Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 000000000	000000 00000	0	

Electroweak corrections for LHC physics

Marek Schönherr

IPPP, Durham University

Higgs Maxwell Meeting, Edinburgh - 20 Feb 2019

THE ROYAL SOCIETY

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 000000000	000000 00000	0	

Introduction

Electroweak correction come in two variants: virtual corrections and real emission correction.

Virtual electroweak corrections often studied in the context of gauge boson and jet production at large transverse momentum (EW-Sudakov suppression). Usually negative and increasing with p_{\perp} .

Real electroweak corrections usually constitute a separate process. However, largest BR of W/Z bosons is hadronic, thus (almost) indistinguishable in jet production. Nonetheless may constitute signal in itself.

When large scale differences occur resummation is needed in either case. Practically at LHC13/14 these scale differences are moderate.

Beware of subleading orders.

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 000000000	000000 00000	0 0	

Outline

 Next-to-leading order electroweak corrections Setup, subtleties and automation Selected results

2 Triboson production On-shell vs. Off-shell production Full off-shell results

3 Electroweak corrections in MCs Approximate inclusion in NLO QCD multijet merging Selected results

4 Conclusions

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 000000000	000000 00000	0	

Electroweak corrections for LHC physics

Next-to-leading order electroweak corrections Setup, subtleties and automation Selected results

2 Triboson production On-shell vs. Off-shell production Full off-shell results

3 Electroweak corrections in MCs Approximate inclusion in NLO QCD multijet merging Selected results

4 Conclusions

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
• • • • • • • • • • • • • • • • • • •	000000	0	
Setup, subtleties and automation			

Example: Vjj production

strictly defined only through order counting

- in principle must differentiate between short-distance objects (partons) and long distance objects (observable objects):
 - well known in QCD (quarks, gluons \leftrightarrow jets)
 - introduce similar concepts in EW sector for photons and leptons

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
00000	000000 00000	0	
Setup, subtleties and automation			

· strictly defined only through order counting

- in principle must differentiate between short-distance objects (partons) and long distance objects (observable objects):
 - well known in QCD (quarks, gluons \leftrightarrow jets)
 - introduce similar concepts in EW sector for photons and leptons

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
00000	000000 00000	0	

- NLO QCD
- strictly defined only through order counting
- in principle must differentiate between short-distance objects (partons) and long distance objects (observable objects):
 - well known in QCD (quarks, gluons \leftrightarrow jets)
 - introduce similar concepts in EW sector for photons and leptons

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
00000	000000 00000	0	

- strictly defined only through order counting
- in principle must differentiate between short-distance objects (partons) and long distance objects (observable objects):
 - well known in QCD (quarks, gluons \leftrightarrow jets)
 - introduce similar concepts in EW sector for photons and leptons

Next-to-leading order electroweak corrections •00000 00000000	Triboson production 000000 00000	Electroweak corrections in MCs O O	Conclusions
Setup, subtleties and automation			

- strictly defined only through order counting
- in principle must differentiate between short-distance objects (partons) and long distance objects (observable objects):
 - well known in QCD (quarks, gluons \leftrightarrow jets)
 - introduce similar concepts in EW sector for photons and leptons

Next-to-leading order electroweak corrections •00000 00000000	Triboson production 000000 00000	Electroweak corrections in MCs O O	Conclusions
Setup, subtleties and automation			

- · strictly defined only through order counting
- in principle must differentiate between short-distance objects (partons) and long distance objects (observable objects):
 - well known in QCD (quarks, gluons \leftrightarrow jets)
 - introduce similar concepts in EW sector for photons and leptons

Next-to-leading order electroweak corrections •00000 00000000	Triboson production 000000 00000	Electroweak corrections in MCs O O	Conclusions
Setup, subtleties and automation			

- · strictly defined only through order counting
- in principle must differentiate between short-distance objects (partons) and long distance objects (observable objects):
 - well known in QCD (quarks, gluons \leftrightarrow jets)
 - introduce similar concepts in EW sector for photons and leptons

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000	000000 00000	0	

Definition of physical objects

What is a jet?

- photons and leptons must be part of a jet, but to what extent?
- democratic:
 - + straight forward, always well defined
 - many contributions
 - \rightarrow single photons constitute a jet
 - \rightarrow single leptons constitute a jet
- anti-tagging jets with certain flavour content:
 - + fewer contributions
 - needs a lot of care to be well-defined at all contributing orders
 - $\rightarrow\,$ anti-tag jets with too large photon content
 - $\rightarrow\,$ anti-tag jets with net lepton content
- which approach is closer to experiment depends on analysis, general anti-tagging must proceed through fragmentation functions

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000000000000000000000000000000000000	000000	0	
Setup, subtleties and automation			

What is a photon?

- differentiate: short-distance photon (photon as parton), long-distance photon (identified, measurable photon)
- a) treat as identified particle, renormalise on-shell ($\alpha(0)$), no $\gamma \to ff \to \gamma$ renormalisation contains IR poles
 - \rightarrow problematic if both identified and unresolved photons in Born
- **b)** treat democratically (just another parton), renormalise in short distance scheme (G_{μ} , $\alpha(m_Z)$, $\overline{\text{MS}}$, ...), include $\gamma \rightarrow ff$ splittings \rightarrow pure UV renormalisation
 - ightarrow identify photon through frag. function $D^p_\gamma(z,\mu)$

i.e.
$$D_{\gamma}^{\gamma}(z,\mu) = \frac{\alpha(0)}{\alpha_{\rm sd}} \,\delta(1-z) + \mathcal{O}(\alpha^2)$$

 $D_{2}^{n}(z,\mu) = O(\alpha), D_{2}^{n}(z,\mu) = O(\alpha_{2}\alpha).$

Next-to-leading order electroweak corrections OOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOO	Triboson production 000000 00000	Electroweak corrections in MCs O O	Conclusions
Setup, subtleties and automation			

What is a photon?

- differentiate: short-distance photon (photon as parton), long-distance photon (identified, measurable photon)
- a) treat as identified particle, renormalise on-shell ($\alpha(0)$), no $\gamma \to ff \to renormalisation contains IR poles$
 - \rightarrow problematic if both identified and unresolved photons in Born
- **b)** treat democratically (just another parton), renormalise in short distance scheme (G_{μ} , $\alpha(m_Z)$, $\overline{\text{MS}}$, ...), include $\gamma \rightarrow ff$ splittings \rightarrow pure UV renormalisation

ightarrow identify photon through frag. function $D^p_\gamma(z,\mu)$

i.e.
$$D_{\gamma}^{\gamma}(z,\mu) = rac{lpha(0)}{lpha_{
m sd}} \, \delta(1-z) + \mathcal{O}(lpha^2)$$

 $D_{\gamma}^{q}(z,\mu) = O(\alpha), D_{\gamma}^{q}(z,\mu) = O(\alpha_{s}\alpha)$

Next-to-leading order electroweak corrections OOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOO	Triboson production 000000 00000	Electroweak corrections in MCs O O	Conclusions
Setup, subtleties and automation			

What is a photon?

- differentiate: short-distance photon (photon as parton), long-distance photon (identified, measurable photon)
- a) treat as identified particle, renormalise on-shell ($\alpha(0)$), no $\gamma \to ff \to renormalisation contains IR poles$
 - \rightarrow problematic if both identified and unresolved photons in Born
- b) treat democratically (just another parton), renormalise in short distance scheme (G_{μ} , $\alpha(m_Z)$, $\overline{\text{MS}}$, ...), include $\gamma \rightarrow ff$ splittings \rightarrow pure UV renormalisation
 - \rightarrow identify photon through frag. function $D^p_\gamma(z,\mu)$

i.e.
$$D_{\gamma}^{\gamma}(z,\mu) = \frac{\alpha(0)}{\alpha_{sd}} \,\delta(1-z) + \mathcal{O}(\alpha^2)$$

and $D^q_{\gamma}(z,\mu) = \mathcal{O}(\alpha), \ D^g_{\gamma}(z,\mu) = \mathcal{O}(\alpha_s \alpha)$

Next-to-leading order electroweak corrections OOOOO OOOOOOOOOOOOOOOOOOOOOOOOOOOOO	Triboson production 000000 00000	Electroweak corrections in MCs O O	Conclusions
Setup, subtleties and automation			

What is a photon?

- differentiate: short-distance photon (photon as parton), long-distance photon (identified, measurable photon)
- a) treat as identified particle, renormalise on-shell ($\alpha(0)$), no $\gamma \to ff \to renormalisation contains IR poles$
 - \rightarrow problematic if both identified and unresolved photons in Born
- b) treat democratically (just another parton), renormalise in short distance scheme (G_{μ} , $\alpha(m_Z)$, $\overline{\text{MS}}$, ...), include $\gamma \rightarrow ff$ splittings \rightarrow pure UV renormalisation
 - ightarrow identify photon through frag. function $D^p_\gamma(z,\mu)$

i.e.
$$D_{\gamma}^{\gamma}(z,\mu) = \frac{\alpha(0)}{\alpha_{sd}} \,\delta(1-z) + \mathcal{O}(\alpha^2)$$

and $D_{\gamma}^{q}(z,\mu) = \mathcal{O}(\alpha), \, D_{\gamma}^{g}(z,\mu) = \mathcal{O}(\alpha_{s}\alpha)$

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000000000000000000000000000000000000	000000 00000	0	
Setup, subtleties and automation			

What is a lepton?

- in principle, again differentiate between short-distance parton and long-distance identified and measurable object
- simplified as leptons not gauge bosons, thus

 $D^\ell_\ell(z,\mu) = \delta(1-z) {+} \mathsf{QED}$ bremsstrahlung

 $D_\ell^\gamma(z,\mu)=\mathcal{O}(\alpha)$ problematic in processes with ℓ and unresolved photons in Born

all other $D^q_\ell(z,\mu) = \mathcal{O}(\alpha^2)$, $D^g_\ell(z,\mu) = \mathcal{O}(\alpha_s \alpha^2)$

- dressed lepton: masseless leptons must be dressed for IR safety
- bare lepton: massive leptons may be measured bare
- Born lepton: not an infrared-safe concept

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 000000000	000000	0	
Setup, subtleties and automation			

Automation

- $\Rightarrow\,$ emergence of automated frameworks for NLO EW computations along the principles of NLO QCD automation
 - Monte-Carlo frameworks (Born and real emission matrix elements, infrared subtraction, phase space generation, process coordination)
 - SHERPA MS arXiv:1712.07975
 - MADGRAPH Frederix et.al. arXiv:1804.10017
 - virtual corrections (EW one-loop matrix elements, renormalisation)
 - GOSAM Chiesa et.al. arXiv:1507.08579
 - MADLOOP Frixione et.al. arXiv:1407.0823
 - OpenLoops
 - RECOLA

- Kallweit et.al. arXiv:1412.5157 Actis et al. arXiv:1211.6316
- currently generally limited to fixed-order
- a number of dedicated calculations and private codes

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000	000000 00000	0	

NLO EW calculations with SHERPA

• SHERPA+OPENLOOPS:

- $pp \rightarrow \gamma/\ell\ell/\ell\nu/\nu\nu + 0, 1, 2(, 3)$ jets Kallweit, Lindert, Maierhöfer, Pozzorini, MS arXiv:1412.5157, arXiv:1511.08692 Lindert et al. arXiv:1705.04664

- $pp \rightarrow Vh$
- $pp \rightarrow 2\ell 2\nu$
- $pp
 ightarrow t \overline{t} / t \overline{t} j$
- $pp \rightarrow t\bar{t}h$
- SHERPA+GOSAM
 - $pp
 ightarrow \gamma\gamma + 0, 1, 2$ jets
 - $pp \rightarrow \gamma \gamma \gamma / \gamma \gamma \ell \nu / \gamma \gamma \ell \ell$

Chiesa et.al. arXiv:1706.09022 Greiner, MS arXiv:1710.11514

FCC report arXiv:1607.01831

LH'15 arXiv:1605.04692

Kallweit, Lindert, Pozzorini, MS arXiv:1705.00598

Gütschow, Lindert, MS arXiv:1803.00950

- Sherpa+Recola
 - $pp \rightarrow V+0, 1, 2$ j, $pp \rightarrow 4\ell$, $pp \rightarrow t\bar{t}h$ Biedermann et.al. arXiv:1704.05783
 - $pp
 ightarrow 3\ell 3
 u$ MS arXiv:1806.00307
 - $pp \rightarrow jj/jjj$ Reyer, MS, Schumann arXiv:1902.01763

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000	000000 00000	0	

NLO EW calculations with SHERPA

• SHERPA+OPENLOOPS:

- $pp \rightarrow \gamma/\ell\ell/\ell\nu/\nu\nu + 0, 1, 2(, 3)$ jets Kallweit, Lindert, Maierhöfer, Pozzorini, MS arXiv:1412.5157, arXiv:1511.08692 Lindert et al. arXiv:1705.04664

- $pp \rightarrow Vh$
- $pp \rightarrow 2\ell 2\nu$
- $pp \rightarrow t\bar{t}/t\bar{t}j$
- $pp \rightarrow t\bar{t}h$
- SHERPA+GOSAM
 - $pp \rightarrow \gamma\gamma + 0, 1, 2$ jets
 - $pp \rightarrow \gamma \gamma \gamma / \gamma \gamma \ell \nu / \gamma \gamma \ell \ell$

Chiesa et.al. arXiv:1706.09022 Greiner, MS arXiv:1710.11514

FCC report arXiv:1607.01831

LH'15 arXiv:1605.04692

Kallweit, Lindert, Pozzorini, MS arXiv:1705.00598

Gütschow, Lindert, MS arXiv:1803.00950

- Sherpa+Recola
 - $pp \rightarrow V+0, 1, 2 \text{ j}, pp \rightarrow 4\ell, pp \rightarrow t\bar{t}h$ Biedermann et.al. arXiv:1704.05783
 - $pp \rightarrow 3\ell 3 \nu$ MS arXiv:1806.00307
 - $pp \rightarrow jj/jjj$ Reyer, MS, Schumann arXiv:1902.01763

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000	000000 00000	0	

NLO EW calculations with SHERPA

• SHERPA+OPENLOOPS:

- $pp \rightarrow \gamma/\ell\ell/\ell\nu/\nu\nu + 0, 1, 2(, 3)$ jets Kallweit, Lindert, Maierhöfer, Pozzorini, MS arXiv:1412.5157, arXiv:1511.08692 Lindert et al. arXiv:1705.04664

- $pp \rightarrow Vh$
- $pp \rightarrow 2\ell 2\nu$
- $pp \rightarrow t\bar{t}/t\bar{t}j$
- $pp \rightarrow t\bar{t}h$
- SHERPA+GOSAM
 - $pp \rightarrow \gamma\gamma + 0, 1, 2$ jets
 - $pp \rightarrow \gamma \gamma \gamma / \gamma \gamma \ell \nu / \gamma \gamma \ell \ell$

Chiesa et.al. arXiv:1706.09022 Greiner, MS arXiv:1710.11514

FCC report arXiv:1607.01831

LH'15 arXiv:1605.04692

Kallweit, Lindert, Pozzorini, MS arXiv:1705.00598

Gütschow, Lindert, MS arXiv:1803.00950

- Sherpa+Recola
 - $pp \rightarrow V+0, 1, 2 \text{ j}, pp \rightarrow 4\ell, pp \rightarrow t\bar{t}h$ Biedermann et.al. arXiv:1704.05783
 - $pp \rightarrow 3\ell 3 \nu$ MS arXiv:1806.00307
 - $pp \rightarrow jj/jjj$ Reyer, MS, Schumann arXiv:1902.01763

Next-to-leading order electroweak corrections	Triboson production 000000 00000	Electroweak corrections in MCs O O	Conclusions

General setup

- work with dressed leptons with $\Delta R_{
 m dress}=0.1$
- input parameters for the following calculations

$$\begin{array}{rcl} G_{\mu} &=& 1.16637 \times 10^{-5} \ {\rm GeV}^2 \\ m_W &=& 80.385 \ {\rm GeV} & & \Gamma_W &=& 2.0897 \ {\rm GeV} \\ m_Z &=& 91.1876 \ {\rm GeV} & & \Gamma_Z &=& 2.4955 \ {\rm GeV} \\ m_h &=& 125.0 \ {\rm GeV} & & \Gamma_h &=& 0.00407 \ {\rm GeV} \\ m_t &=& 173.2 \ {\rm GeV} & & \Gamma_t &=& 1.3394 \ {\rm GeV} \end{array}.$$

- EW parameter renormalisation in G_{μ} -scheme
- photon induced processes considered throughout

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
00000 00000000	000000	0	

Diphoton production – $\gamma\gamma$

NLO EW corrections to diphoton production

- peak-like enhancement around $m_{\gamma\gamma}pprox$ 160 GeV
- induced by W-box creating pseudo-resonant structures

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
00000 00000000	000000	0	

Diphoton production – $\gamma\gamma$

NLO EW corrections to diphoton production

- peak-like enhancement around $m_{\gamma\gamma} = 2 m_W$
- induced by W-box creating pseudo-resonant structures

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000000000000000000000000000000000000	000000	0	

Diboson production – $2\ell 2\nu$ – DF and SF

Kallweit, Lindert, Pozzorini, MS arXiv:1705.00598

• study $e^+\mu^-\nu\bar{
u}$ (DF) and $e^+e^-\nu\bar{
u}$ (SF) production, and $e\leftrightarrow\mu$

$$\begin{array}{lll} \mathsf{DF} & e^+\mu^-\nu_e\bar\nu_\mu & WW\\ \mathsf{SF} & e^+e^-\nu_e\bar\nu_e & WW+ZZ\\ & e^+e^-\nu_{\mu/\tau}\bar\nu_{\mu/\tau} & ZZ \end{array}$$

• incl. event selection w/ standard lepton acceptance cuts, $(p_{T,\ell} > 20 \text{ GeV})$, $|\eta_\ell| < 2.5)$, $n_f = 4$ and mild jet veto to suppress large NLO QCD corr.

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000	000000	0	

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
00000 00000000	000000 00000	0 0	

Diboson production – $2\ell 2\nu$ – DF

• all γ PDF agree that γ -ind. > 10% for $p_{\rm T}$ > 500 GeV very good agreement between CT14qed and LUXqed

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
00000 000000000	000000	0	

Diboson production – $2\ell 2\nu$ – SF

• *WW* dominant throughout, *ZZ* only contribs 10-20% \rightarrow overall very similar to DF case

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 0000000000	000000 00000	0	

Diboson production – $2\ell 2\nu$ – DF

 ZZ dominant at very large p_T → different EW corrections, take care when extrapolating

	Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000000000000000000000000000000000000	000000000000000000000000000000000000000	000000 00000	0	

Diboson production – $2\ell 2\nu$ – SF

• ZZ dominant at very large p_T \rightarrow different EW corrections, take care when extrapolating

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 000000000	000000 00000	0	

Diboson production – $2\ell 2\nu$ – DF

 kinematic suppression for p^{νν}_T at LO, unlocked at NLO QCD not present in γ-induced ⇒ large contrib

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 000000000	000000 00000	0	

Diboson production – $2\ell 2\nu$ – SF

• kinematic suppression for $p_T^{\nu\nu}$ for WW, but not ZZZZ dominates for MET > 100 GeV with large EW corr.

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 000000000	000000 00000	0	

Electroweak corrections for LHC physics

 Next-to-leading order electroweak corrections Setup, subtleties and automation Selected results

2 Triboson production On-shell vs. Off-shell production Full off-shell results

3 Electroweak corrections in MCs

Approximate inclusion in NLO QCD multijet merging Selected results

4 Conclusions

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 000000000	00000 00000	0	

Triboson production – $3\ell 3\nu$ – 0, 1, 2 SFOS

MS arXiv:1806.00307

• contribs from 0 SFOS $(e^-\mu^+\mu^+\bar{\nu}\nu\nu)$, 1 SFOS $(e^-e^+\mu^+\bar{\nu}\nu\nu)$ and 2 SFOS $(e^-e^+e^+\bar{\nu}\nu\nu)$ processes, and $e \leftrightarrow \mu$

0 SFOS	$e^-\mu^+\mu^+ar{ u}_e u_\mu u_\mu$	WWW	
1 SFOS	$e^-e^+\mu^+ar{ u}_e u_e u_\mu$	WWW + WZZ	
	$e^-e^+\mu^+ar u_\mu u_\mu u_\mu$	WZZ	
	$e^-e^+\mu^+ar u_ au u_ au$	WZZ	
2 SFOS	$e^-e^+e^+ar{ u}_e u_e u_e$	WWW + WZZ	
	$e^-e^+e^+ar{ u}_{\mu/ au} u_{\mu/ au} u_e$	WZZ	

standard lepton acceptance cuts, idealised from ATLAS arXiv:1610.05088

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000	• 00000 00000	0	

Triboson production – $3\ell 3\nu$ – 0, 1, 2 SFOS

MS arXiv:1806.00307

• contribs from 0 SFOS $(e^-\mu^+\mu^+\bar{\nu}\nu\nu)$, 1 SFOS $(e^-e^+\mu^+\bar{\nu}\nu\nu)$ and 2 SFOS $(e^-e^+e^+\bar{\nu}\nu\nu)$ processes, and $e \leftrightarrow \mu$

0 SFOS	$e^-\mu^+\mu^+ar{ u}_e u_\mu u_\mu$	WWW	$WZ[ightarrow 2\ell 2 u]$	
1 SFOS	$e^-e^+\mu^+ar{ u}_e u_e u_\mu$	WWW + WZZ	$WZ[ightarrow 2\ell 2 u]$	
	$e^-e^+\mu^+ar u_\mu u_\mu u_\mu$	WZZ	$WZ[ightarrow 2\ell 2 u]$	
	$e^-e^+\mu^+ar u_ au u_ au$	WZZ	$WZ[ightarrow 2\ell 2 u]$	
2 SFOS	$e^-e^+e^+ar{ u}_e u_e u_e$	WWW + WZZ	$WZ[\rightarrow 2\ell 2\nu]$	
	$e^-e^+e^+ar{ u}_{\mu/ au} u_{\mu/ au} u_e$	WZZ	$WZ[ightarrow 2\ell 2 u]$	

standard lepton acceptance cuts, idealised from ATLAS arXiv:1610.05088

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000	00000 00000	0	

Triboson production – $3\ell 3\nu$ – 0, 1, 2 SFOS

MS arXiv:1806.00307

• contribs from 0 SFOS $(e^-\mu^+\mu^+\bar{\nu}\nu\nu)$, 1 SFOS $(e^-e^+\mu^+\bar{\nu}\nu\nu)$ and 2 SFOS $(e^-e^+e^+\bar{\nu}\nu\nu)$ processes, and $e \leftrightarrow \mu$

0 SFOS	$e^-\mu^+\mu^+ar{ u}_e u_\mu u_\mu$	WWW	$WZ[ightarrow 2\ell 2 u]$	Wh
1 SFOS	$e^-e^+\mu^+ar{ u}_e u_e u_\mu$	WWW + WZZ	$WZ[ightarrow 2\ell 2 u]$	Wh
	$e^-e^+\mu^+ar{ u}_\mu u_\mu u_\mu$	WZZ	$WZ[ightarrow 2\ell 2 u]$	Wh
	$e^-e^+\mu^+ar u_ au u_ au$	WZZ	$WZ[ightarrow 2\ell 2 u]$	Wh
2 SFOS	$e^-e^+e^+ar{ u}_e u_e u_e$	WWW + WZZ	$WZ[ightarrow 2\ell 2 u]$	Wh
	$e^-e^+e^+ar{ u}_{\mu/ au} u_{\mu/ au} u_e$	WZZ	$WZ[ightarrow 2\ell 2 u]$	Wh

standard lepton acceptance cuts, idealised from ATLAS arXiv:1610.05088

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000	00000	0	

NLO EW corrections in off-shell trilepton production

MS arXiv:1806.00307

Selection	Cut	Value	
general	$p_{\mathrm{T}}(\ell)$	[20 GeV, ∞)	
	y(ℓ)	[-2.5, 2.5]	lepton
	$\Delta R(\ell,\ell)$	$[0.2,\infty)$	ucceptunce
$p_{ m T}^{\prime}>$ 20 GeV	$\Delta \phi({p\!\!\!/}_{ m T},\ell\ell\ell)$	$[\frac{5}{6}\pi,\pi]$	jet veto
1, 2 SFOS	¢∕⊤	[50 GeV, ∞)	M/Z voto
	$m_{\ell\ell}^{ m sfos}$	$[0,70{ m GeV}]\wedge [100{ m GeV},\infty)$	VVZ VELO

- minimise ttW, tWW, WZ backgrounds
- scale choice: $\mu = \sum m_{T,i}^W$ ambiguous in all channels, EW corrections largely scale independent: choose $\mu_R = \mu_F = 3 m_W$
- use NNPDF31_nlo_as_0118_luxqed for reliable γ PDF

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000	00000	0	

On-shell vs. off-shell triboson production

On-shell production

- only triple res. dgrms, threshold at $3 m_W$
- strong interference between diagrams in which different numbers of gauge bosons couple to quark line
- some kinematic width effects recoverable through BW-shape improved spin-correlated decays
- NLO QCD+EW

Dittmaier, Huss, Knippen arXiv:1705.03722

u

đ

000000 000000000 000000000000000000000	0 0	

On-shell vs. off-shell triboson production

Off-shell production

• triple, double and single res. diagrams, importance of single/double resonant topologiess as in *WW*

Biedermann et.al. arXiv:1605.03419

- includes on-shell *WWW* production, *WZ* production with $Z \rightarrow 2\ell 2\nu$, *Wh* production with $h \rightarrow WW^*/ZZ^*$
- thresholds given by acceptance cuts
- NLO QCD
- Campanario et.al. arXiv:0809.0790

Next-to-leading order electroweak corrections	Triboson production	Electroweak correction
000000	000000	0
000000000	00000	0

On-shell vs. off-shell triboson production

$m_{\ell\ell\ell\nu\nu\nu} = m_{WWW}$

 no unique W identifaction possible in off-shell calculation, even in MC truth, due to occurrence of SF pairs

is in MCs

- on-shell WWW not dominating for incl. xsec
- large cross section from Wh, WZ negligible
- at larger *m*_{WWW} contribs from double (single) resonant
- \rightarrow cross checked with off-shell calculation projected on triple W resonant subset of diagrams

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000	00000 00000	0	

On-shell vs. off-shell triboson production

- on-shell approximation reasonable for $m_{\ell\ell\ell}$
- large single and double resonant contribs for MET

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 000000000	00000 00000	0	

NLO EW corrections in off-shell trilepton production

MS arXiv:1806.00307

- at LO: triple and quartic gauge boson self-interactions
- at NLO EW: appearance of octagons, closed fermion loops, Higgs self-interactions, Yukawa couplings, etc
- genuine NLO EW 2 \rightarrow 6 calculation with 3 resonances

Next to loading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
Next-to-reading order electroweak corrections		Contections in mics	Conclusions
000000000	00000	0	
Full off-shell results			

dσ/dm [fb/GeV 10-2

Triboson production

- off-shell $W^+W^+W^$ production
- includes 0, 1, 2 SFOS processes (WWW and WZZ structures)
- EW correction (incl. γ -induced) important
- accidental cancellations of EW corr. in $q\bar{q}$ and $q\gamma/\bar{q}\gamma$ channels

but highly obs. dependent

 $pp \rightarrow \ell_1^- \ell_2^+ \ell_3^+ \overline{\nu}_{\ell_1} \nu_{\ell_2} \nu_{\ell_3} @$ 13 TeV

MS arXiv:1806.00307

····· o SFO 1 SFOS · · 2 SEOS

NLOEW

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusion
000000	00000	0	

Triboson production - 0, 1, 2 SFOS decomposition

MS arXiv:1806.00307

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 000000000	00000	0 0	

Triboson production - 0, 1, 2 SFOS decomposition

MS arXiv:1806.00307

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000	00000	0	

Triboson production - 0, 1, 2 SFOS decomposition

MS arXiv:1806.00307

Electroweak corrections for LHC physics

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 000000000	00000 00000	0	

Triboson production

- 1, 2 SFOS: req. *p*/_T > 50 GeV to suppress *WZ* background
- substantial γ -induced contributions
- accidental cancellations

MS arXiv:1806.00307

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000	00000 00000	0	

Triboson production

MS arXiv:1806.00307

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000	000000	0	

Electroweak corrections for LHC physics

 Next-to-leading order electroweak corrections Setup, subtleties and automation Selected results

2 Triboson production On-shell vs. Off-shell production Full off-shell results

3 Electroweak corrections in MCs Approximate inclusion in NLO QCD multijet merging Selected results

4 Conclusions

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 000000000	000000 00000	•	
Approximate inclusion in NLO QCD multijet merging			

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO)
- taylored to large- $p_{\rm T}$ regions where EW corrections dominated by virtual W/Z exchange and RG running
- modify MC@NLO $\overline{\rm B}\text{-}{\rm function}$ to include NLO EW virtual corrections and integrated approx. real corrections

$$\overline{\mathrm{B}}_{n,\mathsf{QCD}+\mathsf{EW}_{\mathsf{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathsf{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathsf{EW}}(\Phi_n) + \mathrm{I}_{n,\mathsf{EW}}(\Phi_n) + \mathrm{B}_{n,\mathsf{mix}}(\Phi_n)$$

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 000000000	000000	•	
Approximate inclusion in NLO OCD multijet merging			

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO)
- taylored to large- $p_{\rm T}$ regions where EW corrections dominated by virtual W/Z exchange and RG running
- modify MC@NLO $\overline{\rm B}\text{-}{\rm function}$ to include NLO EW virtual corrections and integrated approx. real corrections

$$\overline{\mathrm{B}}_{n,\mathrm{QCD}+\mathrm{EW}_{\mathrm{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathrm{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{I}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{B}_{n,\mathrm{mix}}(\Phi_n)$$

exact virtual contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 000000000	000000	•	
Approximate inclusion in NLO OCD multijet merging			

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO)
- taylored to large- $p_{\rm T}$ regions where EW corrections dominated by virtual W/Z exchange and RG running
- modify MC@NLO $\overline{\rm B}\text{-}{\rm function}$ to include NLO EW virtual corrections and integrated approx. real corrections

$$\overline{\mathrm{B}}_{n,\mathrm{QCD}+\mathrm{EW}_{\mathrm{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathrm{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{I}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{B}_{n,\mathrm{mix}}(\Phi_n)$$

exact virtual contribution

approximate integrated real contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 000000000	000000 00000	•	
Approximate inclusion in NLO OCD multijet merging			

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO)
- taylored to large- $p_{\rm T}$ regions where EW corrections dominated by virtual W/Z exchange and RG running
- modify MC@NLO $\overline{\rm B}\mbox{-}{\rm function}$ to include NLO EW virtual corrections and integrated approx. real corrections

optionally include subleading Born

$$\overline{\mathrm{B}}_{n,\mathrm{QCD}+\mathrm{EW}_{\mathrm{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathrm{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{I}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{B}_{n,\mathrm{mix}}^{\dagger}(\Phi_n)$$

exact virtual contribution

approximate integrated real contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 000000000	000000	•	
Approximate inclusion in NLO OCD multilet merging			

- incorporate approximate electroweak corrections in SHERPA's NLO QCD multijet merging (MEPS@NLO)
- taylored to large- $p_{\rm T}$ regions where EW corrections dominated by virtual W/Z exchange and RG running
- modify MC@NLO $\overline{\rm B}\mbox{-}{\rm function}$ to include NLO EW virtual corrections and integrated approx. real corrections

optionally include subleading Born

$$\overline{\mathrm{B}}_{n,\mathrm{QCD}+\mathrm{EW}_{\mathrm{virt}}}(\Phi_n) = \overline{\mathrm{B}}_{n,\mathrm{QCD}}(\Phi_n) + \mathrm{V}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{I}_{n,\mathrm{EW}}(\Phi_n) + \mathrm{B}_{n,\mathrm{mix}}^{\dagger}(\Phi_n)$$

exact virtual contribution

approximate integrated real contribution

- real QED radiation can be recovered through standard tools (parton shower, YFS resummation)
- simple stand-in for proper QCD+EW matching and merging

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 000000000	000000 00000	•	

Results: $pp \rightarrow t\bar{t} + jets$

Gütschow, Lindert, MS in arXiv:1803.00950

- $pp \rightarrow t\bar{t} + 0, 1j$ @NLO + 2, 3, 4j@LO
- additional LO multiplicities inherit electroweak corrections through MENLOPS differential *K*-factor

Höche, Krauss, MS, Siegert arXiv:1009.1127

• improved description of data

Next-to-leading order electroweak corrections 000000 0000000000	Triboson production 000000 00000	Electroweak corrections in MCs O O	Conclusions

Conclusions

- electroweak effects are important at LHC, HE–LHC, FCC, etc.
- become large whenever the scale is large compared the EW scale
- precise definition of physics objects needed
 - \Rightarrow differentiate short-distance parton and long-distance measurable object
- can be incorporated in multijet-merged particle-level calculations to improve description in those regions
 - \rightarrow currently tailored to TeV-scale physics
- automation of NLO EW follows on the heels of NLO QCD
 - \rightarrow much more care with consistent schemes and order counting
 - \rightarrow very rich phenomenology
 - \rightarrow can induce peaks, edges or kinks in distributions
 - \rightarrow includes many more pitfalls than NLO QCD

Next-to-leading order electroweak corrections T	Friboson production	Electroweak corrections in MCs	Conclusions
000000 CC	00000	0	

Thank you for your attention!

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 000000000	000000 00000	0 0	

Backup

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 000000000	000000	0	

Top pair production in association with jets

Gütschow, Lindert, MS in arXiv:1803.00950

Observation: NLO EW factorises from additional jet activity when rather inclusive on jet definition

Next-to-leading order electroweak corrections	Triboson production	Electroweak corrections in MCs	Conclusions
000000 000000000	000000 00000	0	

Top pair production in association with jets

 $\rightarrow t\bar{t}$ (+ jet) at 13 TeV $pp \rightarrow t\bar{t}$ (+ jet) at 13 TeV 101 $d\sigma/dm_{if}$ [pb GeV⁻¹] 1.0 10 adif of the state 10 0.95 10 10 ····· tī (LO) (NLO EWvirt) (NLO EW + LO11+02) tī (NLO EW) 0.9 10-3 (NLO EW + LO₁₁₊₀₂ + ΔNLO₁₂₊₀₃) $\cdots t\bar{t} + iet (LO)$ 10^{-6} $t\bar{t} + iet (NLO EW)$ 10^{-7} 10^{-8} 1.0 1.04 $d\sigma_{\rm NLO}^{l\bar{l}\bar{l}}/d\sigma_{\rm LO}^{l\bar{l}\bar{l}}$ NLO EW tīi/tī do^{ll}ob do^{ll}ob 1.02 0.95 et (NLO EW_{virt}) 0.9 (NLO EW + LO21+12) NLO EW + LO₂₁₊₁₂ + ΔNLO₂₂₊₁₃ 0.96 500 1000 5000 m_{tī} [GeV] 500 1000 5000 m_{tī} [GeV]

Gütschow, Lindert, MS in arXiv:1803.00950

Observation: subleading orders important