delta_{ij}^L)^2}{(M_L)_{ii}(M_L)_{jj}}, \quad (\delta_{RR}^E)_{ij} = \frac{(\Delta_{ij}^E)^2}{(M_E)_{ii}(M_E)_{jj}}, \quad (\delta_{RL}^E)_{ij} = \frac{v_d}{\sqrt{2}} \frac{\Delta_{ij}^{AE}}{(M_L)_{ii}(M_E)_{jj}}$$

- ▶ Introduction
- ► SUSY-breaking and Non-Minimal Flavour Violation
- ▶ SU(5) Unification and A_4
- ► This work NMFV Parameter Scan
- Results
- ► Conclusions and Outlook

Collect SM fields into irreps. of SU(5):

$$F = \overline{\mathbf{5}} = \begin{pmatrix} d_r^c \\ d_b^c \\ d_g^c \\ e^- \\ -\nu_e \end{pmatrix}_L, \qquad T = \mathbf{10} = \begin{pmatrix} 0 & u_g^c & -u_b^c & u_r & d_r \\ 0 & u_g^c & -u_b^c & u_r & d_r \\ 0 & 0 & u_r^c & u_b & d_b \\ 0 & 0 & 0 & u_g & d_g \\ 0 & 0 & 0 & 0 & 0 \end{pmatrix}_L$$

Unification gives equalities between parameters at the GUT scale:

$$M_Q^2 = M_U^2 = M_E^2 \equiv M_T^2, \qquad \delta_{LL}^Q = \delta_{RR}^U = \delta_{RR}^E \equiv \delta^T,$$

$$M_D^2 = M_L^2 \equiv M_F^2, \qquad \delta_{RR}^D = \delta_{LL}^L \equiv \delta^F,$$

$$A_D = (A_E)^T \equiv A_{FT}, \qquad \delta_{RL}^D = (\delta_{RL}^E)^T \equiv \delta^{FT},$$

$$A_U \equiv A_{TT} \qquad \delta_{RL}^U \equiv \delta^{TT}$$

The $A_4 \times SU(5)$ Model

Southampton

Addition of discrete symmetry unifies three families of the $\overline{\bf 5}$

Representations:

Unified breaking matrices:

$$F = \mathbf{3}$$

$$T = \mathbf{1}$$

$$\implies M_F = \begin{pmatrix} m_F & 0 & 0 \\ 0 & m_F & 0 \\ 0 & 0 & m_F \end{pmatrix}$$

$$M_T = \begin{pmatrix} m_{T_1} & 0 & 0 \\ 0 & m_{T_2} & 0 \\ 0 & 0 & m_{T_3} \end{pmatrix}$$

Break discrete symmetry \implies NMFV patterns at the GUT scale - these incite flavour mixing at low scales

- ▶ Introduction
- ► SUSY-breaking and Non-Minimal Flavour Violation
- ▶ SU(5) Unification and A_4
- ► This work NMFV Parameter Scan
- Results
- ► Conclusions and Outlook

Explorative Study of NMFV

- MFV not theoretically well motivated
- ► Flavour violation could place additional constraints on models
- Relax assumptions, explore phenomenology

Question

What is the allowed flavour violation in such a scenario?

 Scan over NMFV parameters at the GUT scale simultaneously, run predictions to low scale, and determine degree of mixing permitted

Model Unknowns

MFV Parameters

Masses:

$$m_F$$
 m_{T_1} m_{T_2} m_{T_3}

 M_1 M_2 M_3 M_{H_u} M_{H_d}

Couplings etc.:

$$(A_{TT})_{33}$$
 $(A_{FT})_{33}$ $\tan \beta$ μ

13 fixed numerical inputs, not varied in this analysis

These sets of unknowns specify MSSM SUSY-breaking entirely

NMFV Parameters

Off-diagonal matrix elements

$$(\delta^F)_{12} \quad (\delta^F)_{13} \quad (\delta^T)_{23}$$

$$(\delta^T)_{12} \quad (\delta^T)_{13} \quad (\delta^T)_{23}$$

$$(\delta^{TT})_{12} \quad (\delta^{TT})_{13} \quad (\delta^{TT})_{23}$$

$$(\delta^{FT})_{12} \quad (\delta^{FT})_{13} \quad (\delta^{FT})_{21}$$

$$(\delta^{FT})_{23}$$
 $(\delta^{FT})_{31}$ $(\delta^{FT})_{32}$

15 numerical inputs, scanned over with flat prior distributions

Fixed MFV reference Points

io 2
0
0
2
5
0
6
0
2
.6
.6
.6
5.8

- MFV defined by flavour-conserving params
- 1 inspired by previous work^[2], 2 motivated by experimental limits
- ▶ Almost-mass-degenerate $\widetilde{\chi}_0^1$ and $\widetilde{\mu}$ to satisfy relic density through coannihilation

Table: GUT scale parameters that define MFV scenarios.

^[2] A. Belyaev, S.F. King and P. Schaefers, "Muon g-2 and dark matter suggest nonuniversal gaugino masses: $SU(5) \times A_4$ case study at the LHC", Phys. Rev. D 97 (2018), 1801.00514

NMFV Parameter Scan

[3]W. Porod,	"SPheno"	, Comput.	Phys.	Commun.	153
(2003), hep-p					

[4] G.Belanger et. al., "MicrOMEGAs...", Comput. Phys. Commun. 149 (2002), hp-ph/0112278

Observable	Constraint	
m_h	$(125.2 \pm 2.5) \; \text{GeV}$	
$BR(\mu \to e\gamma)$	$< 4.2 \times 10^{-13}$	
$BR(\mu \rightarrow 3e)$	$< 1.0 imes 10^{-12}$	
$BR(\tau \to e \gamma)$	$< 3.3 imes 10^{-8}$	
$BR(\tau \to \mu \gamma)$	$< 4.4 imes 10^{-8}$	
BR(au o 3e)	$< 2.7 imes 10^{-8}$	
$BR(\tau \rightarrow 3\mu)$	$< 2.1 imes 10^{-8}$	
$\mathrm{BR}(au o e^-\mu\mu)$	$< 2.7 imes 10^{-8}$	
$BR(au au e^+\mu\mu)$	$< 1.7 imes 10^{-8}$	
$BR(\tau \to \mu^- ee)$	$< 1.8 \times 10^{-8}$	
$BR(\tau \rightarrow \mu^+ ee)$	$< 1.5 imes 10^{-8}$	
$BR(B \to X_s \gamma)$	$(3.32 \pm 0.18) \times 10^{-4}$	
$BR(B_s \to \mu\mu)$	$(2.7 \pm 1.2) imes 10^{-9}$	
ΔM_{B_s}	$(17.757 \pm 0.312)~{ m ps}^{-1}$	
ΔM_K	$(3.1 \pm 1.2) imes 10^{-15} \; { m GeV}$	
ϵ_K	2.228 ± 0.29	
$\Omega_{ m DM} h^2$	0.1198 ± 0.0042	

Table: Experimental constraints imposed on the $A_4 \times SU(5)$ parameter space in our study.

- ▶ Introduction
- ► SUSY-breaking and Non-Minimal Flavour Violation
- ▶ SU(5) Unification and A_4
- ► This work NMFV Parameter Scan
- Results
- ► Conclusions and Outlook

Results: Summary Table

Southampton

Parameters	Scenario 1	Scenario 2	Principle Constraints
$(\delta^T)_{12}$	[-0.015, 0.015]	[-0.12, 0.12] [†]	$\Omega_{ ilde{\chi}^0_1} h^2$, $\mu o e \gamma$
$(\delta^T)_{13}$	[-0.06, 0.06] [†]	[-0.3, 0.3] [†]	$\Omega_{ ilde{\chi}_1^0} h^2$
$(\delta^T)_{23}$	[0, 0]*	$[-0.1, 0.1^{\dagger}]$	$\Omega_{ ilde{\chi}_1^0} h^2$, $\mu o 3$ e, $\mu o e \gamma$,
$(\delta^F)_{12}$	[-0.008, 0.008]	[-0.015, 0.015] [†]	$\mu ightarrow 3$ e, $\mu ightarrow e \gamma$
$(\delta^F)_{13}$	$[-0.01, 0.01]^{\dagger}$	[-0.15, 0.15] [†]	$\mu ightarrow$ 3e, $\mu ightarrow$ e γ
$(\delta^F)_{23}$	[-0.015, 0.015] [†]	[-0.15, 0.15] [†]	$\Omega_{ ilde{\chi}_1^0} h^2$, $\mu o e \gamma$, $\mu o 3e$
$(\delta^{TT})_{12}$	[-3, 3.5] ×10 ⁻⁵	$[-1, 1.5]^{\dagger} \times 10^{-3}$	prior, $\Omega_{ ilde{\chi}_1^0} h^2$
$(\delta^{TT})_{13}$	$[-6, 7]^{\dagger} \times 10^{-5}$	$[-4, 2.5]^{\dagger} \times 10^{-3}$	prior, $\Omega_{ ilde{\chi}^0_1} h^2$
$(\delta^{TT})_{23}$	$[-0.5, 4]^{\dagger} \times 10^{-5}$	[-0.25, 0.2] [†]	prior, $\Omega_{ ilde{\chi}_1^0} h^2$
$(\delta^{FT})_{12}$	[-0.0015, 0.0015]	$[-1.2, 1.2]^{\dagger} \times 10^{-4}$	$\mu ightarrow$ 3e, $\Omega_{ ilde{\chi}_1^0} h^2$, $\mu ightarrow$ e γ
$(\delta^{FT})_{13}$	[-0.002, 0.002] [†]	[-5, 5] ×10 ⁻⁴	$\Omega_{ ilde{\chi}_1^0} h^2$, $\mu o 3$ e, $\mu o e\gamma$
$(\delta^{FT})_{21}$	[0,0]*	$[-1.2, 1.2]^{\dagger} \times 10^{-4}$	$\Omega_{ ilde{\chi}_1^0} h^2$, prior
$(\delta^{FT})_{23}$	[-0.0022, 0.0022] [†]	$[-6, 6]^{\dagger} \times 10^{-4}$	$\mu ightarrow 3$ e, $\Omega_{ ilde{\chi}_1^0} h^2$, $\mu ightarrow e \gamma$
$(\delta^{FT})_{31}$	[-0.0004, 0.0004] [†]	$[-2, 2]^{\dagger} \times 10^{-4}$	$\Omega_{ ilde{\chi}_1^0} h^2$
$(\delta^{FT})_{32}$	[0,0]*	[-1.5, 1.5] ×10 ⁻⁴	$\Omega_{ ilde{\chi}^0_1} h^2$

Table: Estimated allowed GUT scale flavour-violation for both reference scenarios and impactful constraints.

Motivation for a Simultaneous Scan

Southampton Southampton

Figure: Comparison of individual VS simultaneous scan in Scenario 1 for $(\delta^F)_{12}$.

Blue shows prior distribution, and red shows posterior after constraints are applied

Leptonic Flavour Violation

Southampton

$$BR(\mu \to e\gamma)$$

$$BR(\mu \to 3e)$$

$$(\delta)_{13}$$

$$(\delta)_{23}$$

 $\mu \to e \gamma$ and $\mu \to 3e$ can have a distinctive constraining effect on $(\delta)_{13}$ and $(\delta)_{23}$ parameters.

Dark Matter Relic Density

Figure: Dark matter constraint action on $(\delta^T)_{13}$, simultaneous scan over Scenario 2

Figure: Dominant co-annihilation channel responsible for relic abundance

Correlations and Cancellations

Southampton Southampton

Figure: Correlations plots of $(\delta^F)_{12}$ and $(\delta^{FT})_{12}$ at GUT scale. Results reflect simultaneous scan around Scenario 1.

- ▶ Introduction
- ► SUSY-breaking and Non-Minimal Flavour Violation
- ▶ SU(5) Unification and A_4
- ► This work NMFV Parameter Scan
- Results
- Conclusions and Outlook

Conclusions

- Lepton flavour violation experiments and the DM relic density impose the most stringent constraints on SU(5) MSSM NMFV parameters
- ► Limits were determined on the allowed departure from MFV in this scenario

Outlook:

- Study predictions of flavour violation in a by breaking discrete symmetry explicitly
- ▶ Use MCMC methods to scan over MFV parameters, to determine allowed violation in pure *SU*(5)

Conclusions

- Lepton flavour violation experiments and the DM relic density impose the most stringent constraints on SU(5) MSSM NMFV parameters
- ► Limits were determined on the allowed departure from MFV in this scenario

Outlook:

- Study predictions of flavour violation in a by breaking discrete symmetry explicitly
- ▶ Use MCMC methods to scan over MFV parameters, to determine allowed violation in pure *SU*(5)

Thank you for your attention