Flavour: Theory perspective

Sebastian Jäger (University of Sussex)

PPAP meeting on UK input to the European Strategy Update Birmingham, 21 September 2018

21/09/2018

From the 'bullet point document'

"1) Complimentary [sic] to energy frontier collider physics. Provides an indirect probe [of] higher mass scales. Should be pursued.

> a. May provide insights and guidance for decision on future energy and intensity frontier machines."

I agree but I would add:

- Might provide sufficient clues to determine part or all of the underlying theory. Historical precedent: the SM
- Has multiple evidence-level tensions with the SM ('anomalies')
- Poses particular requirements on theory (precision) and computing (lattice QCD simulations)

Disclaimer

In the following I will be selective, talking mostly about Bphysics.

This should not be misunderstood as a 'prioritization' – from a theory perspective, whether new physics is more pronounced in (for example) B-physics or K-physics is a **very model-dependent question.** Similarly for g-2, which is reasonably considered within flavour physics.

I will not talk about beam dumps or SHIP, this is simply for lack of time and competence. Other theorists will be more qualified.

Outline

- 1) Fundamental physics and the intensity frontier
- 2) Anomalies and interpretations
- 3) Energy scales
- 4) Corroboration and complementarity
- 5) Precision and Computing
- 6) Conclusions and opinions

Some 'big' questions

1) Is there a unified theory of: different forces / matter & forces / quarks & leptons / "everything" ?

2) What underlies the pattern of generations, masses, mixing angles (CKM, PMNS) ?

3) What is the origin of the huge hierarchy between the electroweak and gravitational physics ?

4) What is the origin of the matter-antimatter asymmetry in the universe?

Flavour physics may be relevant to all of them.

ν

History: Beyond QED

Fermi's original description of beta decay (1934) (in modernised notation):

$$H_W \sim G_F \left(\bar{p} \gamma^\mu n \right) \left(\bar{e} \gamma_\mu \nu \right)$$

In modern language: nonrenormalizable, dim-6 operator.

The current-current structure (resembling a QED $2\rightarrow 2$ scattering amplitude) is suggestive of a massive vector-boson mediator

The precision frontier: track record

various "indirect" discoveries and insights, including

spin 0

Higgs - sets mass scale of entire Standard Model

Renormalizable: may have cut-off >> M_W

But: naturalness? Dark matter? Point to TeV scale BSM

21/09/2018

Effective contact interactions

Heavy physics with mass scale M described by local effective Lagrangian at energies below M (many incarnations)

Effective Lagrangian dimension-5,6 terms describes **all** BSM physics to O(E²/M²) accuracy. **Systematic & simple**. E.g.

Q_{ll}	$(\bar{l}_p \gamma_\mu l_r) (\bar{l}_s \gamma^\mu l_t)$	Buchmuller, Wyler 1986 Grzadkowski, Misiak, Iskrzynski, Rosiek 2010
$Q_{qq}^{(1)}$	$(\bar{q}_p \gamma_\mu q_r) (\bar{q}_s \gamma^\mu q_t)$	operators (vertices) are catalogued for
$Q_{qq}^{(3)}$	$(\bar{q}_p \gamma_\mu \tau^I q_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	arbitrary (heavy) new physics
$Q_{lq}^{(1)}$	$(\bar{l}_p \gamma_\mu l_r) (\bar{q}_s \gamma^\mu q_t)$	Only trace of DCM physics is in their
$Q_{lq}^{(3)}$	$(\bar{l}_p \gamma_\mu \tau^I l_r) (\bar{q}_s \gamma^\mu \tau^I q_t)$	(Wilson) coefficients

Much slower decoupling with M than in high-pT physics.

Possibility to probe well beyond energy frontier.

Some flavour physics observables

Observables with suppressed and/or controlled SM contribution

- flavour-changing neutral currents, eg

 $\begin{array}{l} b \rightarrow s\mu^{+}\mu^{-} \text{ and } b \rightarrow s\gamma \\ & \underset{B \rightarrow K^{(*)}}{\overset{B \rightarrow K^{(*)}}{}} \mu^{+}\mu^{-}, \quad B \rightarrow K^{(*)}e^{+}e^{-}, \quad B_{s} \rightarrow \phi\mu^{+}\mu^{-} \\ & \underset{B \rightarrow X_{s}}{\overset{B \rightarrow X_{s}}{}} \mu^{+}\mu^{-}, \quad B \rightarrow X_{s} \gamma \\ & \underset{s \rightarrow dvv}{\overset{s \rightarrow dvv}{}} \end{array}$

```
Babar, Belle
LHCb, ATLAS, CMS
Belle2
Babar, Belle, Belle2
```

```
NA62 (CERN)
```

- lepton-flavour ratios, eg

 $K^+ \rightarrow \pi^+ \vee \nu$

 $BR(B \to K^{(*)} \mu^{+}\mu^{-})/BR(B \to K^{(*)}e^{+}e^{-}) - 1$ BR(B \to D^{(*)} TV)/BR(B \to D^{(*)}IV) - (SM)

- CP violation, eg

$$\begin{array}{ll} \mathsf{K}_{\mathsf{L}} & \rightarrow \pi \ \pi & (\epsilon_{\mathsf{K}}, \ \epsilon'_{\mathsf{K}}) \\ \mathsf{K}_{\mathsf{L}} & \rightarrow \pi^0 \ \mathsf{v} \ \mathsf{v} \end{array}$$

Belle2

Babar, Belle, LHCb

```
..., NA48, KTeV
KOTO
```

Summary of flavour anomalies

observable	Anomaly	Significance (sigma)
BR(B ->{K,K*,phi} mu mu) at low dilepton mass q2	Lowish w.r.t expectation	1-2 ?
B->K*mu mu angular distribution (low q2)	P5' off for some q2	2-3 ?
RD(*) = BR(B->D(*)tau nu)/BR(B->D(*)l nu)	Enhanced w.r.t. SM	4.1
Lepton-universality ratios (RK, RK*)	Below SM	3.7 (3 observables combined)
ε'/ε (direct CPV in KL->ππ)	Below SM	2.9

LHCb: rapidly increasing dataset

 $R_{K(*)}$, $R_{D(*)}$: theoretical errors negligible. Large statistical significance. Systematic effects or BSM signal?

Rare semileptonic B-decay

many results from Babar, Belle, LHCb, ATLAS, CMS Sensitive to several contact interactions: in SM mainly C_{q} : dilepton from vector current $(\bar{s}\gamma_{\mu}P_{L}b)(\bar{l}\gamma^{\mu}l)$ C_{10} : dilepton from axial current $(\bar{s}\gamma_{\mu}P_{L}b)(\bar{l}\gamma^{\mu}\gamma^{5}l)$ C_7 : dilepton from dipole

 $(\bar{s}\sigma^{\mu\nu}P_Rb)F_{\mu\nu}$

Alternative basis with chiral leptons $C_{I} = (C_{q}-C_{10})/2, \quad C_{R} = (C_{q} + C_{10})/2,$

SM: C_R ~ 0

Lepton-flavour ratios at LHCb

$$R_{K^{(*)}}[a,b] = \frac{\int_{a}^{b} \frac{d\Gamma}{dq^{2}} (B \to K^{(*)} \mu^{+} \mu^{-}) dq^{2}}{\int_{a}^{b} \frac{d\Gamma}{dq^{2}} (B \to K^{(*)} e^{+} e^{-}) dq^{2}}$$

Theory uncertainties negligible relative to experiment.

 $p(SM) = 2.1 \times 10^{-4} (3.7\sigma)$

Suggests nonzero, muon-specific C_{10}^{BSM} - not pure C_9

21/09/2018

Fit to new physics: LUV only

Assume here that the BSM effect is in the muonic mode

Geng, Grinstein, SJ, Martin Camalich, Ren, Shi arxiv:1704.05446 Also Capdevila et al, Ciuchini et al, Altmannshofer et al, D'Amico et al, Hiller & Nisandzic

Obs.	Expt.	SM	$\delta C_L^\mu = -0.5$	$\delta C_9^\mu = -1$	$\delta C_{10}^{\mu} = 1$	$\delta C_9^{\prime \mu} = -1$
$R_K [1, 6] \mathrm{GeV}^2$	0.745 ± 0.090	$1.0004\substack{+0.0008\\-0.0007}$	$0.773_{-0.003}^{+0.003}$	$0.797\substack{+0.002 \\ -0.002}$	$0.778^{+0.007}_{-0.007}$	$0.796^{+0.002}_{-0.002}$
R_{K^*} [0.045, 1.1] GeV ²	0.66 ± 0.12	$0.920^{+0.007}_{-0.006}$	$0.88^{+0.01}_{-0.02}$	$0.91^{+0.01}_{-0.02}$	$0.862^{+0.016}_{-0.011}$	$0.98\substack{+0.03 \\ -0.03}$
R_{K^*} [1.1, 6] GeV ²	0.685 ± 0.120	$0.996\substack{+0.002\\-0.002}$	$0.78\substack{+0.02\\-0.01}$	$0.87^{+0.04}_{-0.03}$	$0.73\substack{+0.03 \\ -0.04}$	$1.20\substack{+0.02\\-0.03}$
R_{K^*} [15, 19] GeV ²	—	$0.998\substack{+0.001\\-0.001}$	$0.776_{-0.002}^{+0.002}$	$0.793^{+0.001}_{-0.001}$	$0.787^{+0.004}_{-0.004}$	$1.204_{-0.008}^{+0.007}$

Theory uncertainties negligible.

 1σ and 3σ confidence regions

 $C_{10}^{BSM} > 0$ favoured

 $p(C_9 \& C_{10}) = 0.158$

SM point excluded at 3.78 σ

Considerable degeneracy (flat direction in χ^2)

21/09/2018

$R_{K}^{(\star)}$ and C_{L}

Assume here that the BSM effect is in the muonic mode, and no right-handed currents.

Because in the SM, $|C_R|$, $|C_7| \le |C_L|$, when R_K and R_{K^*} are jointly considered,

 $BR(B \rightarrow K(*)\mu\mu) = SM$ value

only C_L^{BSM} can interfere destructively to reduce both: $R_{K(*)}$ point to

purely left-handed coupling

 $\left(ar{s}_L\gamma^\mu b_L
ight)\left(ar{\mu}_L\gamma_\mu\mu_L
ight)$

with ~ -(10-15)% of SM value

The role of $B_s \rightarrow \mu \mu$

Geng, Grinstein, SJ, Martin Camalich, Ren, Shi arxiv:1704.05446

Selective probe of C_{10} (and C_{10} ')

Theory error negligible relative to exp (will hold till the end of HL-LHC !)

Considerably narrows the allowed fit region

p= 0.191

SM point excl. at 3.76 σ

Potential to break degeneracy

Statistics limited: domain of LHCb, CMS, ATLAS. Belle 2 won't be able to compete.

21/09/2018

$B \rightarrow K^* \mu \mu$,ee global fit

Including angular distributions

Geng, Grinstein, SJ, Martin Camalich, Ren, Shi arxiv:1704.05446 Also Capdevila et al; Altmannshofer & Straub; ...

SM pull 4.17 σ p = 0.572 [63 dof]

(but p(SM) now up to to 0.086)

Angular observables (P5' etc): good model discrimination.

Much more challenging theoretically (SM predictions)

21/09/2018

Semileptonic decays: $R_{D(*)}$

For some time B-factories and LHCb have consistently shown semileptonic B ->D (D*) TV decay rates larger than expected (relative to the rate for light leptons).

A large effect; theory error negligible

What operators?

Several possible contact interactions $(\bar{c}\Gamma b)(\bar{\nu}_{\tau}\Gamma'\tau)$

with different spin (Dirac) structure.

Several further clues:

- measured shape of differential decay distribution

Eg Ligeti et al 2015,16

- avoiding excessive contributions to $\rm B_{c}$ decay $_{\rm Grinstein \ et \ al \ 2016, \ldots}$
- interference with SM amplitude to enhance effect

favour a purely left-handed coupling $(\bar{c}_L \gamma^\mu b_L) (\bar{\nu}_\tau \gamma_\mu \tau_L)$ with coefficient ~ 10% of SM value

Tree-level mediators: leptoquarks

Scalar or vector leptoquarks can generate interactions

(more possibilities at loop level Eg Bauer, Neubert; Becirevic et al)

21/09/2018

Possible mediators: W', Z'

Isidori et al, Quiros et al, Ligeti et al, Becirevic et al, Crivellin et al,

$$\frac{1}{\Lambda^2} \left(\bar{c}_L \gamma^\mu b_L \right) \left(\bar{\nu}_\tau \gamma_\mu \tau_L \right)^{\cdots}$$

$$\frac{1}{\Lambda^2} \left(\bar{s}_L \gamma^\mu b_L \right) \left(\bar{\mu}_L \gamma_\mu \mu_L \right)$$

(0,3,0) or (0,1,0)

- appear as resonances in composite models (KK excitations in RS)

- Z' exchange contributes to B_s mixing at tree-level (unlike leptoquarks)

A Z' model for $R_{K(*)}$

Accommodating *all* b->s I I anomalies *requires* a muon-specific C_L – type interaction

$$\frac{1}{\Lambda^2} \left(\bar{s}_L \gamma^\mu b_L \right) \left(\bar{\mu}_L \gamma_\mu \mu_L \right)$$

with $\Lambda \sim 30 \text{ TeV}$

However, C_R is weakly constrained and can also be present.

Anomaly-free Z' model with gauged L_{μ} - L_{τ} , nonminimal (dim-6) coupling to quarks, can eg come from heavy vectorlike quarks:

The small coupling to quarks suppresses contributions to B_s mixing

Also Crivellin et al, ...

Altmannshofer et al

SU(2) structure & global picture

Two SU(2) invariants (O_T / O_S) for each operator once doublet structure of fermions considered

Both operators contribute to further processes that are experimentally constraints, in particular:

$$B \rightarrow K^* vv$$

In a given model there may be further correlations (eg to mixing)

21/09/2018

Global fit & single mediators

Two SU(2) invariants (O_T / O_S) for each operator once doublet structure of fermions considered

Multi-mediator and (for $R_{K(*)}$) loop-level scenarios possible!

Composite leptoquark?

Basic idea of composite Higgs models (major BSM paradigm!)

 Higgs = bound state of a new strong sector (with TeV-ish confinement/conformal symmetry breaking scale) at least SU(3)_C x SU(2)_L x SU(2)_R x U(1)_X symmetry [partly gauged]

2) SM fermions are mixtures of elementary and composite particles can generate flavour hierarchies leading BSM effects:

Composite leptoquark?

The SM representation (3, 1, 2/3) appears in the restriction of the Pati-Salam (SU(4) x SU(2) x SU(2)) adjoint to the SM gauge group.

Increasing SU(3)xSU(2)xSU(2)xU(1) to SU(4)xSU(2)xSU(2)xU(1), get spin-1 vector leptoquark states with precisely these quantum numbers.

Some recent models:

3-site SU(4) x SU(2) x SU(2) gauge model

Bordone, Cornella, Fuentes-Martin, Isidori arXiv:1712.01368, arXiv:1805.09328

[SU(4) x SO(5) x U(1)] / [SU(4) x SO(4) x U(1)] Nambu-Goldstone Higgs

1.

model Barbieri, Tesi arXiv:1712.06844

SU(4) x SU(2) x SU(2) Randall-Sundrum (warped ED) model (elementary Higgs, but partially composite matter)

Blanke, Crivellin arXiv:1801.07256

21/09/2018

Scale of new physics & no-lose theorem

Di Luzio, Nardecchia 2017

Recall that B-decay anomalies point to (at least) the interactions

 $\frac{1}{\Lambda^2} \left(\bar{c}_L \gamma^\mu b_L \right) \left(\bar{\nu}_\tau \gamma_\mu \tau_L \right) \qquad \qquad \frac{1}{\Lambda^2} \left(\bar{s}_L \gamma^\mu b_L \right) \left(\bar{\mu}_L \gamma_\mu \mu_L \right)$

numerically $\Lambda \sim 3$ TeV and $\Lambda \sim 30$ TeV.

Recall in the case of the Fermi theory, $G_F \sim g^2/M_W^2$

Redoing the calculation here, $M_{NP} = g_{NP} \Lambda \le 4\pi \Lambda$. For the rare decay anomalies, at most 300-400 TeV.

Partial-wave unitarity: maximal NP scale below 100 TeV.

If the NP is less than maximally flavour-violating, or the NP is weakly coupled, the scale will be 1-2 orders of magnitudes lower.

While the bounds are (so far) high, the fact that there are any at all should be encouraging, further refinements may be possible.

Prospects for LHC direct searches

Mediator of $R_{D(*)}$ may be in LHC reach, very likely in HE-LHC reach. The partially composite models predict TeVscale leptoquark, colour octet, and Z' particles, predominantly coupled to 3rd generation particles

Some relevant search modes:

tau pair production (t-channel VLQ, s-channel Z') leptoquark pair production

dijet (colour-octet-mediated)

Also composite fermions & scalars: more model-dependent

For tree-level $R_{K(*)}$ origin, mediator typically out of LHC reach (naïve scale ~ 30 TeV), though model-dependent

Future collider direct searches

Recall partial-wave unitarity bounds (conservative) of ~100 from $R_{K(*)}$ / 10 TeV from RD(*)

- Consider simplified Z' and LQ models of RK(*)

Allanach, Gripaios, You arXiv:1710.06363

FCC-hh 100 TeV 1 ab⁻¹ covers all of viable Z' parameter space, 33 TeV LHC "most",

Leptoquark coverage slightly less perfect

Corroboration and complementarity

Given the potential significance of the anomalies, both in their own right and for guiding future efforts, how can they be corroborated ?

 R_{K^*} : theory beyond doubt - this is either real, a large statistical fluctuation, or an underestimated LHCb systematic. Belle2 should be able to verify this.

R_{D*}: theory no issue. World average includes measurements from several experiments, but measurements tend to be systematics limited. Again, Belle2 will have sensitivity

P₅': theory is at its present limit, LHCb statistics will dominate over Belle2. Progress will eventually come from lattice QCD; possibly data-driven approaches

Belle 2

Belle 2: B-factory lepton collider, very different systematics

Statistics disadvantage relative to LHC, but better identification of electrons in final states

Rare decays: theory issues

 C_9 enters multiplied by a form factor, and with additive corrections:

C_i degenerate with form factor uncertainties and virtual charm SJ, Martin Camalich 2012, 2014 Cancel out in lepton-flavour ratios $R_{K(*)}$, $R_{D(*)}$ (to <~ 1%): no issue Relevant for rates and angular observables (P_5)

controlled computation (so far) only for B->K form factors (lattice) recent conceptual advances in lattice QCD (B -> V form factors) heavy-quark relations and and light-cone sum rules Ball&Braun; Ball& Zwicky; Bharucha et al 2015 Sebastian Jaeger - UK/Euro Strategy Update, 32 Birmingham 21/09/2018

Determining form factors from data?

Bobeth, Chrzaszcz, Van Dyk, Virto 2017

Basic idea: reduce theory dependence of long-distance virtual charm by using experimental data & analyticity

- use/assume analyticity of the virtual-charm dilepton mass dependence
- Use theory input only at q2 <~ 0
- Data to fix/constrain the residues at the pole
- Conformal mapping to increase separation of the input data from the cut; polynomial fit

Results disfavour attributing effects to virtual-charm

No (?) new information on form factors (but see LHCb's fit to $B \rightarrow K \mu \mu$)

Recent feasibility claim for a joint determination of virtual charm and C₉ from unbinned HL-LHC data on $B \rightarrow K^* \mu \mu$ Chrzaszcz et al 2018

Precision and computing

<u>Theory</u> uncertainty is often a limiting factor. [$R_{K(*)}$ and $R_{D(*)}$ exceptions]. E.g:

rare B decays

require heavy-light form factors B->K, B->K pi

- + amenable to lattice QCD calculations;
 currently only for low Kaon energies;
 more complicated for K pi ("K*") final state

B meson lifetimes and mixings:

require hadronic matrix elements of increasing dimension - currently mix of lattice QCD and QCD sum rule computations

CP violation in K->pi pi (similar for rare K decays)

Numerous hadronic matrix elements required; pioneered by RBC&UKQCD perturbative QCD computations (Wilson coefficients, ADMs)

Direct CP violation in Kaons: another anomaly?

Precisely known experimentally for a decade

$$\begin{split} & (\varepsilon'/\varepsilon)_{\exp} = (16.6 \pm 2.3) \times 10^{-4} & \text{average of NA48} \\ & (\text{CERN}) \\ & \text{and KTeV} \\ & \left| \frac{\eta_{00}}{\eta_{+-}} \right|^2 \simeq 1 - 6 \operatorname{Re}(\frac{\varepsilon'}{\varepsilon}) & \text{defines } \operatorname{Re}(\varepsilon'/\varepsilon) \text{ experimentally} \\ & \text{left-hand side is measured} \\ & \eta_{00} = \frac{A(K_{\mathrm{L}} \to \pi^0 \pi^0)}{A(K_{\mathrm{S}} \to \pi^0 \pi^0)}, & \eta_{+-} = \frac{A(K_{\mathrm{L}} \to \pi^+ \pi^-)}{A(K_{\mathrm{S}} \to \pi^+ \pi^-)} \end{split}$$

(magnitudes directly measurable from decay rates)

Major progress in lattice QCD computations of nonperturbative matrix elements allows controlled errors for the first time

Good near-term prospects

21/09/2018

State of phenomenology (NLO)

 $(\varepsilon'/\varepsilon)_{\rm SM} = (1.9 \pm 4.5) \times 10^{-4}$

Buras, Gorbahn, SJ, Jamin arXiv:1507.06345

 $(\varepsilon'/\varepsilon)_{exp} = (16.6 \pm 2.3) \times 10^{-4}$ 2.9 σ discrepancy

(see also Kitahara, Nierste, Tremper 1607.06727)

	quantity	error on ε'/ε	quantity	error on ε'/ε
	$B_6^{(1/2)}$	4.1	$m_d(m_c)$	0.2
parameterise hadronic	NNLO	1.6	q	0.2
matrix elements	$\hat{\Omega}_{\mathrm{eff}}$	0.7	$B_8^{(1/2)}$	0.1
values from RBC-UKQCD	p_3	0.6	$\mathrm{Im}\lambda_t$	0.1
2015	$B_8^{(3/2)}$	0.5	p ₇₂	0.1
	p_5	0.4	p_{70}	0.1
	$m_s(m_c)$	0.3	$\alpha_s(M_Z)$	0.1
	$m_t(m_t)$	0.3		

all in units of 10^-4

(still) completely dominated by $\langle Q_6 \rangle_0 \propto B_6^{1/2}$

next are NNLO and isospin breaking

NNLO computation (partial)

Cerda-Sevilla, Gorbahn, SJ, Kokulu, wip

NNLO QCD-penguin corrections tiny; excellent behaviour of perturbation theory; cuts residual perturbative error in half – this is not the reason for the apparent tension!

Computing & lattice

Bulk of computing requirements relate to lattice QCD

- crucial for controlled theory predictions

- requirements set by precision (and complexity)

Large UK activity and leadership (UKQCD, HPQCD)

Important goals for flavour phenomenology include:

- heavy-light form factors for semileptonic B decay (including rare); small q² requires fine lattices and high statistics

- long-distance effects in rare K decays (such as for K⁺ ->pi nu nubar measured at NA62)
- vacuum polarisation, light-by-light in g-2

Some further flavour frontiers

current:

K->pi nu nu (NA62, KOTO) (probe naïve BSM scales of several 100 TeV !)

with anticipated lattice QCD progress:

Delta M_K as a precision constraint (sensitive to CP-conserving new physics)

Conclusions and opinions

Belle2 crucial in corroborating and complementing B-physics anomalies. **Maximize involvement**, there's a real chance to miss out on major discoveries, particularly for the UK.

B-physics anomalies help pinpointing the NP scale.

Confirmation of $R_{D(*)}$ would provide strong evidence for new physics within direct reach of HE-LHC. Otherwise, a new hadron machine should probably maximize the energy reach – $R_{K(*)}$ energy scale may be order 100 TeV but no higher

More generally, ensure a **diverse** flavour physics programme. **Kaons** (NA62 etc) probe the highest scales of all (quark) flavour transitions. Note that B-anomalies are **not** in the a priori expected places (like B-Bbar mixing). Lepton flavour, beam dump, SHIP etc [from a theory perspective these tend to probe different physics]

Conclusions and opinions

Accuracy of SM predictions is limiting factor in many case – e.g. P₅', epsilon'. Appropriate **computing resources for lattice QCD calculations**

Human resources: Flavour (and theory more generally) needs suitable funding, eg a project grant scheme (funding eg postdocs). Currently badly under-resourced in several European countries, particularly so in the UK

BACKUP

Impact of 4-quark operators

Also **purely hadronic** operators are important, primarily:

SM contribution is accidentally almost purely left-chiral

21/09/2018

B has spin zero => $\lambda = \lambda'$

Observing Φ requires interference A(Ar) A(Ar) $A(\lambda_2)^{\text{*pdatexp}(i (\lambda_1 - \lambda_2)\Phi)}$ Birmingham 21/09/2018

Rare B-decay: observables

Branching ratios (differential in dilepton mass):

Lepton universality ratios

$$R_{K^{(*)}}[a,b] = \frac{\int_{a}^{b} \frac{d\Gamma}{dq^{2}} (B \to K^{(*)} \mu^{+} \mu^{-}) dq^{2}}{\int_{a}^{b} \frac{d\Gamma}{dq^{2}} (B \to K^{(*)} e^{+} e^{-}) dq^{2}}$$

differential angular distribution for B->VII : 3 angles, dilepton mass q²

21/09/2018

Low branching ratios

Schematically for $B \rightarrow K \mu \mu$ (neglecting small imaginary parts)

$$H_{V} = C_{7}T + C_{9}V + h \qquad H_{A} = C_{10}V$$

$$BR \propto (|H_{V}|^{2} + |H_{A}|^{2}) = \frac{1}{2}(C_{7}T + h_{0} + 2C_{R}V)^{2} + \frac{1}{2}(C_{7}T + h_{0} + 2C_{L}V)^{2}$$
Global fit to b->s I I data
$$C_{7}, h_{0}, \text{ and } C_{R} \text{ are small in the SM}$$
BR essentially is determined by the product
$$C_{L} \cdot V \text{ of a Wilson coefficient and a form factor (V cancelled out for R_{K})}$$
suggests 10-15% reduction of C_L
But perfectly degenerate with form factor V !
However, consistent global picture.

Sebastian Jaeger - UK/Euro Strategy Update, Birmingham 21/09/2018 $\operatorname{Re} C_{0}^{\operatorname{NP}}$

Angular observables

Numerous independent observables. Each a distribution in dilepton mass.

$$I_{2}^{c} = -F \frac{\beta^{2}}{2} \left(|H_{V}^{0}|^{2} + |H_{A}^{0}|^{2} \right), \qquad \text{``longitudinal'' rate} \\ (\text{sim. to scalar BR}) \\ I_{2}^{s} = F \frac{\beta^{2}}{8} \left(|H_{V}^{+}|^{2} + |H_{V}^{-}|^{2} \right) + (V \to A) \qquad \text{``transverse'' rate} \qquad \textbf{Usually reported} \\ \text{as BR and FL} \\ I_{6}^{s} = F \beta \operatorname{Re} \left[H_{V}^{-} (H_{A}^{-})^{*} - H_{V}^{+} (H_{A}^{+})^{*} \right] \qquad \operatorname{Lepton forward-backward} \qquad \textbf{Usually reported} \\ \text{as AFB or P2} \\ I_{4} = F \frac{\beta^{2}}{4} \operatorname{Re} \left[(H_{V}^{-} + H_{V}^{+}) (H_{V}^{0})^{*} \right] + (V \to A). \\ I_{5} = F \left\{ \frac{\beta}{2} \operatorname{Re} \left[(H_{V}^{-} - H_{V}^{+}) (H_{A}^{0})^{*} \right] + (V \leftrightarrow A) \\ I_{5} = F \left\{ \frac{\beta}{2} \operatorname{Re} \left[(H_{V}^{-} - H_{V}^{+}) (H_{A}^{0})^{*} \right] + (V \leftrightarrow A) \\ I_{9} = F \frac{\beta^{2}}{2} \operatorname{Im} \left[H_{V}^{+} (H_{V}^{-})^{*} \right] + (V \to A) \\ I_{9} = F \frac{\beta^{2}}{2} \operatorname{Im} \left[H_{V}^{+} (H_{V}^{-})^{*} \right] + (V \to A) \\ \end{array} \right\} \qquad \operatorname{Require presence of ``wrong-helicity'' amplitudes} \\ (\operatorname{suppressed in SM}) \qquad \operatorname{Probe right-handed currents}$$

21/09/2018

The (in)famous P5'

Simone Bifani, seminar at CERN (overlaid predictions from SJ&Martin Camalich 2014)

Modest discrepancy around 4-6 GeV, suggesting reduced C₉

SM theory is subtle – form factors, long-distance virtual-charm somewhat uncertain

21/09/2018

Must C₉ violate lepton flavour?

Geng, Grinstein, SJ, Martin Camalich, Ren, Shi arxiv:1704.05446

Modified C_{10} needed to suppress R_{K}^{*} (both bins)

Modest preference for modified C_9 (over C_{10}) is due to angular observables in $B \rightarrow K^* \mu\mu$

A model with (for example) nonzero C_L^{μ} and in addition an ordinary, **lepton-flavouruniversal**, C_9 , could describe the data similarly well or better

Eg. 'charming BSM' scenario

SJ, Kirk, Lenz, Leslie arXiv:1701.09183

note that h and y are q2-dependent

At one loop, radiative decay constrains C5..C10, but not C1..C4. Focus on the latter. Then consider lifetime (mixing) observables

