

Physics Beyond Colliders at CERN

Gaia Lanfranchi - INFN

PPAP - European Strategy UK discussion - Birmingham, September 2021

Physics Beyond Colliders activity and the ESPP

http://pbc.web.cern.ch/

Main coordinators: Claude Vallee, Mike Lamont, Joerg Jackel

Organization **PBC**@work Resources

Physics Beyond Colliders is an exploratory study aimed at exploiting the full scientific potential of CERN's accelerator complex and its scientific infrastructure through projects complementary to the LHC, HL-LHC and other possible future colliders. These projects would target fundamental physics questions that are similar in spirit to those addressed by high-energy colliders, but that require different types of beams and experiments. The mandate of the study team may be found <u>here</u>.

PBC will submit a series of documents to be used as input to the ESPP update

PBC mandate recently extended until the end of the ESPP, May 2020

Physics Beyond Colliders Structure

Evaluation of new proposals; Optimization/upgrade of existing beam lines; Technology support to proposals sited elsewhere; Comprehensive Design Studies for mature projects

Physics Beyond Colliders Structure

- Maximize performance of existing complex
- Harness existing expertise and resources

Goals

- New facilities exploiting existing complex
- Novel exploitation of existing facilities

Physics Beyond Colliders: what CERN has got to offer?

- Existing accelerator complex and associated infrastructure
 - Wide range of beams, intensities, energies
- Technical expertise
 - Vacuum, magnets, power converters, RF, instrumentation, beam transfer, targets, cryogenics, accelerator physics, engineering...
- Experience
- Support
 - workshops, test facilities, engineering...
- Resources, size, and flexibility

Overall executive summaries plus:

Physics:		
Beyond Standard Model WG	Physics cases and proposals	← To
QCD WG	Physics cases and proposals	← Ne
Accelerators and Tecnology:		
Protons post LIU	Evaluation and proposals	
Technology	Evaluation and proposals	
BDF	Comprehensive design study	
Conventional beams	Case dependent feasibility studies	
LHC FT	Preliminary conceptual designs	
EDM	Feasibility study	
Gamma factory	Exploratory study	
AWAKE++	Exploratory study	
nuSTORM	Exploratory study	

— Today's talk — Next slide

matrix of physics topics and proposals

	ALICE	LHCb SMOG2	LHC Spin	AFTER	COMPASS	MUonE	DIRAC++	NA60++	NA61++	crystals	
unpolarised proton	x	X		X			Extend	ed pr	esenta	tion	-
structure of nuclei	x	x		x			at the PBC meeting in June by G. Schnell,				
polarised proton	x		x	x	x		https:/	/indi	co.cer	n.ch/	event/706741/overview
meson structure (π,K)					x						
heavy ion physics	x	x		x				x	x		
elastic µe or µp scattering					x	x					
spectroscopy, magn. moments					x					x	
chiral dynamics					x		x				
measurements for cosmic rays		X			x				x		
measurements for neutrino ph.									x		

PBC General Meeting, June 2018

The PBC(-BSM WG) mandate

Physics Beyond Colliders is an exploratory study aimed at exploiting the full scientific potential of CERN's accelerator complex and its scientific infrastructure through projects complementary to the LHC, HL-LHC and other possible future colliders. These projects would target fundamental physics questions that are similar in spirit to those addressed by high-energy colliders, but that require different types of beams and experiments..

Proposal	Representative
JURA	Axel Lindner
Codex-b	Michele Papucci
EDM ring	Yannis Semertzidis
FASER	Jonathan Feng
ΙΑΧΟ	Igor Irastorza
KLEVER	Cristina Lazzeroni
LDMX/eSPS	Philip Schuster
LHC-FT	Fernando Martinez-Vidal
LLP @ LHC	James Beacham
MATHUSLA	David Curtin
MilliQan	Albert de Roeck
NA62++	Tommaso Spadaro
NA64++	Sergei Gninenko
REDTOP	Isabel Pedraza
SHiP	Kostas Petridis
tauFV	Guy Wilkinson

A lively community has born at CERN, with about 15 different initiatives which could exploit the CERN accelerator complex and scientific infrastructure with a new, broad and compelling physics programme

BSM WG Permanent Coordinators:

Clare Burrage (Nottingham U., UK) Klaus Jungmann (Groningen U., The Netherland) Klaus Kirch, PSI, Switzerland Gaia Lanfranchi (INFN-LNF, Italy) Maxim Pospelov (Victoria University, Canada) Alexander Rozanov (CNRS, France) Giuseppe Ruoso (INFN-Legnaro, Italy)

New Physics at the TeV scale?

"While the absence of NP appears as a paradox to us, still the picture repeatedly suggested by the data in the last 20 years is simple and clear: **the SM, extended to include some form of Dark Matter and Majorana's neutrinos,** which can explain the active neutrino masses and oscillations via the see-saw mechanism and the **baryogenesis through leptogenesis, can be valid up to some very high energy, possibly up to the Planck scale**."

Guido Altarelli,

Proceedings of Vulcano Workshop 2014: Frontier Objects in Astrophysics and Particle Physics

Experimental facts

Fundamental Physics Questions

1. Neutrino masses and oscillations

possible explanation: see-saw mechanism with RH neutrinos with Yukawa couplings to the Higgs and SM leptons. RH neutrinos can have masses from 10⁻⁹ to 10¹⁵ GeV.

2. Matter-antimatter asymmetry:

Requires a process in the very early universe which violates B-number conservation as well as C and CP symmetries and occurs out of equilibrium. In SM no enough CP violation or out-of equilibrium mechanism to explain it. Necessary new sources of CPV (eg: new phases in RH neutrinos).

- 3. Dark Matter:

SM Particles alone cannot account for the observed matter in the Universe. DM candidates with mass from 10⁻³¹ GeV (ultralight scalars) to 10²⁰ GeV (black holes) are viable. The range for DM with thermal origin is more restricted (10 keV – 100 TeV).

Strong CP problem;

θ(QCD)~ 10⁻¹⁰. Possible explanation: pseudo-Nambu Goldstone bosons associated to the Peccei-Quinn symmetry, the axion. Oscillating axion can be a DM candidate.
 EDMs and New sources of CPV:

EDMs are excellent probes of sources of CPV beyond the SM

Higgs mass stability against radiative corrections (fine tuning):

if there is an intermediate scale between EW and Planck scales then NP at the TeV scale is required. Search for NP in extremely rare processes.

□ So far the experimental efforts in the accelerators' domain have been concentrated on the discovery of New Particles with masses at the TeV scale (or above) and sizeable couplings to SM particles.

□ We did not observe so far unambiguous deviations from SM predictions, hence:
 → either NP is very heavy and/or it mimics the SM in its flavor-breaking pattern or
 → it is below the Fermi scale and couples very feebly to SM particles and so far escaped detection. This is the target of most of the projects of the PBC-BSM.

A change of paradigm in accelerator physics.

1) RH neutrinos as explanation of the neutrino masses and oscillations

See-saw mechanism with RH neutrinos with Yukawa couplings to the Higgs and SM leptons. RH neutrinos can have masses from 10⁻⁹ to 10¹⁵ GeV.

1) RH neutrinos as explanation of the neutrino masses and oscillations

CERN

See-saw mechanism with RH neutrinos with Yukawa couplings to the Higgs and SM leptons. RH neutrinos can have masses from 10⁻⁹ to 10¹⁵ GeV.

DM candidates with thermal origin can have mass between 10 keV and 100 TeV.

DM candidates with thermal origin can have mass between 10 keV and 100 TeV.

PBC-BSM: physics targets

Light thermal DM and corresponding light mediators, RH neutrinos at the GeV scale, Axions and axion-like particles, EDM in proton/deuteron and in long-lived charmed hadrons; Ultra-TeV New Physics in extremely rare processes.

Light mediators must be SM singlets, hence options limited by SM gauge invariance:

PortalCouplingDark Photon, A_{μ} $-\frac{\epsilon}{2\cos\theta_W}F'_{\mu\nu}B^{\mu\nu}$ Dark Higgs, S $(\mu S + \lambda S^2)H^{\dagger}H$ Axion, a $\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}, \frac{a}{f_a}G_{i,\mu\nu}\tilde{G}_i^{\mu\nu}, \frac{\delta_{\mu}a}{f_a}\overline{\psi}\gamma^{\mu}\gamma^5\psi$ Sterile Neutrino, N y_NLHN

This is the set of the simplest fields and renormalizable interactions that can be added to the SM to answer the three fundamental questions.

Increasing particle mass scale

Increasing particle mass scale

The projects considered in the BSM WG have been classified in the terms of sensitivity to benchmark cases in a given mass range. Since the TeV scale is very well explored at the LHC, we focus on:

sub-eV range: search for axions, Axion-like particles with:

- gluon coupling: protons and deuteron EDMs or in charmed baryons MDMs/EDMs
- photon coupling with axion helioscopes or laboratory experiments (LSW).

MeV-GeV range: search for RH neutrinos below the EW scale, Axion-Like Particles, Light Dark Matter and corresponding light mediators (Dark Photons, Dark Scalars, etc) at extracted beams or at the LHC interaction points.

>>TeV range:

Search for NP in clean and very rare or forbidden flavor processes or in EDMs as probe of > 100 TeV NP scales, if originated by new sources of CPV.

The CERN Accelerator Complex and Sites

The PBC Focus in on "beyond colliders" activities, but the community is larger and includes also projects that exploit the LHC interaction points.

Projects considered in the BSM WG

Proposal	physics case	beam line	beam type	beam yield
sub-eV range:				
IAXO	axions/ALPs (photon coupling)	-	axions from sun	-
ALPS-III	axions/ALPs (photon coupling)	laboratory	LSW	-
CPEDM	p, d EDM,	EDM ring	p, d	-
	axions/ALPs (gluon coupling)		p, d	-
LHC-FT	charmed hadrons MDMs, EDMs	LHCb IP	$7 { m TeV} p$	-
MeV-GeV range:				
SHiP	ALPs, Dark Photons,	BDF	400 GeV p	$2 \cdot 10^{20} / 5$ years
	Dark Scalars, LDM, HNLs			
NA62 ⁺⁺	ALPs (photon, fermion coupling)	K12	400 GeV p	up to $3 \cdot 10^{18}$ /year
	Dark Photons, Dark Scalars, HNLs			
NA64 ⁺⁺	ALPs (which couplings?)	H4	$100 \text{ GeV } e^-$	$5 \cdot 10^{12} \text{ eot/year}$
	Dark Photons, Dark Scalars, LDM			
	$+ L_{\mu} - L_{\tau}$	M2	160 GeV μ	$10^{12} - 10^{13} \text{ mot/year}$
	+ CP, CPT, leptophobic DM	H2-H8, T9	$\sim 40 \text{ GeV } \pi, K, p$	$5 \cdot 10^{12}$ /year
LDMX	Dark Photon, LDM, ALPs,	eSPS	8 (SLAC) -16 (eSPS) GeV e^-	$10^{16} - 10^{18} \text{ eot/year}$
RedTop	Dark Photon, Dark scalar	CERN PS	1.8 or 3.5 GeV	10^{17} pot
MATHUSLA	Dark Scalar, Dark Photon, HNLs,	ATLAS or CMS IP	14 TeV p	3000 fb^{-1}
FASER	Dark Photon, Dark Scalar, ALPs	ATLAS IP	14 TeV p	3000 fb^{-1}
MilliQan	milli charge	CMS IP	14 TeV p	$300-3000 \text{ fb}^{-1}$
Codex-b	Dark Scalar, Dark Photons,	LHCb IP	14 TeV p	300 fb^{-1}
> TeV range:				
KLEVER	$K_{\rm L} \to \pi^0 \nu \overline{\nu}$	P42	400 GeV p	$5 \cdot 10^{19}$ pot /5 years
TauFV	LFV τ decays	BDF	400 GeV p	5% of the SHiP yield

Projects considered in the BSM WG: sub-eV range

Proposal	physics case	beam line	beam type	beam yield
sub-eV range:				
IAXO	axions/ALPs (photon coupling)	_	axions from sun	-
ALPS-III	axions/ALPs (photon coupling)	laboratory	LSW	-
CPEDM	p, d EDM,	EDM ring	p, d	-
	axions/ALPs (gluon coupling)		p, d	-
LHC-FT	charmed hadrons MDMs, EDMs	LHCb IP	$7 { m TeV} p$	-
MeV-GeV range:				
SHiP	ALPs, Dark Photons,	BDF	400 GeV p	$2 \cdot 10^{20} / 5$ years
	Dark Scalars, LDM, HNLs			
NA62 ⁺⁺	ALPs (photon, fermion coupling)	K12	400 GeV p	up to $3 \cdot 10^{18}$ /year
	Dark Photons, Dark Scalars, HNLs			
NA64 ⁺⁺	ALPs (which couplings?)	H4	$100 \text{ GeV } e^-$	$5 \cdot 10^{12} \text{ eot/year}$
	Dark Photons, Dark Scalars, LDM			
	$+ L_{\mu} - L_{\tau}$	M2	160 GeV μ	$10^{12} - 10^{13} \text{ mot/year}$
	+ CP, CPT, leptophobic DM	H2-H8, T9	$\sim 40 \text{ GeV } \pi, K, p$	$5 \cdot 10^{12}$ /year
LDMX	Dark Photon, LDM, ALPs,	eSPS	8 (SLAC) -16 (eSPS) GeV e^-	$10^{16} - 10^{18} \text{ eot/year}$
RedTop	Dark Photon, Dark scalar	CERN PS	1.8 or 3.5 GeV	10^{17} pot
MATHUSLA	Dark Scalar, Dark Photon, HNLs,	ATLAS or CMS IP	14 TeV p	3000 fb^{-1}
FASER	Dark Photon, Dark Scalar, ALPs	ATLAS IP	14 TeV p	3000 fb^{-1}
MilliQan	milli charge	CMS IP	14 TeV p	$300-3000 \text{ fb}^{-1}$
Codex-b	Dark Scalar, Dark Photons,	LHCb IP	$14 { m TeV} p$	300 fb^{-1}
> TeV range:				
KLEVER	$K_{\rm L} \rightarrow \pi^0 \nu \overline{\nu}$	P42	400 GeV p	$5 \cdot 10^{19}$ pot /5 years
TauFV	LFV τ decays	BDF	400 GeV p	5% of the SHiP yield

Proton and Deuteron EDMs: <u>search for new sources of CPV in the sub-eV (axion) or multi TeV scales</u>

Proton and Deuteron EDMs: search for new sources of CPV in the sub-eV (axion) or multi TeV scales

Next future 2020s perspectives

Target of the PBC

Interpretation of results is controversial because exclusion limits are strictly valid only for axions: they can be interpreted either as **sensitivity plots or as exclusion plots of more complicated (controversial) models**

Starting to quantify a comprehensive picture

Search for sub-eV Axions and Axion-Like Particles with photon coupling:

The International Axion Observatory (IAXO) Project

- Next generation "axion helioscope" after CAST
- Purpose-built large-scale magnet
 >300 times larger B²L²A than CAST magnet
 Toroid geometry
 8 conversion bores of 60 cm Ø, ~20 m long
- Detection systems (XRT+detectors) Scaled-up versions based on experience in CAST Low-background techniques for detectors Optics based on slumped-glass technique used in NuStar
- ~50% Sun-tracking time
- Large magnetic volume available for additional "axion" physics (e.g. DM setups)

17 Institutions already joined the project. Strong interest of DESY to host it. Magnet under design with strong CERN support.

IAXO and ALPS-III (now called JURA) and other smaller experiments are considered in the Technology Group

Technology WG

Technology contribution of/to	Initiatives concerned		
CERN			
Magnet, concretely: high-field,	JAXO, DSQAR+, ALPS-III		
large-bore	STAX, OSQAR-PVLAS-VMB		
Optics/Optics sensing, e.g.:	OSQAR-PVLAS-VMB, ALPS-		
Fabry Perot, membranes, cool-	III, OSQAR+, aKWISP		
ing mirrors			
RadioFrequency cavities,	Grenoble initiative, & other		
concretely: design for axion	Haloscope initiatives operating		
searches	already at CERN, STAX		
Cryogenics, e.g.: helium, argon,	DarkSide, aKWISP, OSQAR-		
krypton from 120K to mK	PVLAS-VMB IAXO		
Vacuum group, e.g.: large-scale	DarkSide, OSQAR+, aKWISP,		
leak testing + surface technol-	Nanotubes		
ogy			

High Field Magnets

- Optics/optics sensing
- **RF** cavities
- Cryogenics
- Vacuum

~ 100 pp Report in preparation for the ESPP

Axions and ALPs with photon coupling in the sub-eV mass range: Worldwide Landscape

Axions and ALPS with photon coupling in the sub-eV mass range PBC projects: IAXO and Jura (ex ALPS-III)

Starting to quantify a comprehensive picture

Dark sector in the

Projects considered in the BSM WG: MeV-GeV range

@ SPS

CÈRN

@ PS

@ LHC

34

Several reasons to search for generic weakly-interacting long lived particles

Search for long-lived particles in the MeV-GeV range with "DUMP" experiments

Technique used by NA62⁺⁺, SHiP, NA64⁺⁺ (and indirectly also by MATHUSLA, FASER, CodexB, MilliQan)

(RedTop uses narrow η , η' resonances to search Hidden Particles in visible final states)

Search for long-lived particles in the MeV-GeV range: "ACTIVE DUMP" experiments

Any discrepancy between the energy of the electron measured before and in the active dump would be sign of the production of some non-interacting particles, as for example Dark Matter

Missing Energy technique mainly used by NA64++

Missing momentum:

any discrepancy between the momentum of the electron/muon measured before and after the target would be sign of the production of some non-interacting particle, as for example Dark Matter

Missing momentum technique mostly used by LDMX @ eSPS

Beam lines available/proposed in the North Area

M2: 100-160 GeV, mu beam up to $10^{13} \mu$ /year \rightarrow NA64⁺⁺ (muons)

H4: 100 GeV e- beam up to $5x10^{12}$ eot/year \rightarrow NA64⁺⁺ (electrons)

K12: 400 GeV p beam up to $3x10^{18}$ pot/year (now) → NA62⁺⁺ (NA62-dump) up to 10^{19} pot/year (if upgraded) → KLEVER

BDF (proposed): 400 GeV p up to $4x10^{19}$ pot/year \rightarrow **SHiP, TauFV**

Highest energy proton, electrons and muon beams delivered for fixed target experiments in the world.

Aerial picture of the North Area

The Hidden Sector "Campus" (HSC)

The NA62 experiment @ K12 in EHN3 https://na62.web.cern.ch/

NA62 currently running in K12. Will complete the kaon programme by 2022. Proposed o(1) year in dump mode by 2023.

Optimization of the beam line studied in the Conventional Beams WG (L. Gatignon et al., ~100 pp Yellow Report in preparation for the ESPP)

42

NA62 has the main goal of measuring the BR(K⁺ $\rightarrow \pi$ ⁺ v vbar) with 10% accuracy;

- Before LS2 (2017-2018) many searches in the hidden sector will be performed using the kaon beam.
- After LS2 (2021++) there is a window of opportunity to run NA62 in beam-dump mode to collect

at least 10¹⁸ pot to search for hidden particles from charm and beauty decays, and photons.

today

Goal: integrate at least ~10¹⁸ pot in dump mode by 2023 (corresponding to ~ 3 months of dedicated data taking in 2021-2023)

The NA64 experiment in EHN1, H4 https://na64.web.cern.ch/

NA64 has been approved in March'16 for dark photon to invisible searches with 100 GeV e⁻ beam; Current status: running @ H4; collected o(10¹¹) eot.

Proposal to extend the physics programme after LS2:

NA64++ (electrons): extension beyond 2021 to accumulate up to 5x10¹² eot in H4

NA64++ (muons): use the 100-160 GeV muon beam in COMPASS area to study hidden sector with muon couplings. Very complementary to Dark Sector with electron couplings. Integration with COMPASS experiment under study. Preliminary test done in 2017 with the COMPASS setup show that the purity of the muon can be kept under control. Interplay between NA64, COMPASS and MUonE under study.

NA64++ (K_{L,S}, π^0 , η , $\eta' \rightarrow$ invisible): produced via charge exchange reactions $\pi(K) p \rightarrow M^0 n + E_{miss}$

Optimization of the beam line studied in the Conventional Beams WG (~100 pp Yellow Report in preparation for the ESPP)

A Z_{μ} model gauging the $L_{\mu} - L_{\tau}$ lepton number can explain the LFU violations in R_{κ} and $R_{\kappa*}$

Beam Dump Facility (BDF) in the North Area

3.7 MCHF already allocated by CERN for feasibility studies ~300 pp Yellow Report in preparation for the ESPP

SHiP project @ BDF

- ✓ Hidden particles have very feeble couplings, hence they are (very) long-lived:
 - The 60m-long, in-vacuum SHiP decay volume allows us to be sensitive to extremely low couplings
- ✓ Hidden particles from D and B decays have large p_T:
 - SHiP large geometrical acceptance maximizes detection of decay products

- It will require a common effort from CERN and the Collaboration

SHiP @ BDF: Light Dark Matter direct detection

LDMX @ eSPS

GREEN: ~16 GeV electron beam in SPS slow extraction towards Meyrin side for LDMX-like experiment

Electron beam impinging on target:

- multi-GeV electrons
- 1-200 MHz bunch spacing
- Ultra-low O(1-5) electrons per bunch

•

70 m long, 3.5 GeV X-band LINAC with excellent beam quality

- CLEAR type of research programme.
- Fill SPS in 1-2 sec (bunches 5 ns apart) via TT60;

Steinar Stapnes, Torsten Akesson, Lyn Evans et al. ~100 pp Report in preparation for the ESPP

RedTop @ CERN PS

1.8 or 3.5 GeV proton beam under study at the CERN PS, use narrow eta/eta' resonances to look for Dark Scalar/Dark Photons in the reactions:

 $pLi \to \eta, \eta' \to A'\gamma \to \ell^+\ell^-\gamma \ (\ell = e, \mu)$ $pLi \to \eta \to S\pi^0 \to \ell^+\ell^-\gamma\gamma$

Request of ~ 10¹⁸ pot put strong constraint on duty cycle and could potentially affect other PS users. Studies with 10¹⁷ pot have been performed.

Optimization of the beam line studied in the Conventional Beams WG (L. Gatignon et al., ~100 pp Yellow Report in preparation for the ESPP)

MilliQan, MATHUSLA, FASER, Codex-b @ the LHC IPs

+ an extremely active LLP community inside ATLAS, CMS and LHCb collaborations

Timescale of the PBC BSM projects accelerator-based

Worldwide competition:

Eg: current and proposed experiments searching for Dark Photons

Searches for $A' \rightarrow visible states$

Name	Where	Source	Intensity	Production mode	Detection mode	Status
Belle-II	Super KEK-B	$e^+e^- \rightarrow \Upsilon(3S)$	$> 100 \text{ fb}^{-1} \otimes \Upsilon(3S)$	$\Upsilon(3S) \rightarrow \gamma A'$	$A' \rightarrow e^+e^-, \mu^+\mu^-$	Commis. 2018
Apex	JLAB	e ⁻ , 2 GeV	10 ⁹ EOT (W)	A'-strahlung	$A' \rightarrow e^+e^-$	Commis. 2018
HPS	CEBAF12 @ JLAB	$e^{-}, 1-2 \text{ GeV}$	10 ¹⁴ EOT (W)	A'-strahlung	$A' \rightarrow e^+e^-$	Running 2016-20
MAGIX	MESA @ Mainz	e ⁻ , 155 MeV	10 ¹⁶ EOT (Xe gas)	A'-strahlung	$A' \rightarrow e^+e^-$	Commis. 2020
Mu3e	$\pi E5$ line @ PSI	μ^{-} , 28 MeV	$10^{15-16} \mu^{-}$	$\mu \rightarrow \nu \nu A'$	$A' \rightarrow e^+e^-$	Commis. 2017
ATLAS/CMS	LHC @CERN	pp 8, 13 TeV	few fb ⁻¹	$H \rightarrow 4l + MET$	$A' \rightarrow \mu^+ \mu^-$	Running
LHCb	LHC @CERN	pp,13 TeV	15 fb ⁻¹	$D^* \rightarrow DA'$	$A' \rightarrow e^+e^-, \mu^+\mu^-$	Running
NA62	SPS @CERN	p, 400 GeV	2 10 ¹⁸ POT	Meson, A'-strahlung	$A' \rightarrow e^+e^-, \mu^+\mu^-$	Running -2018
SeaQuest	Main Inj. @ FNAL	p, 120 TeV	1.5	Meson, A'-strahlung	$A' \rightarrow \mu^+ \mu^-$	Proposed 2017–19
SHiP	SPS @CERN	p, 400 GeV	2 10 ²⁰ POT	Meson, A'-strahlung	$A' \rightarrow e^+e^-, \mu^+\mu^-$	Proposed 2026

Searches for $A' \rightarrow$ invisible states

Babar	PEP-II @ SLAC	$e^+e^- \rightarrow \Upsilon(3S)$	57 fb^{-1}	$\Upsilon(3S) \rightarrow \gamma A'$	Single- γ trigger	ICHEP 2016
VEPP-3	VEPP-3 @ Budker Inst.	$e^+, 500 \text{ MeV}$	1.5 MHz $\gamma\gamma$	$e^+e^- \rightarrow A'\gamma$	detect $\gamma + M_{miss}$	Proposed
PADME	BTF @ Frascati INFN	$e^+, 550 \text{ MeV}$	$15 \text{ Hz} \gamma \gamma$	$e^+e^- \rightarrow A'\gamma$	detect $\gamma + M_{miss}$	Approved, 2017-19
MMAPS	CESR @ Cornell	$e^+, 5.3 \text{ GeV}$	$2.2 \text{ MHz } \gamma \gamma$	$e^+e^- \rightarrow A'\gamma$	detect $\gamma + M_{miss}$	Not funded
NA64	SPS @ CERN	e^- , 100 GeV	$e^-N \rightarrow e^-NA'$	$10^{9}-10^{12}$ EOT	detect $e^- + E_{miss}$	Running, 2016-17
LDMX	LCLS-II @ SLAC	e^- , 4 GeV	$e^-N \rightarrow e^-NA'$	10 ¹⁵ -10 ¹⁶ EOT	detect $e^- + E_{miss}$	Proposed, 2020

Direct detection of LDM via the process $A' \rightarrow LDM$ with LDM scattering in the detector

SBND	FNAL	p, 9 GeV	2 10 ²⁰ POT	Meson, A' -strahlung $A' \rightarrow \varphi \varphi$	detect ø @ 110 m	Under study
T2K	Tokai-Kamioka	p, 30 GeV	10 ²¹ POT	Meson, A'-strahlung $A' \rightarrow \varphi \varphi$	detect $\phi @ 280 \text{ m}$	Running
COHERENT	SNS @ Oak Ridge	p, 1 GeV	10 ²³ POT	Meson, A' -strahlung $A' \rightarrow \varphi \varphi$	detect ϕ @ 20 m 2°-OA	Proposed
SHiP	SPS @CERN	p, 400 GeV	2 10 ²⁰ POT	Meson, A' -strahlung $A' \rightarrow \varphi \varphi$	detect $\phi @ 100 \text{ m}$	Proposed 2026
LBNF	DUNE @FNAL	p, 120 GeV	3 10 ²¹ POT	Meson, A'-strahlung $A' \rightarrow \varphi \varphi$	detect $\phi @ 500 \text{ m}$	Under study 2020

A lively and continuously increasing community all around the world (in particular in US: see for example, Cosmic Visions, arXiv:1707.04591)

Physics Reach of projects of PBC-BSM WG: MeV-GeV mass range

The experiments have provided sensitivity curves as 90% CL exclusion limits with respect to the 11 reference Benchmark Cases.

This provided us with a common language and a common ground for discussions, and allowed us to put each proposal into the worldwide landscape.

The evaluation of backgrounds and other experimental effects is a long-term project and is to date very non-homogeneous among the proposals.

The PBC BSM document in preparation for the ESPP will reflect the state-of-the-art of these studies

Disclaimer:

the plots that follow must be considered "work in progress" Final plots will be included in the PBC-BSM deliverable for the ESPP

The BSM WG has selected a set of theoretically and phenomenologically motivated target areas used as benchmarks models to explore the physics reach of the received proposals and put them into the worldwide landscape. This allowed us to have a common ground and a common language.

Portal	Coupling
Dark Photon, A_{μ}	$-\frac{\epsilon}{2\cos\theta_W}F'_{\mu\nu}B^{\mu\nu}$
Dark Higgs, S	$(\mu S + \lambda S^2) H^{\dagger} H$
Axion, a	$\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}, \ \frac{a}{f_a}G_{i,\mu\nu}\tilde{G}_i^{\mu\nu}, \ \frac{\delta_{\mu}a}{f_a}\overline{\psi}\gamma^{\mu}\gamma^5\psi$
Sterile Neutrino, N	$y_N LHN$

Vector portal models:

- Dark Photon with coupling to SM particles (BC1)
- Dark Photon with coupling to DM particles (BC2)
- Milli charged particles (BC3)
- Scalar portal models:
 - Higgs mixed scalar (BC4), Higgs- mixed scalar with large pair production particles (BC5)
- Axion and axion-like portals:
 - photon (BC9), fermion (BC10), gluon coupling (BC11)
 - Neutrino portals: with e, mu or tau coupling (BC6, 7, 8)

PBC projects: current status of evaluation of backgrounds and other experimental effects

Proposal	Background	Efficiency	Based on
at the PS:			
RedTop	included	included	Main backgrounds and efficiencies
			evaluated with full Monte Carlo
at the SPS:			
KLEVER	$K_{\rm L} \to \pi^0 \nu \overline{\nu}, K_{\rm L} \to \pi^0 \pi^0$ bkgs included	included	full simulation
LDMX	background included	included	full Geant4 simulation
NA62++	zero background	partially included	analysis of $\sim 10^{16}$ pot in dump mode
	proven for fully reconstructed final states		
$NA64^{++}(e)$	included	included	background, efficiencies evaluated from data
$NA64^{++}(\mu)$	in progress	in progress	test of the purity of the M2 line with COMPASS setup
$NA64^{++}(K_{S,L}, \eta, \eta')$	to be done	to be done	_
SHiP	zero background	included	Full Geant4 simulation, digitization and reconstruction
			ν – interactions based on 2×10^{20} pot
			μ – combinatorial and μ – interactions based on 10 ¹² pot
			measurement of the muon flux at H4 planned for July 2018
at the LHC:			
Codex-b	zero background	included	Evaluation of background in progress with full MC
FASER	zero bkg assumed	not included	Fluka simulation
MATHUSLA	zero background	assumed 100%	neutrino background:
			atmospheric ν flux from Frejus data arXiv:hep-ph/0607324.
			LHC ν flux from Pythia+MadGraph+Geant4 for simplified detector geometry
			ν interactions with air in MATHUSLA used measured ν cross sections
			muon background from LHC: MADGRAPH + measured cross-sections in air
			cosmic rays: measured flux + geometricl arguments
MilliQan	included	included	full Geant4 simulation of the detector

All details in the BSM document in preparation

Search for light Dark Matter and related light mediators in the MeV – GeV mass range

Portal	Coupling	Benchmark Cases.
\rightarrow Dark Photon, A_{μ}	$-\frac{\epsilon}{2\cos\theta_W}F'_{\mu\nu}B^{\mu\nu}$	BC1, BC2, BC3
Dark Higgs, S	$(\mu S + \lambda S^2) H^{\dagger} H$	BC4, BC5
Axion, a	$\frac{a}{f_a}F_{\mu\nu}\tilde{F}^{\mu\nu}, \ \frac{a}{f_a}G_{i,\mu\nu}\tilde{G}_i^{\mu\nu}, \ \frac{\delta_{\mu}a}{f_a}\overline{\psi}\gamma^{\mu}\gamma^5\psi$	BC9, BC10, BC11
Sterile Neutrino, N	$y_N LHN$	BC6, BC7, BC8

Light Dark Matter via Vector Portal with thermal origin: connection with direct detection and cosmological bounds

If $mA' < 2m_{\chi'}$ the Dark Photon decays to SM particles If $m_{A'} > 2m_{\chi}$ the Dark Photon can decay to DM with a coupling α_D

Physics Beyond Colliders

BC₁

Dark Photon decaying to SM particles: worldwide landscape

If $mA' < 2m_{\chi'}$ the Dark Photon decays to SM particles

Dark Photon decaying to SM particles

Worldwide landscape

PBC projects: 5 years outlook

 $A' \to e^+ e^-, \mu^+ \mu^-, \pi^+ \pi^-, \dots$

Dark Photon decaying to SM particles:

 $A' \to e^+ e^-, \mu^+ \mu^-, \pi^+ \pi^-, \dots$

Dark Photon decaying to invisible particles: worldwide landscape

 $A' \rightarrow \text{invisible final states}$

Dark Photon decaying to invisible particles: PBC projects in 5 years

66

BC 2

Dark Photon decaying to Scalar Elastic Dark Matter: worldwide landscape

Revisited from Cosmic Visions, arXiv:1707.04591

h Physics Beyond Colliders

Dark Photon decaying to Pseudo-Dirac Dark Matter: worldwide landscape

BC 2

PBC projects considered in the following do not depend on the assumption on the nature of DM

Dark Photon decaying to Dark Matter: PBC projects in 5 years

Search for light Dark Matter and related light mediators in the MeV – GeV mass range

The discovery of the Higgs , prompts to investigate the so called scalar or Higgs portal, that couples the dark sector to the Higgs boson via the bilinear H⁺H operator of the SM.
The minimal scalar portal model operates with one extra singlet field S and two types of couplings, μ and λ.

Light Dark Scalar mixing with the Higgs: PBC projects in 5 years

Light Dark Scalar mixing with the Higgs: PBC projects in 10-15 years

Search for RH neutrinos below the EW scale

<u>RH neutrinos below the EW scale: worldwide landscape</u>

BC 8

Search for axions and axion-like particles in the sub-eV mass range and to new sources of CPV in the >> TeV range

ALPS with photon coupling: worldwide landscape

axion, $ALP \rightarrow \gamma \gamma$

ALPS with photon coupling: PBC projects in 5 years

ALPS with photon coupling: PBC projects in 10-15 years

<u>ALPS with fermion couplings: worldwide landscape</u>

ALPS with fermion couplings: PBC projects in 10-15 years

More sensitivity curves in preparation

Starting to quantify a comprehensive picture

Projects considered in the BSM WG

Proposal	physics case	beam line	beam type	beam yield
sub-eV range:				
IAXO	axions/ALPs (photon coupling)	_	axions from sun	_
ALPS-III	axions/ALPs (photon coupling)	laboratory	LSW	_
CPEDM	p, d EDM,	EDM ring	p, d	_
	axions/ALPs (gluon coupling)		p, d	_
LHC-FT	charmed hadrons MDMs, EDMs	LHCb IP	$7 { m TeV} p$	-
MeV-GeV range:				
SHiP	ALPs, Dark Photons,	BDF	400 GeV p	$2 \cdot 10^{20} / 5$ years
	Dark Scalars, LDM, HNLs			
$NA62^{++}$	ALPs (photon, fermion coupling)	K12	400 GeV p	up to $3 \cdot 10^{18}$ /year
	Dark Photons, Dark Scalars, HNLs			
$NA64^{++}$	ALPs (which couplings?)	H4	$100 \text{ GeV } e^-$	$5 \cdot 10^{12} \text{ eot/year}$
	Dark Photons, Dark Scalars, LDM			
	$+ L_{\mu} - L_{\tau}$	M2	160 GeV μ	$10^{12} - 10^{13} \text{ mot/year}$
	+ CP, CPT, leptophobic DM	H2-H8, T9	$\sim 40 \text{ GeV } \pi, K, p$	$5 \cdot 10^{12}$ /year
LDMX	Dark Photon, LDM, ALPs,	eSPS	8 (SLAC) -16 (eSPS) GeV e^-	$10^{16} - 10^{18} \text{ eot/year}$
RedTop	Dark Photon, Dark scalar	CERN PS	1.8 or 3.5 GeV	10^{17} pot
MATHUSLA	Dark Scalar, Dark Photon, HNLs,	ATLAS or CMS IP	14 TeV p	3000 fb^{-1}
FASER	Dark Photon, Dark Scalar, ALPs	ATLAS IP	14 TeV p	3000 fb^{-1}
MilliQan	milli charge	CMS IP	14 TeV p	$300-3000 \text{ fb}^{-1}$
Codex-b	Dark Scalar, Dark Photons,	LHCb IP	14 TeV p	$300 {\rm ~fb^{-1}}$
> TeV range:				
KLEVER	$K_{\rm L} \rightarrow \pi^0 \nu \overline{\nu}$	P42	400 GeV p	$5 \cdot 10^{19}$ pot /5 years
TauFV	LFV τ decays	BDF	400 GeV p	5% of the SHiP yield

Current status: BR($K_L \rightarrow \pi^0 \nu \nu$) (SM) = (3.4 ±0.6) 10⁻¹¹ BR($K_L \rightarrow \pi^0 \nu \nu$) (E391a) < 2.6 10⁻⁸ (90% CL)

> New physics affects BRs differently for *K*⁺ and *K*_L channels Measurements of both can discriminate among NP scenarios

- Models with CKM-like flavor structure
 Models with MFV
- Models with new flavorviolating interactions in which either LH or RH couplings dominate
 - z/z' models with pure LH/RH couplings
 - Littlest Higgs with T parity
- Models without above constraints
 - -Randall-Sundrum

KLEVER @ K12: an experiment to measure $K_L \rightarrow \pi^0 \nu \nu$ branching fraction

Current status: BR($K_L \rightarrow \pi^0 \nu \nu$) (SM) = (3.4 ±0.6) 10⁻¹¹ BR($K_L \rightarrow \pi^0 \nu \nu$) (E391a) < 2.6 10⁻⁸ (90% CL)

If the B anomalies are due to NP (Z', leptoquarks, LFV processes in the third generation, etc.) the same NP can affect also the $K^+ \rightarrow \pi^+ \nu \nu$ and $K_L \rightarrow \pi^0 \nu \nu$ branching fractions.

The quantitative effect is strongly model-dependent: in some models is similar in the two modes, in some others is suppressed/enhanced in the neutral mode with respect to the charged one.

However in any possible NP scenario, for both modes, precision is key.

10¹⁹ pot/yr × 5 years \rightarrow 2 × 10¹³ ppp/16.8s = 6× increase relative to NA62

Feasibility/cost study a primary goal of our involvement in Conventional Beam WG

KLEVER target sensitivity:

5 years starting in Run 4

~ 60 SM K_L $\rightarrow \pi^0 v v$ with S/B ~ 1, hence precision of 20% on the BR

Competition:

KOTO (JPARC) expects to reach SM sensitivity in 2021

Strong intention to integrate o(100) events with a major upgrade of line and detector but no official proposal yet.

Long-standing, and well motivated (particularly since the discovery of neutrino oscillations) programme of searches for charged Lepton Flavour Violation.

Let's take $\tau \rightarrow \mu \mu \mu$ as benchmark mode. Current best 90 % CL limits:

Belle	2.1 x 10 ⁻⁸	[PLB 687 (2010) 139]
BaBar	3.3 x 10 ⁻⁸	[PRD 81 (2010) 111101]
LHCb	4.6 x 10 ⁻⁸	[JHEP 02 (2015) 121]

Most improvement in coming decade is expected from Belle II, who aim for 1 x 10⁻⁹ [arXiv:1011.0352] and may do better if they achieve zero background.

Study of tau LFV decays very timely, also in connection with the B anomalies. Complement the quest for new physics in other cLFV modes, as mu2e @ FNAL and mu3e @ PSI.

TauFV proposed to be located into the BDF line upstream of SHiP. Use $\sim 2\%$ of protons hitting on (probably) a wire target to study LFV decays of tau leptons.

Profit of the higher signal yield than at any other facility:

Eg: $\tau \rightarrow \mu \mu \mu$ yie	eld assumi	assuming a BR ~ 10 ⁻⁹	
Future experiment	Yield	Extrapolated from	
TauFV (4 x 1018 PoT)	8000	Numbers on this slide	
Belle II (50 ab ⁻¹)	9	PLB 687 (2010) 139	
LHCb Upgrade I (50 fb ⁻¹)	140	JHEP 02 (2015) 121	
LHCb Upgrade II (300 fb ⁻¹)	840	ditto	

Starting to quantify a comprehensive picture

CERN

□ The target of the PBC activity at CERN is a broad, rich and compelling physics programme which addresses the open questions of particle physics in a way complementary to the LHC and other initiatives in the world (eg DM direct detection).

□ This programme aims to exploit the unique CERN scientific infrastructure and accelerator complex in a timescale of 5-15 years.

□ A large and lively community with several different scientific proposals is growing at CERN and now is starting to speak a common language, to collaborate and to work in a coherent way.

□ A preliminary set of comparative plots, based on theoretically and phenomenologically motivated models, shows us the scientific potential and the impact that CERN could have in the coming years in the quest for NP in the sub-eV, MeV-GeV and ultra-TeV scales.

□ The projects presented in the PBC framework could be a very attractive option while preparing the next big machine.

□ Several documents are in preparation for the next update of the ESPP.

Thank you for your attention.

EDMs in charmed hadrons: LHC-FT

EDM searches in different systems are complementary to disentangle the underlying source of CPV. Charmed hadrons EDMs predicted to be ~ 10^{-32} e cm in SM (EPJC 77 (2017) 102. If CP is broken maximally by some "unspecified" strong interactions at a scale ~ 1-10 TeV that also do not respect chiral symmetry, then:

 $d \sim e \; v_{EW} \, / \, \Lambda^2 \sim starts$ at (10^{-17} -10^{-18}) $e \; cm$

If democratic among families – then of course excluded. "Needs" a model that emphasizes charm quark. • If perturbative: $x \sim 10^{-2}$, down to $(10^{-19} - 10^{-20})$ e cm level and below.

• If respecting chiral dynamics: x yc ~ 10^{-2} , down to 10^{-22} e cm

Use deflected beam halo to W target followed by a second bent crystal. Measure s_x component of the spin precession in the E of the crystal

ALPS3 – a next generation LSW

- ALPS3 is a foreseen project to be explored as a next generation experiment with respect to ALPS2
- ALPS2 will reach state of the art for the optical component in a LSW
 resonant regeneration experiment with 100 + 100 m resonant cavities
- ALPS3 will eventually embed newly developed CERN magnet to push the sensitivity of ALPS3
- The BSM subgroup follows the progress of ALPS2

