

Neutrino Mixing and new physics

Phill Litchfield

2018/07/13

Outline

Neutrino oscillations

Where we are

- The T2K experiment
- Search for CP violation
- Where we are going
- Measurement of δ_{CP}

Neutrino oscillations

Neutrino mixing

Neutrinos always **produced** and **detected** as weak states $v_{\alpha} = \{v_e, v_{\mu}, v_{\tau}\}$ which is (very) different from **propagation** basis $v_i = \{v_1, v_2, v_3\}$

• In vacuum, **propagation basis** ≡ mass basis

Propagation states eventually get out of phase

• The superposition resolves as a different weak *flavor*

Oscillation is the combination of a mixing matrix (U) and the different phase advances of the three mass states

$$P_{\text{vac}}(\nu_{\alpha} \rightarrow \nu_{\beta}) = \delta_{\alpha\beta} - 4 \sum_{i>j} Re \left[U_{\beta i} U_{\alpha i}^* U_{\beta j}^* U_{\alpha j} \right] \sin^2 \left(\frac{\Delta m_{ij}^2 L}{4E} \right)$$
$$+ 2 \sum_{i>j} Im \left[U_{\beta i} U_{\alpha i}^* U_{\beta j}^* U_{\alpha j} \right] \sin \left(\frac{\Delta m_{ij}^2 L}{2E} \right)$$

Mixing must be unitary, so decompose in terms of $\{c, s\}_{ij} = \{\cos, \sin\} \theta_{ij}$

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

 Δm_{t}^{2}

Have 2 independent mass² scales, and 4 unitary mixing parameters:

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Historically useful:

• v_e disappearance in **solar** neutrinos from θ_{12} mixing and splitting $\Delta m_{21}^2 = m_2^2 - m_1^2$ Normal Hierarchy

 $\Delta m_{\rm atm}^2$

 Δm_{c}^{2}

Have 2 independent mass² scales, and 4 unitary mixing parameters:

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Historically useful:

- v_e disappearance in **solar** neutrinos from θ_{12} mixing and splitting $\Delta m_{21}^2 = m_2^2 - m_1^2$
- $v_{\mu} \leftrightarrow v_{\tau}$ oscillations in **atmospheric** neutrinos from θ_{23} mixing and splitting Δm_{3i}^2

Normal Hierarchy

 $\Delta m^2_{\rm atm}$

Have 2 independent mass² scales, and 4 unitary mixing parameters:

$$U_{PMNS} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} & 0 & s_{13}e^{-i\delta} \\ 0 & 1 & 0 \\ -s_{13}e^{i\delta} & 0 & c_{13} \end{pmatrix} \begin{pmatrix} c_{12} & s_{12} & 0 \\ -s_{12} & c_{12} & 0 \\ 0 & 0 & 1 \end{pmatrix}$$

Historically useful:

- v_e disappearance in **solar** neutrinos from θ_{12} mixing and splitting $\Delta m_{21}^2 = m_2^2 - m_1^2$
- ν_μ ↔ ν_τ oscillations in atmospheric neutrinos from θ₂₃ mixing and splitting Δm²_{3i}
 It also works out that reactor neutrinos at 1km are sensitive to θ₁₃ and Δm²_{3i}

Normal Hierarchy

 Δm_c^2

Standard neutrino picture

Now: precision measurement — can't approximate as a single sub-matrix.

• We know fairly well what the mixing matrix looks like:

$$|U_{\rm PMNS}|^2 \simeq \begin{pmatrix} \nu_1 & \nu_2 & \nu_3 \\ \bullet & \bullet \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix}$$

Open questions

Now: precision measurement — can't approximate as a single sub-matrix.

• We know *fairly* well what the mixing matrix looks like:

$$|U_{\rm PMNS}|^2 \simeq \begin{pmatrix} \nu_1 & \nu_2 & \nu_3 \\ \bullet & \bullet \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix}$$

The T2K experiment & the search for CP violation

T2K measurements

Muon neutrino beam produced at J-PARC on Japan's east coast

- Directed 'towards' Super-Kamiokande, 295km away.
- Near Detector complex at 280m (ND280) to study beam and interactions

The T2K Experiment

Analysis strategy

University of Glasgow

J-PARC Accelerators

University of Glasgow

- 30 GeV/c proton beam
- Fast-extracted onto carbon target to produce (mostly) pions
- 8 bunches/spill at ~580ns spacing.
- 2.48s between spills

The T2K experiment

The T2K experiment: ND280

University of Glasgow

The T2K experiment: SK

Super-Kamiokande events

19 University of Glasgow

Ť

Super-Kamiokande samples

Super-K electron-like samples

University of Glasgow

Super-K electron-like samples

FHC: 15 events observed with decay electron

+75 "1Re" = 90 events total

RHC: 15 events observed

 Flux and cross-section differences mean this should be low, but

Super-K muon-like samples

FHC: 243 events observed

(~268 expected)

RHC: 102 event observed

(~95 expected)

'Wrong sign' v_{μ} component is large but counts as signal

Analysis strategy (Reprise)

University of Glasgow

Appearance* Results

- T2K results in $\sin^2 \theta_{13} \delta_{CP}$ plane are S-curves
- One curve for FHC, another for RHC
- New RHC data improves T2K-only constraints
- Inverted Ordering needs slightly larger $\sin^2 \theta_{13}$

*Uses v_{μ} disspearance data as well; marginalises over other oscillation parameters

Appearance* Results

- T2K results in $\sin^2 \theta_{13} \delta_{CP}$ plane are S-curves
- One curve for FHC, another for RHC
- New RHC data improves T2K-only constraints
- Inverted Ordering needs slightly larger $\sin^2 \theta_{13}$

 δ_{CP} constraint then improved by intersection with reactor value.

• More tension in Inverted Ordering, leading to stronger than expectation preference for Normal Ordering

T2K Run 1-9 Preliminary

Best fit PDG 2018 Normal - 90CL

Inverted - 68CL
Inverted - 90CL

Constraint on δ_{CP}

- Marginalise over everything except δ_{CP}
- Compare to frequentist critical values
- Exclude CP conservation at $> 2\sigma$ C.L.
- Inverted ordering only just $< 2\sigma$ C.L.

• Stronger than expected sensitivity

• In toy experiments at best fit, 2σ exclusion of $\delta = \{0, \pi\}$ occurs in 25% of cases

Phill **Litchfield**

Summary numbers

Almost double exposure since last paper [Phys.Rev.D96, 092006 (2017)]

- FHC (mainly ν): 7.482×10²⁰ \rightarrow **1.49×10²¹** POT
- RHC (mainly $\bar{\nu}$): 7.471×10²⁰ \rightarrow **1.63×10²¹** POT ۲

CP conserving values of δ_{CP} lie outside the 2σ interval

Best IO point also disfavoured at nearly 2σ

Mass ordering	Best fit $\delta_{ ext{CP}}$	2σ interval
Normal	-1.89 (-0.58 <i>π</i>)	[-2.96, -0.63]
Inverted	-1.38 (-0.44 <i>π</i>)	[-1.80, -0.98]

Updated constraints on other parameters:

Parameter	Best fit [NO]	1σ interval	Best fit [IO]	1σ interval
$\sin^2 \theta_{23}$	0.532	[0.495, 0.562]	0.532	[0.495, 0.567]
Δm^2_{32}	+2.45	[+2.38, +2.52]	-2.51	[-2.58, -2.44]
$\sin^2 \theta_{13}$ (T2K only)	2.68×10 ⁻³	[2.23, 3.23]×10 ⁻³	3.00×10 ⁻³	[2.50, 3.59]×10 ⁻³

Another way to think about δ_{CP}

T2K measurement of δ_{CP}

T2K observes a strong CP violation signal: more v_e and fewer \bar{v}_e than expected

 Can present that statement graphically: the "Bi-Rate" plot

In this plot T2K data is 'extreme'

~1 in 4 chance even for the best fit

Usually focus on $\sin \delta$, which is proportional to the invariant CP-violation strength.

Mass ordering	Best fit $\delta_{ ext{CP}}$	2σ interval
Normal	(-0.58 <i>π</i>)	[-2.91, -0.64]
Inverted	(-0.44 <i>π</i>)	[-1.57, -1.16]

Working in $sin\delta$

Discomfort with δ as a parameter has been expressed before:

- (Discovery of) CP violation a function of $\sin \delta$, rather than δ
- In the idealised case, $\sin \delta$ is simply related to the asymmetry:

 $A_{\rm CP} = \frac{N(\nu_e) - N(\overline{\nu}_e)}{N(\nu_e) + N(\overline{\nu}_e)}$

[In practice, the matter effect, cross-sections & wrong-sign BGs all have to be accounted for.]

T2K fit in sin δ (right) is more Gaussian (parabolic) than when presented in δ

Working in $\sin\delta$

Discomfort with δ as a parameter has been expressed before:

- (Discovery of) CP violation a function of $\sin \delta$, rather than δ
- In the idealised case, $\sin \delta$ is simply related to the asymmetry:

 $A_{\rm CP} = \frac{N(\nu_e) - N(\overline{\nu}_e)}{N(\nu_e) + N(\overline{\nu}_e)}$

[In practice, the matter effect, cross-sections & wrong-sign BGs all have to be accounted for.]

T2K fit in $\sin \delta$ (right) is more Gaussian (parabolic) than when presented in δ

Dependence on δ

The appearance probability can be approximated as:

$$\begin{split} P(\nu_{\mu} \rightarrow \nu_{e}) &\approx T_{\theta\theta} \sin^{2} 2\theta_{13} \frac{\sin^{2}([1-A]\Delta)}{[1-A]^{2}} + T_{\alpha\alpha} \alpha^{2} \frac{\sin^{2}(A\Delta)}{A^{2}} \\ &- T_{\alpha\theta} \alpha \sin 2\theta_{13} \frac{\sin([1-A]\Delta)}{(1-A)} \frac{\sin(A\Delta)}{A} \sin \Delta \sin \delta \\ &+ T_{\alpha\theta} \alpha \sin 2\theta_{13} \frac{\sin([1-A]\Delta)}{(1-A)} \frac{\sin(A\Delta)}{A} \cos \Delta \cos \delta \end{split}$$

where $\Delta = \Delta m_{31}^2 L/4E$ is $\sim \pi/2$ at the oscillation maximum

- Terms multiplying the sin δ and cos δ parts are rather different:
- Factor with $\sin \delta$ is large, ~uniform and inverts for antineutrinos
- Factor with $\cos \delta$ is changes sign either side of the oscillation maximum

→ Look for $\cos \delta$ as an energy distortion.

Looking again at the Bi-rate plot

Can now understand another feature of the Bi-rate plot:

- The ellipses are highly eccentric – almost lines
- Side effect of a wellaligned neutrino spectrum

Because T2K flux is about equal above and below $E_{\text{osc max}}$ the $\cos \delta$ dependence washes out when looking at the total rate

Spectral distortion

If we *don't* integrate the flux and look at fixed energies, $\cos \delta$ dependence *is* visible. Total rate measures $\sin \delta$

Spectral distortion measures $\cos \delta$

Goal: measure the two axes of this ellipse *independently*.

• Modify the fit function so that the explicit $\sin \delta$, $\cos \delta$ terms become *independent* free parameters: $(\sin \delta, \cos \delta) \rightarrow (X_s, X_c)$

This is easy to do with the approximate formula:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx T_{\theta\theta} \sin^{2} 2\theta_{13} \frac{\sin^{2}([1-A]\Delta)}{[1-A]^{2}} + T_{\alpha\alpha} \alpha^{2} \frac{\sin^{2}(A\Delta)}{A^{2}}$$
$$- T_{\alpha\theta} \alpha \sin 2\theta_{13} \frac{\sin([1-A]\Delta)}{(1-A)} \frac{\sin(A\Delta)}{A} \sin \Delta X_{s}$$
$$+ T_{\alpha\theta} \alpha \sin 2\theta_{13} \frac{\sin([1-A]\Delta)}{(1-A)} \frac{\sin(A\Delta)}{A} \cos \Delta X_{c}$$

Goal: measure the two axes of this ellipse *independently*.

• Modify the fit function so that the explicit $\sin \delta$, $\cos \delta$ terms become *independent* free parameters: $(\sin \delta, \cos \delta) \rightarrow (X_s, X_c)$

This is easy to do with the approximate formula:

$$P(\nu_{\mu} \rightarrow \nu_{e}) \approx T_{\theta\theta} \sin^{2} 2\theta_{13} \frac{\sin^{2}([1-A]\Delta)}{[1-A]^{2}} + T_{\alpha\alpha} \alpha^{2} \frac{\sin^{2}(A\Delta)}{A^{2}}$$
$$- T_{\alpha\theta} \alpha \sin 2\theta_{13} \frac{\sin([1-A]\Delta)}{(1-A)} \frac{\sin(A\Delta)}{A} \sin \Delta X_{s}$$
$$+ T_{\alpha\theta} \alpha \sin 2\theta_{13} \frac{\sin([1-A]\Delta)}{(1-A)} \frac{\sin(A\Delta)}{A} \cos \Delta X_{c}$$

This is a non-physical model. It will break unitarity somewhere.

- We introduced an extra degree of freedom!
- In practice this is fine, over a limited range.
- Can use it to investigate the constraints provided by the data.
- Physical solutions are recovered by imposing $X_c^2 + X_s^2 = 1$

<u>/!)</u>

A better implementation

Adapting the approx. formula is (almost) 'obvious'.

But T2K analyses do not use this formula.

- Instead, a numerical calculation (Prob3++) that is more accurate.
- We want to add the flexibility without also adding approximations.
 - So that the $\{X_c^2 + X_s^2 = 1\}$ sub-space is correct.

Two questions we must resolve:

[1] How to fit $(\Delta m_{ji}^2, \theta_{ij}, X_s, X_c)$, when calculations use $(\Delta m_{ji}^2, \theta_{ij}, \delta)$?

[2] Would a full series include other terms of $f(\delta)$? e.g. sin 2δ , cos 2δ

Are there other terms?

Thankfully, this has been studied.

Writing $P(\nu_{\alpha} \rightarrow \nu_{\beta}) = P_{\alpha\beta}$, Yokomakura *et al.* show that if the matter density is symmetric, $\rho(x) = \rho(L - x)$, then: $P_{\mu e}(\delta) = A_{\mu e} \cos \delta + B_{\mu e} \sin \delta + C_{\mu e}$

This is exactly what we need! This answers the question 2 on the previous slide: there are no other terms to worry about.

With that, we can use the fact that:

$$-\cos(\pi + x) = \cos(x)$$
$$-\sin(\pi + x) = \sin(x)$$

To form linear combinations that let you scale the $A_{\mu e}$, $B_{\mu e}$, $C_{\mu e}$ independently, which solves question 1

arXiv:hep-ph/0207174

0

Recipe

To calculate an oscillation probability, given $(X_s, X_c, \hat{\xi})$

- 1. Calculate $\rho = \sqrt{X_s^2 + X_c^2}$ and $\delta = \operatorname{sign}(X_s) \arctan \frac{X_s}{X_c}$
- 2. Call the 'normal' probability calculation code at δ and $\pi + \delta$
- 3. Calculate the extended probability using $P'_{\mu e}(X_{s}, X_{c}, \hat{\xi}) = \frac{1+\rho}{2} P_{\mu e}(\delta, \hat{\xi}) + \frac{1-\rho}{2} P_{\mu e}(\pi + \delta, \hat{\xi})$

To the future

'The future' = Hyper-K

New detector ~10km south of Super-K

- Around 8 times larger (fiducial) mass
- Opposite side of the beam but same off-axis angle
 → same neutrino flux.

At the same time, increase beam power from 0.5 to 1.3MW

Beam cone intersection with earth surface

CPV discovery potential

Exclusion of $\delta_{\rm CP} = 0$ at 3σ for 76% of values at 5σ for 57% of values

This assumes all values are equally likely (flat prior)

- Values preferred by T2K are where CPV discovery is easiest
- Reasonable to expect Hyper-K could discover CPV very early!

If CPV is discovered, what next?

If we know $\sin \delta \neq 0$, what should we prioritise?

(In my view) two things are important:

- **Consistency**: Demonstrate PMNS mixing really fits the data
- **Precision**: Measure δ_{CP} to the best possible accuracy

Consistency → **embed** in **models** with more freedom, as before

But what about *precision*?

- Predictions of δ_{CP} by many models of neutrino mass \rightarrow falsify some!
- 'Paradoxical' fact: Precision on δ_{CP} is hardest where discovery of CPV is easiest (when $|\sin \delta| = 1$)
 - For Hyper-K $\sigma(\delta = 0^{\circ}) = 7.2^{\circ}$, and $\sigma(\delta = -90^{\circ}) = 23^{\circ}$

'Precision paradox'

Sensitivity to a
$$\delta_{CP}$$
 is depends on $\frac{dN}{d\delta} \propto \frac{d}{d\delta} P(\nu_{\mu} \rightarrow \nu_{e})$

Oscillation probability depends on δ_{CP} , via sin δ and cos δ terms...

...and
$$\frac{d}{d\delta} \{ \sin \delta, \cos \delta \} = \{ \cos \delta, -\sin \delta \}$$

So near $\delta_{CP} = \pm \pi/2$, the sin δ term is insensitive to δ_{CP} !

Therefore it becomes necessary to understand (and maximise!) our sensitivity to the CP conserving $\cos \delta$ term

The T2HKK proposal

J-PARC beam centre emerges in the sea between Japan and Korea

- Possible to place a detector in the beam at ~1100km baseline
- Many choices for of axis angle (& therefore beam energy)

Can optimise for precision measurement of δ_{CP} !

T2HKK sensitivity

Remember, sensitivity to $\cos \delta$ comes from spectrum distortion.

- So wide energy band configuration gives best precision on $\delta_{
 m CP}$
- Three configurations with Hyper-K + 1 more tank
- True Normal Mass Ordering Not much difference around $\delta = 0$ Around $\delta = 3\pi/2$: JD×2 d_{op} JD×2 simply doubles statistics: JD+Mt. Bisul 20JD+Mt. Bohyun $\sigma(\delta) \rightarrow 19^\circ \text{ (from 23^\circ)}$ 15 **Mt Bohyun** is similar to Kamioka, but at 2nd oscillation maximum: 10 $\sigma(\delta) \rightarrow 17^{\circ}$ **Mt Bisul** is a wide-band configuration (less far off-axis): 2 3 4 5 $\sigma(\delta) \rightarrow 14^{\circ}$

 δ_{cp} (rad.)

Measurements of the CP parameter δ are not simple.

• It only shows up as interference between 2 scales of oscillation

Cannot isolate a CP-violating 'signal' on top of a CP-conserving background...

But relaxing the unitarity constraint allow the problem to be recast in this form, along with an independent CP conserving term

Current experiment focus is very much on the CP violating $\sin \delta$ term

But if we are lucky, **the next generation will care more about** $\cos \delta$