
High Throughput Computing at the IPPP

An overview of the resources available* and how to 
access them.

*) Technically, not just at the IPPP but also elsewhere in 
the UK, and still available to users at the IPPP.



Resources available



Resources available

➔GridPP gives us access to 10 times more CPU power than what we 
have in Durham.
➔GridPP is a smart way for us to gain access to resources elsewhere 
when we need them, and pay back by allowing ATLAS etc. to run in 
Durham, when we do not use the CPU
➔The Durham cluster currently has 3400 job slots and roughly 400TB 
disk. [~400-600 job slots and 100TB will be added during November]
➔Special Grid protocols needed for the high-throughput computing



Resources Delivered and Used

Local resources 
have increased 8-
fold since 2015 
courtesy of 
university and 
STFC funding.

GridPP resources 
and protocols are 
more essential 
than ever in 
allowing IPPP 
members to 
perform their 
research

2015 2016 2017 2018



5

https://monitoring.dur.scotgrid.ac.uk/



6

The Local Durham setup

Our HTC consists of 136 compute nodes each of 2 CPUs of 8-10 physical 
cores, and 64-128Gb of memory. Local disks of a few TBs. The cores are 
further hyperthreaded, but not fully loaded, in order to keep a HEPSPEC06 
of roughly 13.

Quite typical for grid computing (although we in Durham prioritise fast 
CPU).

Each node has 2 bonded 1GBit network connections; the disk servers are 
on 10GBit links (some bonded). The one grid Storage Element acts as a 
front-end to many disk-servers, and automatically balances to load on 
these, such that it can sustain transfer rates of up to 10 Gbytes/sec. 

The network connection to the wider Grid is through a dedicated 10GBit 
line. This means that the local SE can be used for disk storage even when 
jobs are run elsewhere.



7

Guide for getting you on the grid

Information available at:

http://ippp.dur.ac.uk/~andersen/GridTutorial/gridtutorial.html
● Grid Certificate
● Job submission with ARC
● Consider resources
● Grid storage
● CVMFS
● Dirac (by Duncan Walker)

http://ippp.dur.ac.uk/~andersen/GridTutorial/gridtutorial.html


8

Obtaining or Renewing Grid Certificates

● A certificate is needed to authenticate yourself when requesting 
resources for CPU, disk etc.
● The certificate is personal, and valid for a year. The renewal process 
is quick, but checks that you are still eligible. 
● After obtaining and installing a certificate, you can apply for 
membership at the Virtual Organisation ‘Pheno’, which is how we as 
users are known to the rest of the Grid.



9

Obtaining or Renewing Grid Certificates

https://portal.ca.grid-support.ac.uk/caportal/. Further details on what to do at
 https://www.ippp.dur.ac.uk/~andersen/GridTutorial/

https://portal.ca.grid-support.ac.uk/caportal/


10

Accessing the Grid Resources

● The Grid resources are accessed through the “Grid User Interfaces”, 
gridui1.dur.scotgrid.ac.uk and gridui2. These are machines with the 
same software environment as that on the compute nodes on the 
Grid. 
● Technically, the basic environment is dictated by the LHC 
experiments, and will be updated at the next LHC shutdown. So 
expect an update during January to a centos based setup.
● It is of course possible to install another set of compiler, libraries etc. 
for your jobs – this job can be performed e.g. using a docker container 
of cern/slc6-base



11

Working with certificates

● Each job and grid file access needs to be authenticated to verify the 
rights to get CPU time and disk space.
● Instead of submitting the certificate, the grid authentications work 
with “proxy certificates”, which are valid for just 12 hours
● Generated with the command
arcproxy -S pheno
● It is possible to setup automatic renewals of proxy certificates for 
longer running jobs (see website). Maximum run-time is one week.



12

Job desciption files

Instead of e.g. slurm job scripts, the grid operates with e.g. a Resource 
Specification Language. Example:

&

(executable = "simple")

(arguments = "input.txt")

(jobName="TestJob")

(inputFiles = ("input.txt" "") )

(outputFiles = ("output.txt" "") )

(stdout = "stdout")

(stderr = "stderr")

(gmlog="testjob.log")

(walltime="240")

(count="1")

(countpernode="1") 



13

Submitting a job

Submit a job to the Durham “compute element”:

arcsub -c ce1.dur.scotgrid.ac.uk submit.xrsl

Submit to the RAL “compute element”:

arcsub -c arc-ce01.gridpp.rl.ac.uk submit.xrsl

Duncan Walker will discuss the Dirac submission system, which automatically seeks 
out resources and submits to the first available CPU resource

The ARC information system takes a few minutes to update. List of jobs:

arcstat

Get the result of the run:

arcget <jobid>

Kill all jobs:

arckill -a

List of compute elements available (requires a proxy certificate):

lcg-infosites ce --vo pheno



14

Requesting Multiple Cores for Jobs

It is possible to request multiple cores for a job by including

(count="N")

(countpernode="M") 

in the job.xrsl (M<=N). Important considerations: Each node has a 
maximum of ~26 job slots. If one asks for 26 cores, then the job has to 
wair in the queue until one of the ~130 nodes has finished all of the 
currently running jobs. Potentially a week. If one asks for 13 cores, then 
a node has to be half empty – and the nodes are generally equally 
loaded, so effectively half the currently running jobs on the farm have to 
finish.

It is important to strike a balance between the speed-up gained by 
running on multiple cores, and the additional wait in the queue before 
the multiple cores become available. ATLAS currently request 8 cores, 
which seems a reasonable – generally our local farm needs ~400 free job 
slots until a 8-core job starts.



15

The queue

The backend queue operates on a fair-share basis, and every five 
minutes evaluates the priority of each job waiting to the executed. 
The priority is based on the historical CPU usage of the owner 
(calculated with an exponential decay of half time one day) and the 
time spent in the queue. The queue can be interrogated as e.g.



16

The queue

The priority for jobs associated with individual users can be found as



17

Grid Storage

The grid-connected storage is arranged differently from the usual 
transparent nfs-mounted drives on your desktop – nfs would not work 
on a large scale, and the grid protocols focus on load distribution and 
huge throughput

Ensure you have a directory set aside on the grid disk. You can make a 
directory for yourself with the command

gfal-mkdir 
gsiftp://se01.dur.scotgrid.ac.uk/dpm/dur.scotgrid.ac.uk/home/pheno/
MyName/

The last task of each job is copying the produced output (e.g. 
outputN.root) to the appropriate directory on the grid disk. 

gfal-copy `pwd`/filename 
gsiftp://se01.dur.scotgrid.ac.uk/dpm/dur.scotgrid.ac.uk/home/pheno/
MyName/



18

Grid Storage

You can follow the progress in your web-browser by pointing it to e.g.

http://se01.dur.scotgrid.ac.uk/dpm/dur.scotgrid.ac.uk/home/pheno/My
Name/

The files can be copied from the grid disk with a command like

gfal-copy -r 
gsiftp://se01.dur.scotgrid.ac.uk/dpm/dur.scotgrid.ac.uk/home/pheno/
MyName/OUTPUT file://`pwd`/gridoutput

You can also mount the directory directly (read-only) on your laptop or 
local computer by pointing the file-browser to

dav://se01.dur.scotgrid.ac.uk/dpm/dur.scotgrid.ac.uk/home/pheno/
MyName/

http://se01.dur.scotgrid.ac.uk/dpm/dur.scotgrid.ac.uk/home/pheno/MyName/
http://se01.dur.scotgrid.ac.uk/dpm/dur.scotgrid.ac.uk/home/pheno/MyName/
file:///


19

Use of Resources

When moving to large-scale grid computing, it is important to 
consider the various stages in the life-time of a job, and in particular 
whether they scale, or whether the jobs will hinder each other, when 
several are started simultaneously on the same machine.

Consider resources as CPU, network and local disk access. Up to ~30 
job slots on each node, so in order to reduce the time it takes to start 
a job, you should reduce the amount of local disk usage and of 
network traffic. It is no good having many processors, if the network 
or disk traffic creates a bottle neck.

The Cern Virtual Machine File System (CernVM-FS or CVMFS) is a read 
only HTTP based file system which is mounted on the grid UI and on 
the nodes. It is not meant for distributing data but files that you need 
to run your program. For example, C++ libraries your program 
depends on. The smart thing is that the files are cached directly on 
each node. So pulled only once, even if 1000 jobs are run.



20

Links to further information

https://www.ippp.dur.ac.uk/~andersen/GridTutorial/gridtutorial.html

https://monitoring.dur.scotgrid.ac.uk/

https://www.gridpp.ac.uk/

https://www.ippp.dur.ac.uk/~andersen/GridTutorial/gridtutorial.html
https://monitoring.dur.scotgrid.ac.uk/

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

