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Geometric Deep Learning

Going beyond Euclidean data

any scientific fields study data with an underlying struc-
ture that is non-Euclidean. Some examples include
social networks in computational social sciences, sensor
networks in communications, functional networks in
brain imaging, regulatory networks in genetics, and meshed sur -
faces in computer graphics. In many applications, such geomet -
ric data are large and complex (in the case of social networks,
on the scale of billions) and are natural targets for machine-
learning techniques. In particular, we would like to use deep
neural networks, which have recently proven to be powerful
tools for a broad range of problems from computer vision, natu-
ral-language processing, and audio analysis. However, these
tools have been most successful on data with an underlying
Euclidean or grid-like structure and in cases where the invari-
ances of these structures are built into networks used to model

available solutions, key difficulties, applications, and future
research directions in this nascent field.

Overview of deep learing

Deep learning refers to learning complicated concepts by
building them from simpler ones in a hierarchical or multilay -
er manner. Artificial neural networks are popular realizations
of such deep multilayer hierarchies. In the past few years, the
growing computational power of modern graphics processing
unit (GPU)-based computers and the availability of large
training data sets have allowed successfully training neural
networks with many layers and degrees of freedom (DoF) [1] .
This has led to qualitative breakthroughs on a wide variety of
tasks, from speech recognition[2],[3] and machine translation
[4] to image analysis and computer vision[5]-{11] (see [12]



Overview of Convolutional Neural Networks (CNNs)
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Top left image. Han et al. ‘17; Top right image. Data Science Blog, Bottom image. Reppel '17; Properties: LeCun et al. ‘89, Mallat 12 [arXiv.11012286]
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https://ujjwalkarn.me/2016/08/11/intuitive-explanation-convnets/
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https://arxiv.org/abs/1101.2286

Overview of Convolutional Neural Networks (CNNs)
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Activation function

T=C), f=h,.... )  I'=1l..p
I'=(r) [=1,...q

p
g(x) =¢ < Z (fl * 71,1/) (x)), (f* 7) (x) = J SO = xDy(x)dx’
Q

['=1
70 = (), .., g,(0)

Pooling
Fuclidean domain

2 =P(f)
g(x) = P ({f,(x') X e /V(x)})

U@(f) — (CF(K) .P...o Cr(z) ° CF(I))




Going Non-Euclidean

Many examples:
Social networks, meshed surfaces,
sensor networks, word embeddings

e.g. LHC detector array

Top image. Saragossi ' 13

Problem: Convolution and pooling not well define on
non-regular grids

Solution: Fourier transform on spectral (graph)
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https://thenextweb.com/socialmedia/2013/11/24/facebook-grandparents-need-next-gen-social-network/

What is a graph?
Properties
Consider weighted undirected graphs
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Fourier Transform and the Laplacian (Euclidean case)
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Hammond et al. ‘09 [arXiv.0912.3848]



https://arxiv.org/abs/0912.3848

Fourier Transform and the Laplacian (Non-Euclidean case)

Assume analogous structure: A® = OA, @ = (¢,...,¢,) Fourier basis on a graph
A = diag (/11, ... ,/In)

Generalised Fourier Transform: f(a)) = ®'f(w)
/i

Using graph Hilbert space:

Define: (Vf).=f—Ff

fi




Convolution Theorem
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Problem: Cannot define x — x’ on graph
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The Process
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Convolution on a graph
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Fourier domain

Inverse Fourier Transform

! F=f,....] input signal
Define: g =¢( Y or, o7 ), A
i~ G=g,---,8, output signal

Problems:

- Computationally inefficient to
compute FT and IFT

- Filters are basis dependent

Domain X
Basis P
Signal f

Bruna et al. '13 [arXiv:1312.6203]



https://arxiv.org/abs/1312.6203

How can we define the filters?

Problem: Want localised filters

Solution: Can be shown that spectral filters can be parametrised as: diag(I';;) = f(4) a;;
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Problem: Filter coefficients are unstable under perturbation
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Defferrard et al. 16 [arXiv: 1606.093/5]; Hammond et al. ‘09 [arXiv.0912,3848]



https://arxiv.org/abs/1606.09375
https://arxiv.org/abs/0912.3848

Pooling on a graph

Dhillon et al. ‘07 Defferrard et al. 16 [arXiv. 1606.09375]
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https://arxiv.org/abs/1606.09375
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Example: citation networks
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Figure: Monti et al. 2016; data: Sen et al. 2008


https://www.dropbox.com/s/r4bzfux4ter8902/TUM%20Tutorial.pdf?dl=0
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Example: citation networks

Method Cora’ PubMed-
Manifold Regularization® 59.5% 70.7%
Semidefinite Embedding” 59.0% 71.1%
_abel Propagation” 68.0% 63.0%
DeepWalk"” 67.2% 65.3%
Planetoid’ 75.7% 77.2%

Graph Convolutional Net® 81.59% 78.72%

Classification accuracy of different methods on citation network datasets

Monti et al. 2016: data: 1'2Sen et al. 2008: methods: 3Belkin et al. 2006: 4Weston
et al. 2012; °Zhu et al. 2003; SPerozzi et al. 2014; "Yang et al. 2016; 8Kipf, Welling
2016


https://www.dropbox.com/s/r4bzfux4ter8902/TUM%20Tutorial.pdf?dl=0
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