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Amplitudes and gravity

Modern gravitational wave detectors need high precision 

theoretical calculations: notoriously difficult in general relativity!

Somewhere we’re good at precision 

calculations: on-shell scattering amplitudes.
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However they hold a surprising simplicity… Holstein & Ross, 2008

Gravity amplitudes = hard
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On-shell gravity amplitudes appear as “squares” of gauge theory ones:

Detour to a colourful duality

Any m-point Yang-Mills amplitude can be written

Gauge-invariant, spin-1 amplitude

A powerful algebraic relation: colour-kinematics duality

Proven at tree level but still a conjecture at loop

Kinematic numerators

Propagators

Colour factors

YM theory Gravity

Bern, 

Carrasco & 

Johansson, 

2008 + 10
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Gravity amplitudes = not so bad!

If colour-kinematics duality holds we’re free to replace colour with 

kinematics, giving

Spin 2, gauge invariant amplitude → gravity!

This is the double copy.

Satisfy colour-

kinematics
Bern, Carrasco & 

Johansson, 2008 + 10

A smörgåsbord of applications:

• Proof N=8 supergravity UV finite at 5-loops in 4d

• Constructing exact spacetimes in general relativity

• Calculating gravitational emission from black hole interactions

• Obtaining the 3PM gravitational potential

Bern, Carrasco, Chen, Edison, Johansson, 

Roiban, Parra-Martinez & Zeng, 2018

Monteiro, O’Connell & 

White, 2016

Luna, Monteiro, Nicholson 

& O’Connell, 2018

Goldberger & Ridgway, 2017

Luna, Nicholson, O’Connell & White, 2018

Shen, 2018
Bern, Cheung, Roiban, Shen, Solon, Zen & 2018
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Gravity observables

Key gravitational wave observable, the phase, requires calculating:

On-shell successes demand on-shell observables

• The conservative potential V(x) 

• Radiative flux F(v)

• Impulse Δp

• Total radiated momentum R

The potential requires a coordinate (gauge) choice. Science in the News, Harvard
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Black holes → point particles?

Analytical gravitational wave calculations require perturbative 

expansions:

• Post-Newtonian (PN): expand in velocity – inspirals

• Post-Minkowskian (PM): expand in G – scattering

For corresponding QFT calculations must use in-state wavepackets:

Finite size effects do not appear until 5PN:

Can treat black holes as point particles, 

so perfect for amplitudes methods!

However PM corrections are increasingly 

important for LIGO templates…  

PN

PM

Current state of art is 4PN.

Damour, Jaranowski & 

Schäfer, 2016
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far future and far past momenta:
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The classical limit

ħ ≠ 1!!! Need to reinstate ħ via dimensional analysis. 

In amplitude just modifies coupling constants.

Point particle description 

requires “Goldilocks” zone

There are more ħ’s:

Wavenumber

For careful derivations see paper. Demonstrates that 

the ħ expansion is not always the loop expansion, as 

more sources of ħ in this observable!  

Donoghue & Holstein, 2004

Holstein & Ross, 2008

Bjerrum-Bohr et al, 2018

Stationary phase approximation 

intuitively suggests

Kosower, BM and O’Connell, 

arXiv:1811.10950
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Examples
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Tree level QED:

Impulse:

Obtain identical result by taking classical point-particle action and finding 

leading order solution to Lorentz force! At next iterative order amplitude is

Prescription to 

average over 

momenta, so

p → mu as 

wavepackets

sharply peaked
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Can apply same ideas to radiation. Assuming no radiation in initial states,

Diagrammatically like a cut: 

Classically:

Immediately applicable to gravity! 

1PM Schwarzschild amplitude known.

Luna, Nicholson, O’Connell & White, 2018
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