Coincident M5-branes and dual singular geometries

Callum Brodie

University of Oxford

December 19, 2018

Based on 1803.06190 with Andreas Braun, Andre Lukas, and Fabian Ruehle

It won't be crucial for the talk, but if you want context:

It won't be crucial for the talk, but if you want context:

I work with compactifying on Calabi-Yau manifolds, usually down to four dimensions. (And practically I work with supergravity.)

 \circ M5-branes are (5+1)D objects in M-theory (11D theory).

 \circ M5-branes are (5+1)D objects in M-theory (11D theory).

 \circ They can intersect and coincide.

intersection

coincidence

 \circ M5-branes are (5+1)D objects in M-theory (11D theory).

 \circ They can intersect and coincide.

• Next talk will describe theory living on coincident M5-branes.

• M5-branes are (5+1)D objects in M-theory (11D theory).

 \circ They can intersect and coincide.

• Next talk will describe theory living on coincident M5-branes.

 \circ I'll just say it's interesting and difficult to understand. This is the motivation for looking at coincident M5-branes.

• M5-branes can wrap subspaces.

• M5-branes can wrap subspaces.

• I'll talk about spacetime-filling M5-branes.

Part 1:

What approach will we take?

Mapping to another problem

 \circ How are we going to attack this problem?

• How are we going to attack this problem?

 \circ I won't solve the problem, I'll just map it to another one.

• How are we going to attack this problem?

 \circ I won't solve the problem, I'll just map it to another one.

 \circ In particular we'll use heterotic $E_8 \times E_8$ /F-theory duality.

 \circ How are we going to attack this problem?

 \circ I won't solve the problem, I'll just map it to another one.

 \circ In particular we'll use heterotic $E_8 \times E_8$ /F-theory duality.

 \circ We'll see that this will map the M5-branes to geometry.

 \circ Heterotic $\mathrm{E}_8 \times \mathrm{E}_8$ is a string theory - lives in 10D.

 \circ Heterotic $\mathrm{E}_8 \times \mathrm{E}_8$ is a string theory - lives in 10D.

 \circ Hořava-Witten: Heterotic $\mathrm{E}_8 \times \mathrm{E}_8$ as M-theory on interval.

 \circ Heterotic $\mathrm{E}_8 \times \mathrm{E}_8$ is a string theory - lives in 10D.

 \circ Hořava-Witten: Heterotic $E_8 \times E_8$ as M-theory on interval.

 \circ M5-branes sit at points in 11D interval, appear as NS5-branes in heterotic $E_8 \times E_8$.

 \circ Heterotic $\mathrm{E}_8 \times \mathrm{E}_8$ is a string theory - lives in 10D.

 \circ Hořava-Witten: Heterotic $E_8 \times E_8$ as M-theory on interval.

 \circ M5-branes sit at points in 11D interval, appear as NS5-branes in heterotic $E_8 \times E_8$.

 \circ This is how M5-branes will appear in our use of heterotic/F-theory duality.

What is F-theory?

What is F-theory?

• F-theory roughly a 12D theory.

What is F-theory?

 \circ F-theory roughly a 12D theory.

 \circ But always has non-physical T^2 , brings it down to 10D.

\circ F-theory roughly a 12D theory.

- \circ But always has non-physical T^2 , brings it down to 10D.
- \circ Can be seen as Type IIB with an extra T^2 component.

- \circ F-theory roughly a 12D theory.
- \circ But always has non-physical T^2 , brings it down to 10D.
- \circ Can be seen as Type IIB with an extra T^2 component.
- Or as M-theory on full space, with a direction decompactified.

Heterotic/F-theory duality

Heterotic/F-theory duality

 \circ Basic duality is: heterotic on T^2 and F-theory on K3 (to 8D).

Heterotic/F-theory duality

 \circ Basic duality is: heterotic on T^2 and F-theory on K3 (to 8D).

 \circ Can fibre the T^2 and K3 over a common base (we go to 4D).

Part 2:

How we map M5-branes

M5-brane wrapped on heterotic torus

• M5-branes can wrap the heterotic torus.

 \circ (Our interest is M5s in the base, but will cover this first.)

M5-brane wrapped on heterotic torus

M5-branes can wrap the heterotic torus.
(Our interest is M5s in the base, but will cover this first.)

M5-brane wrapped on heterotic torus

• M5-branes can wrap the heterotic torus.

 \circ (Our interest is M5s in the base, but will cover this first.)

• The dual is well understood: D3-brane.

 \circ Position of M5 in 11D interval \sim position of D3 in S^2 .

M5-brane wrapped in heterotic base

M5-branes can wrap curves in the heterotic base.
Allows more general curves to be wrapped than just T².

M5-brane wrapped in heterotic base

M5-branes can wrap curves in the heterotic base.
Allows more general curves to be wrapped than just T².

M5-brane wrapped in heterotic base

M5-branes can wrap curves in the heterotic base.
Allows more general curves to be wrapped than just T².
Dual is a pinch in the F-theory sphere.

 \circ Position of M5 in 11D interval \sim position of pinch.

Part 3:

Intersecting and coincident M5-branes

o To intersect/coincide, must be at same point in 11D interval.
o (They also must overlap in the remaining 10D.)

- To intersect/coincide, must be at same point in 11D interval.
 (They also must overlap in the remaining 10D.)
- \circ In F-theory the pinches in the sphere get brought together.

To intersect/coincide, must be at same point in 11D interval.
(They also must overlap in the remaining 10D.)

 \circ In F-theory the pinches in the sphere get brought together.

 \circ Position of M5 in 11D interval \sim position of pinch.

To intersect/coincide, must be at same point in 11D interval.
(They also must overlap in the remaining 10D.)

 \circ In F-theory the pinches in the sphere get brought together.

 \circ Position of M5 in 11D interval \sim position of pinch.

 \circ Overlapping pinches give singularities in the F-theory base.

 \circ Overlapping pinches give singularities in the F-theory base.

 \Rightarrow Type IIB on point/curve of singularities,

 \circ Overlapping pinches give singularities in the F-theory base.

 \Rightarrow Type IIB on point/curve of singularities, or M-theory on curve/surface of singularities.

Overlapping pinches give singularities in the F-theory base.

 \Rightarrow Type IIB on point/curve of singularities, or M-theory on curve/surface of singularities.

 So we've mapped the problem of intersecting/coincident M5-branes to IIB or M-theory on singularities.

Further aspects

 \circ Transitions of M5 configurations map to geometric transitions.

• Transitions of M5 configurations map to geometric transitions.

 \circ (Picture below squashes S^2 to an interval, and shows the complex curve in the base as a line in a plane.)

• Transitions of M5 configurations map to geometric transitions.

 \circ (Picture below squashes S^2 to an interval, and shows the complex curve in the base as a line in a plane.)

• Transitions of M5 configurations map to geometric transitions.

• (Picture below squashes S^2 to an interval, and shows the complex curve in the base as a line in a plane.)

• Transitions of M5 configurations map to geometric transitions.

• (Picture below squashes S^2 to an interval, and shows the complex curve in the base as a line in a plane.)

• Transitions of M5 configurations map to geometric transitions.

• (Picture below squashes S^2 to an interval, and shows the complex curve in the base as a line in a plane.)

Can study effective theory through geometric transitions.

• Toric geometry gives neat description of F-theory base.

• Toric geometry gives neat description of F-theory base.

 \circ Configurations in 11D interval \leftrightarrow triangulations of polytope.

Further aspect: toric descriptions

• Toric geometry gives neat description of F-theory base.

 \circ Configurations in 11D interval \leftrightarrow triangulations of polytope.

Thanks for your attention!