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Flux : Brightness of the source as a function of time
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Classify astronomical
transient sources according to their flux
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First attempt :

Redshift
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First attempt : Fully Connected Neural Network
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How do we feed in sequential data?
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How do we feed in sequential data?

Flux t1

Flux t2

Flux t3

input layer

hidden layer 1 hidden layer 2

Need to relearn the rules at each point in the sequence !



Same problem with images and spatial translation
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Solution: Convolutional network

Use convolutions instead of matrix multiplication.
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1) Sparse connections

e Often features can be detected in small patches of an image. We don’t need
to connect very far away pixels -> fewer parameters.

Sparse Connections

Fully Connected

Deep Learning (2016), lan Goodfellow, Yoshua Bengio and Aaron Courville



i) Parameter sharing

e Apply the same weights to different pixels of the image -> Extract global
features in an image.
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i) Equivariant representation

e If the input changes the output changes in the same way. A function f(x) is
equivariant to a function g if:

f(g(x)) = g(f(x))

If we move an object in the input, its convolution moves in the same way in the
output.



Second attempt: 1-D temporal convolution
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Dilated Causal (at t, only see inputs no later than time t) Convolutions

arXiv:1803.01271



https://arxiv.org/abs/1803.01271

Cons

e Need a deep network to capture long-term dependencies. Partially solved by
dilated convolutions (could also chose larger filter sizes)

e Problem with sparse connections, sometimes can’t capture the necessary
long range dependencies.



Third attempt: Recurrent relation + Weight sharing

Output [t] = f( Output [t-1] | parameters )
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Same function means same neural network with the same parameters.
Are outputs the best way to relate previous knowledge with current input?

Predict nextcharacter:h+e+ |+ |+ ?

Deep Learning (2016), lan Goodfellow, Yoshua Bengio and Aaron Courville



Using the previous state of the network

The state is a lossy reduced representation of what the network has seen before.

Stanford lectures slides



http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

Stanford lectures slides
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http://cs231n.stanford.edu/slides/2017/cs231n_2017_lecture10.pdf

RNN: Recurrent Neural Networks

Weight sharing : the relation between previous time step and the next does not
depend on time (stationary)

Deep Learning (2016), lan Goodfellow, Yoshua Bengio and Aaron Courville



Forward pass

Deep Learning (2016), lan Goodfellow, Yoshua Bengio and Aaron Courville
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Back Propagation Through Time (BPTT)

e Compute the mean loss across the different time steps.

e Back propagate the gradient of the loss respect to the shared weights over
time.

e Problem: The gradient respect to the weights will involve products of the
weight matrix -> Gradients could vanish, therefore no long term dependencies

will be learned.



Vanishing gradients problem

Through the state recurrent relation:
h® — WIh(t-1 s B — (Wt) h(©®

If we further decompose the weight matrix into its eigenvalues:
T
W = QAQ
h® — QTAtQh(O)

Eigenvalues smaller than 1 will decay to zero. Short term >> Long term !



Generating image captions
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Conclusions

e Fully Connected networks can’t handle sequential data.

e Temporal Convolutional networks can, but we need to specify the range of the
temporal dependency.

e Recurrent networks have a “memory” of what the network was doing
previously.

e Theoretically, recurrent networks can handle long term dependencies. In
practice, we find the vanishing gradients problem (LSTM as partial solution).



