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Introduction

@ This talk | will describe the large N ‘solution’ of a class of 3
dimensional gauge theories, some lessons learnt from this
solution, and hopes for the future.

@ The theories we study will all be Chern Simons theories
coupled to matter.

@ To start let us recall that pure SU(N) or U(N) Chern
Simons Theory is defined by

Scs = k/d3x Tr [ AdA + 250) .
4 3
Topological. Gauge invariant only when k is an integer.
Classical equation of motion F = 0. No local degrees of

freedom. All dof’s global or boundary. Interacting but
exacty solvable. And exactly solved.
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Introduction

@ When the Chern Simons theory above is coupled to matter
fields the guage field equation of motion is modified to

k
> F=xJ

where J is the matter contribution to the current. Still no
propagating gluons. However ‘Coulombic’ gauge fields
mediate nontrivial interactions between local matter dofs.

@ Theories thus obtained nontrivial. Also interesting in
several ways.

@ First yield several 2 integer parameter families of CFTs
labeled by N and k. Conformality easily achieved because
the gauge coupling, 1/k, does not multiply a local gauge
invariant counterterm and so does not run.

@ Second, massive deformation of these CFTs have particle
like excitations which exhibit non abelian anyonic statistics.
Intr|n3|cally mterestmg AIso leads to connections with
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Introduction

@ Third (and related), pure Chern Simons theory enjoys
invariance under an intriguing strong weak coupling level
rank duality. N «+ k. Wilson loops transposed under
duality. Rows «» columns. Symmetriic «+» Antisymmetric
Couple matter. In hindsight, natural to wonder if this duality
morphs into Bosons < fermions in matter Chrn Simons
theories. We will explain, evidence the answer is yes.

@ Fourth these theories admit interesting large N limits;
N — oo, k — oo, N/k fixed. Atleast some matter Chern
Simons theories appear have dual effective classical
descriptions in this limit. Famous example: ABJM theory.
Other examples: Vasiliev higher spin theories.

@ Finally, because special families of these theories turn out
to be solvable - and yet not completely trivial - in the large
N limit. Point of this talk.
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Gauge Theories at large N

® Well known that ‘vector’ like large N limits are easy to
solve, but ‘matrix’ like large N limits are typically intractable.
Large N SU(N) gauge theories always have gauge bosons
which are matrix like fields. Typically hard to solve.

@ Exception. Pure Chern Simons theory in d = 3 discussed
above. As reviewed above, theory solvable at finite N. So
also at large N.

@ Now consider CS theories coupled to matter in the
fundamental rep. Now genuine QFT. Realized in 2011
theory still solvable at large N

@ Many quantities in these theories computed leading order
in 1/N but at all values of the t'Hooft coupling A in these
theories.
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Large N solution

@ Several of the computations described above have been
performed using the following straightforward strategy. One
adopts a non covariant lightcone gauge (analytically
continued to Euclidean space).

@ In this gauge the A A A A Ainteraction term in the Chern
Simons theory vanishes. The sum of all Feynman
diagrams that contribute to a given quantity (e.g. finite
temperature free energy or corrrelator or quantum effective
action for lightest scalar field) is simple enough to be
recursively ennumerated, and so can be shown to obey a
Schwinger Dyson equation. Similar in spirit to t' Hooft’s
analysis of large N 2d QCD.

@ Quite magically - the integral equations thus obtained
always turn out to be exactly solvable. Yield analytic
solutions for various quantities.

@ This talk: will recall what has been calculated, what has
been learnt and speculate on the future.
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Theories: Quasi Fermionic

@ As explained above, we study CS theory coupled to
fundamental matter. Still leaves us with many choices.
Best studies theories lie in three classes.

@ First the so called ‘quasi fermionic theories’

SU(NF)(kF %)Jr / z_'D/,q“(_‘A/m;fgz__'z.‘

Ng o
47 m%l’\ >

@ In massless limit CFTs that reduce to the theory of free
fermions / Wilson Fisher Bosons as |kr| (resp) |kg| — oc.
Single real relevant operator. Two inequivalent
deformations (positive or negative mass). Two massive
phases separated by CFT.
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Quasi Bosonic Theories

- 21)2 _
An b4(m«,))2 + (2m) <Xé3 + 1> ((,)(,))3.
KB /1’%

U(NB kg T / D/,()D/'()erB()()Jr

A Xy | 27)2 ]
S/:,’/: / JO ¢ + +mFQ — /.,__4@2 + ( /,2) XE,?:QS (2)
) \F

J§ = 4T x5 and xf near marginal. Beta functions order 4.
KF
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Flows of xg

The RG flows of xg can be plotted as follows

+—— 44O — Pt ¢4 @ >—>—>

Figure: The points 2 and 1 coincide at A\g = 0. They split up at small
Ag. At A\r = 0, the point 2 is exactly centred between 1 and 3.
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Phase Diagram

FPs 1 and 3 dont always have a stable vacuum (details depend
on \). FP 2 always has a stable vacuum and defines good CFT.
2 relevant operators. At each A\g get 1 parameter phase
diagram. Space of phases topologically a circle. Single second
order and sinlge first order phase transition between un
Higgsed and Higgsed phases massive phases. 2nd order
phase transition governed by quasi fermionic theory.

Agby Agbs

Figure: Blue curve= second order phase transition. Green curve first
order phase transition.
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Theories: One Boson one Fermion

Theories describing the interaction of one fundamental
boson with one fundamental fermion.

Lagrangian long and complicated. 3 highly relevant
parameters. 4 aproximately marignal parameters. Marginal
at large N. Flow at finite N. Full space of flows and fixed
points not worked out. Definitely includes N = 2 fixed point.

The N = 2 theory has only 3 relevant operators. Elaborate
2 dimensional phase diagram. Recently fully worked out.
Generic low energy behaviour massive (4 distinct massive
phases). 2 parameter fine tuning allows for massless low
energy dynamics, including quasi bosonic CFT dynamics
as well as fixed points governing the interaction of one
quasi fermionic and one quasi bosonic theory. N flavour
extensions of all these theories have also been studied to
some extent.
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Schematic Phase diagram

0<A<i <<t
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Exact results at the fixed points

At fixed points: Spectrum of single trace operators.
Spectrum very simple. E.g. in the case of quasi bosonic
theories, at leading order in large N, the spectrum of single
trace operators is given by a current at spin s and
dimension A = s+ 1fors=20,1...00. Anomalous
dimensions at O(1/N) also known in most cases.
Currents with A = s+ 1 are necessarily conserved.
Anomalous dimensions - currents not quite conserved.
Obey relations of schematic form

y
N2
Equations can be thought of as the large N classical
nonlinear equations of motion for the single trace operators
J. Explicit form of these ‘eoms’ known. Quite simple.
All 3 point functions and some four point functions of J also
known.

1
0.J = NJJ + —JJJ
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Computations in massive phases

@ Some correlators (mainly two point functions) also known
in massive phases.

@ Thermal partition function of the theory on S? computed in
both massive phases and at conformal points. Elaborate
structure of finite temperature phases involving intriguing
dynamics of the holonomy.

@ Really new physics in massive phases. Spectrum of non
abelian particle like excitations. Elementary excitations of
this sort created by the bare boson an fermion fields. The
(generally non integer) spins of all such excitations known
(even at finite N)

@ The non abelian particles above can be scatttered against
each other. Exact results for large N S matrices as function
of A. Results quite rich. Sometimes display bound state
poles. Very surprising and as yet incompletely understood
modification of crossing symmetry.
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What has been learnt?

@ Of course all these computations have taught us a great
deal about the theories. Possibly the best understood class
of non abelian gauge theories.

@ However exact solutions are most interesting when their
study yields lessons that then apply to a larger class of
(typically non solvable) theories.

@ In the next few slides list some lessons of this sort that
have been learnt from the study of these theories.
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Bose Fermi duality

® The study of these theories has led to an initially surprising
discover: that of a precise QFT Bose-Fermi duality in three
dimensions.

@ Notation

N
kg = —sgn(ks)(Ng + |kgl), A= —

(and B+« F)
KB

@ Conjectured duality map (quasi fermionic)

i ki N
kg = —sgn(kp)Ng, Np = |kp|, my' = <|F|k+F> mg?
F
@ Equivalently
KB = —KF, AF=AB— sgn(/\B). *)\Bn’lgi = m;”
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How duality works

@ The evidence for Bose-Fermi duality at large N is
extremely detailed and overwhelming. All the quantities
described above have been computed independently on
the two sides of the duality. Even though the Bosonic and
Fermionic computations look very different at intermediate
steps, final physical answers all agree perfectly.

@ Duality works in this precise and detailed way both at fixed
points and in massive phases. Just to give a sense of how
things work | present a brief qualitative discussion of
massive phases and their excitations. For simplicity we
focus on the simplest case of quasi fermion dualities.
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How duality works

@ Consider the SU(NF)kal fermion theory with kemg > 0,
2

dual to U(ng)x, theory with mg > 0). The
Fermionic/Bosonic low energy effective theories are
SU(NF)k. or U(Ng)k, pure CS theories which are level
rank dual to each other.

@ Now consider the same theories with mgkx < 0 dual to
m@t < 0. The two low energy theories are now the
SU(NF)k.—1 or U(Ng — 1), pure CS theories (the bosonic
rank changes because of the Higgs mechanism) which are
once agian level rank dual to each other.

@ While the elementary fermionic excitations in both phases
are simply fermion quanta, there is a sense in which their
nature changes dramatically. This is because the spin of a
free mass mg fermion is % On the Bosonic side the
change is more dramatic -the free spins change from 0 on
one side to sgnkg for W, and Z, bosons on the other side.
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Matching of spins of Excitations

@ Do spins of excitations match? Naively no. However key
point. Statistical (Chern Simons) contribution to spin. Sort

of like £ x B Saha effect. sgtar = 2
@ Physical requirement
B B F F
Sintrinsic + Sstat = Sintrinsic T Sstat (3)

® Group theory result:

F B 5 &5
S — S = = —
stat stat 2 2

@ Follows that (3) works provided

1
SBrinsic =  (s2n(mr) — sen(ke))

But easy to see its true in both phases. Z, Boson...
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Statistics?

@ How about statistics? Bose/Fermi? Can some sort of
Chern Simons ‘anyonic effect’ come in to convert Fermi to
Bose Statistics?

@ Lets first look at scattering. 4 inequivalent channels.

FF — FF (sym), FF — FFas, FA— FA(adj). FA— FA(sing

@ Effective anyonic phase O(1/N) in first three channels.
Non anyonic channels.

@ Statistics shows up in scattering of identical particles. FF
channel. Non anyonic. Sharp puzzle?

@ Detailed computation. Agreement between Fermioni FF
scattering in the sym channel and Bosonic scattering in the
as channel. And vica verca. Should have expected from
match of Wilson lines under level rank duality.

@ Lesson. Statistics is made up for by extra signs under the
permutation group from gauge indices.
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Duality at finite N and ...

@ At large N there is now fantastic evidence for duality from
detailed agreement of complicated formulae independently
computed on the two sides of the duality.

@ Duality believed to persist at finite N. One argument.
Duality can be understood as following from Giveon
Kutasov duality of the A/ = 2 theory plus RG flow. Another
reason: finite N matching of discrete anomalies. Yet
another: matching with expectations of condensed matter
physicists at N = 1.

@ Discovery has inspired the intensive study of the so called
‘web of dualities’ of large classes of 3d non
supersymmetric gauge theories. Much improved
understanding of 3d gauge theories in general.

@ Great example of a lesson learnt from exact solutions
spreading beyond solvable models.

® Next couple of slides describe other less well known - and
less well understood -qualitative lessons:
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Qualitatively new S matrix behaviour

@ Explicit computations of S matrices - computed by
summing diagrams and implementing the LSZ procedure -
yield a surprise. The usual rules for crossing symmetry
appear to be modified.

@ The puzzle happens in the fourth channel which is
effectively anyonic

@ We now explain why we should not have been too surpried
at this.
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Non Relativistic Scattering

@ The S matrix for non relativistic particles interacting via
Chern Simons exchange was worked out in the early 90s,
most notably by Bak, Jackiw and collaborators.

@ Main result. Consider the scattering of two particles in
representations Ry and R», in exchange channel R. It was
demonstrated that the S matrix equals the scattering
matrix of a U(1) charged particle of unit charge scattering
off a point like flux tube of magnetic field strength

y = 2Fte) (R - js the phase that is O(1/N) in the
non anyonic channels but is of magnitude |\| in the singlet
channel.

@ This quantum mechanical S matrix was computed
originally by Aharonov and Bohm and generalized by Bak
and Camillio to take account of possible point like
interactions between the scattering particles.

Shiraz Minwalla



Non Relativistic Scattering Amplitude

Tnr = —16micg (cos (mv) — 1) §(0) + 8icg sin(mv)Pv (cot 9)

2
14 ginlv Aun
—|—805|sin7r1/\,—’f:‘"|,
1 — elmlvl 2
A =12\ )
Y w (R) r(r =)’

(4)

@ Striking feature: term proportional to §(¢). Not analytic.
Simple physical interpretation: interference between wave
above and below the flux tube.
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Relativistic Scattering: Modified Crossing

Physical interpetation simple and clear. Makes no
reference to non relativistic limit so should also apply
relativistically.

Then however have a puzzle. Delta function different in
different channels. How consistent with crossing?
Results of explicit large N computations

sin(mA .
Tang = 528 722 i(cos(mrs) — 1)1(p1. . . 1)

where T is the singlet amplitude one obtaines from
naive analytic continuation

Challenge: Find the finite N version of this formula (all
channels anyonic then). Perhaps by examining and
correcting usual proof of crossing? Perhaps by summing
IR ‘divergences’?

Likely applications to scattering in ABJM theory.
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Thermal Partition Function

@ Large N computations of the thermal parition function of
matter CS theories lead to a final answer of the following

form
Z dUe_Seff(U)

2mn;
K

A=

@ Discretized version of more usual holonomy integral. Usual
holonomy integral restricts to Gauss Law singlets. What
does this discretized integral do?

@ Simple mathematical fact.

Z dU (xm,XR, - -- XRy)

27n;
n=20

counts number of singlets in the WZW fusion of Ry,
Ro ... R,. Number smaller- sometimes much smaller - than
number of Gauss Law singlets.
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WZW singlets?

® Suggests that there is a description of the Hilbert Space of
matter CS theories which involves projecting onto
something like WZW singlets. Is this true? Can it be made
precise (e.g. in the context of the superconformal index)

@ Is this WZW cut down the correct qualitative explanation
for the % scaling of the ABJM finite temperature partition

function?

@ These are some of the lessons learnt. Roughly speaking,
every time we have performed a qualitatively new
computation have found a new surprise. Probably lessons
in store for us. One way to uncover these is to perform new
innovative physically motivated computations. To end this
talk | describe the results of one new computation of this
sort; the Greens funtion of RF theories in a background
magnetic field (coupling to U(1) global symmmetry.
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A recent computation

@ The RF theory enjoys invariance under global rotations
— > €. The thermal partition function computations
performed for these theories have been generalized to
include a chemical potential for this symmetry. Physically
quite interesting. Fermi sea vs Bose Condensate.

@ At the technical level the chemical potential is a constant
background for Ay the non dynamical gauge field that
couples to the global symmetry above. Easy to perform
computation with Ay. Note preserves same symmetries as
the thermal circle.

@ There is another background for A, that preserves all the
same symmetries. This is a uniform spatial magnetic field.
Quite remarkably turns out to be possible to do some exact
computations with mangetic field and chemical potential.
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What we compute

@ We would like to compute something like the colour
averaged fermion two point function

Z<1/J ¥)™b >

However this quantity has two issues. First it is not
invariant under background gauge transformations.
Second it is not invariant under SU(N) gauge
transformation.

@ The first issue is easily dealt with. We make the propagator
gauge invariant by dressing it with a background open
Wilson line. In the background rotationally invariant gauge
this amounts to moving to the variable ag(x, y) defined by

a(x,y) = e 2V ) g pix — ) (5)
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What we compute

® While we could, in principle, deal with the second issue in
the same way, the introduction of a dynamical Wilson line
makes all computations prohibitively difficult. Instead we
just live with the fact that the quantity we study is
(dynamical) gauge non invariant. Consequently much of
what we compute will not be physical. As in S matrix
theory, however, the locations of the poles of our two point
functions are presumably physical. After solving for ag we
focus on this physical information.

@ ltis not too difficult to set up the Schwinger Dyson
equations for ag(x, y)
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Gap equation in terms of the star product

@ The gap equation may be rewritten as
(7D + me) an(x — y) + (Ta b ar) (x - y) = —8%(x — y)

N J
YA(x —y) = -5 an(x - y)y Gh(x—y)

(6)
where the twisted convolution - or star product - x is
defined as

(Axp B) (x—y) = /d2WA(X—W)e_"gf"/(x'_w')(""’_y’)B(W—y)
()
xp is simply the (Fourier Transformed) formula for the
famous noncommuative but associative Moyal Star
product. First line in (6) simply definition of propagator in
terms of self energy. Second line in (6) is the self
consistency equation for self energy.
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Solvability of the gap equation

@ Quite incredibly it turns out to be possible to analytically
solve these gap equations completely - in terms of one
constant (roughly the renormalized mass of the fermion)
that is given as the solution to a single explicit but
complicated equation.

@ Turns out that this dressed propagator has only pole type
singularities in the time frequency w. At zero chemical
potential the poles in this dressed propagator turn out to
occuratw = x*(s,v) and w = —x (s, )

°

(x4,)2=m’+2b (,/ P S‘éfl(QS)) @)
2 2
(Xs)? = M° +2b <,/ + % + *g“éQS)> )

Here v is an integer and

g=2 s= sgn(mg) — A\r

T v



Structure of Poles

s above is the effective spin of a fermion. The Chern
Simons coupling renormalizes the free spin 2 ”( ) py —2¢

The energy spectrum above is simply the naive
generalization of the Landau Level spectrum to a ‘free
relativistic field of spin s’ (the shfits in energy proportional
to s can be thought of as a consequence of a B.S
coupling). The effective mass m is determined in terms of
the fermion pole mass by a self consistency equation.

Result more interesting when we turn on a chemical
potential. Answer similar in form. However the effective
value of m depends on the value of the chemical potential,
more precisely on which ‘gap’ it lies in, or equivalently how
many Landau Levels are filled.
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Turning on a chemical potential

° /(% is the lowest potential upto which it is consistent to
assume that the M Landau Level is totally filled. On the

other hand 1% 1 is the highest potential upto which it is
consistent to assume that the M Landau Level is
completely empty.

@ It follows that

oM = plih — 1own
is of great physical significance. When 6.V is positive it
follows that the M Landau Level - which is perfectly
degenerate in the free theory - broadens out as you start
filling the level.

@ When 6uM is negative, on the other hand we have a ‘first
order phase transition’ type situation. In this case there is a
range of u over which both solutions (completely filled and
completely empty) are consistent. The system will pick out
the state with the lower free energy. Physical interpretation



Gaps in Landau Levels

@ Actually determining 6uM requries explicit solutions for the
quantities c,":/’. In general we have only been able to solve
these equations numerically. Our paper contains lots of
plots.

@ Easy to find 6uM perturbatively in Ar. Our result

VB +2b(M + 1)

ouM = —2X\rb | 1 +0()2) (10)

@ Note the sign of this quantity is opposite to that of A\b. Note
also that the bracket behaves very differently at small b
depending on the sign of mg.

@ Many generalizations of this computation: e.qg. finite
temperature free energy - may well be possible to compute.
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Within the Band

@ Let us focus on a situation in which .M is positive. What is
the solution to the fermion propagator when 4 lies in this
band? More delicate question. We are thinking about it.
Unlikely that the analytic singularities in w will be only
poles.

@ The expectation from condensed matter physics is that this
interacting fermion problem should display the fractional
quantum hall effect. Should, for instance, expect to see a
mass gap at 1/3 filling. Would be fantastic to be able to
see anything like this in this exactly solvable problem. Not
clear it will be easy (perhaps the mass gap is of order eV
in this problem?). At any rate it sounds like a very
interesting question that one can atleast begin to address
within a cleanly posed relativistic field theory that appears
both nontrivial and remarkably easy to just solve.
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@ Large N Chern Simons theories with fundamental matter
are remarkable theories. They are simple enough that they
can be exactly solved. But they also exhibit a fair degree of
richness in their dynamics.

@ The study of these theories has taught us many lessons
that go beyond these theories. Some of these lessons -
like duality at finite N - are well understood

@ Other hints of interesting structure- like the modification of
crossing transformation rules and the WZW singlet
condition - have not yet been completely worked out.

@ Every qualitatively new computation in these theories has
uncovered new surprises and new general lessons. One
can hope that this trend will continue - for instance with the
new computations in background magnetic fields.

@ | have unfortunately not had the time to touch on my
original motivation for looking at these theories - namely of
the study of bulk dualdescriptions to these theories. For

Shiraz Minwalla




