

Applications of the Double Copy to Gravity

December 16, 2019
UK Annual Theory Meeting
Zvi Bern

Outline

1. Complications with gravity perturbation theory.

2. Antidotes:

- Unitarity method.
- Double copy and color-kinematics duality.

3. Applications:

- Web of theories.
- Nonrenormalizability properties of gravity.
- Gravitational wave physics.

4. Outlook.

Complications with Gravity

Perturbative Gravity

Compare to gauge-theory Lagrangian on which QCD is based

$$L_{\rm YM} = \frac{1}{g^2} \, F^2$$
 Only three and four point interactions

Gravity seems so much more complicated than gauge theory.

Gauge and gravity theories seem rather different.

Three-Point Interactions

Standard perturbative approach:

Three-gluon vertex from strong interactions:

$$V_{3\mu\nu\sigma}^{abc} = -gf^{abc}(\eta_{\mu\nu}(k_1 - k_2)_{\rho} + \eta_{\nu\rho}(k_1 - k_2)_{\mu} + \eta_{\rho\mu}(k_1 - k_2)_{\nu})$$

Three-graviton vertex:

$$k_i^2 = E_i^2 - \vec{k}_i^2 \neq 0$$

$$G_{3\mu\alpha,\nu\beta,\sigma\gamma}(k_{1},k_{2},k_{3}) =
\operatorname{sym}\left[-\frac{1}{2}P_{3}(k_{1} \cdot k_{2}\eta_{\mu\alpha}\eta_{\nu\beta}\eta_{\sigma\gamma}) - \frac{1}{2}P_{6}(k_{1\nu}k_{1\beta}\eta_{\mu\alpha}\eta_{\sigma\gamma}) + \frac{1}{2}P_{3}(k_{1} \cdot k_{2}\eta_{\mu\nu}\eta_{\alpha\beta}\eta_{\sigma\gamma}) \right. \\
\left. + P_{6}(k_{1} \cdot k_{2}\eta_{\mu\alpha}\eta_{\nu\sigma}\eta_{\beta\gamma}) + 2P_{3}(k_{1\nu}k_{1\gamma}\eta_{\mu\alpha}\eta_{\beta\sigma}) - P_{3}(k_{1\beta}k_{2\mu}\eta_{\alpha\nu}\eta_{\sigma\gamma}) \right. \\
\left. + P_{3}(k_{1\sigma}k_{2\gamma}\eta_{\mu\nu}\eta_{\alpha\beta}) + P_{6}(k_{1\sigma}k_{1\gamma}\eta_{\mu\nu}\eta_{\alpha\beta}) + 2P_{6}(k_{1\nu}k_{2\gamma}\eta_{\beta\mu}\eta_{\alpha\sigma}) \right. \\
\left. + 2P_{3}(k_{1\nu}k_{2\mu}\eta_{\beta\sigma}\eta_{\gamma\alpha}) - 2P_{3}(k_{1} \cdot k_{2}\eta_{\alpha\nu}\eta_{\beta\sigma}\eta_{\gamma\mu})\right]$$

About 100 terms in three vertex

Naïve conclusion: Gravity is a nasty mess.

Antidotes to Complexity

Why are Feynman diagrams difficult for high-loop or high-multiplicity processes?

Vertices and propagators involve unphysical gauge-dependent off-shell states. An important origin of the complexity.

$$\int \frac{d^3\vec{p}\,dE}{(2\pi)^4}$$

Individual Feynman diagrams unphysical

$$-\vec{p}^2 \neq m^2$$

Einstein's relation between momentum and energy violated in the loops. Unphysical states! Not gauge invariant.

- Use gauge invariant on-shell physical states.
- On-shell formalism.
- Don't violate Einstein's relation! ZB, Dixon, Dunbar, Kosower (1994)

From Tree to Loops: Generalized Unitarity Method

No Feynman rules; no need for virtual particles.

 $E^2 = \vec{p}^2 + m^2$ on-shell

Two-particle cut:

Three-particle cut:

ZB, Dixon, Dunbar and Kosower (1994)

- Systematic assembly of complete loop amplitudes from tree amplitudes.
- Works for any number of particles or loops.

Generalized unitarity as a practical tool for loops.

ZB, Dixon and Kosower;
ZB, Morgan;
Britto, Cachazo, Feng;
Ossala, Pittau, Papadopoulos;
Ellis, Kunszt, Melnikov;
Forde; Badger;
ZB, Carrasco, Johansson, Kosower and many others

Idea used in the "NLO revolution" in QCD collider physics. Want to apply it to gravitational wave problem.

Simplicity of Gravity Amplitudes

People were looking at gravity amplitudes the wrong way. On-shell viewpoint much more powerful.

On-shell three vertices contains all information:

$$E_i^2 - \vec{k}_i^2 = 0$$

Yang-Mills
$$\rho$$
 3 $-gf^{abc}(\eta_{\mu\nu}(k_1-k_2)_{\rho}+\text{cyclic})$ gauge theory:

Einstein gravity:

$$\frac{2}{\nu} \frac{\beta}{\lambda} \frac{\gamma}{\rho}$$

$$i\kappa(\eta_{\mu\nu}(k_1-k_2)_{\rho}+\text{cyclic})$$
 $\times(\eta_{\alpha\beta}(k_1-k_2)_{\gamma}+\text{cyclic})$

"square" of **Yang-Mills** vertex.

Very simple interactions.

KLT Relation Between Gravity and Gauge Theory

KLT (1985)

Kawai-Lewellen-Tye string relations in low-energy limit:

Generalizes to explicit all-leg form. ZB, Dixon, Perelstein, Rozowsky

- 1. Gravity is derivable from gauge theory. Standard Lagrangian methods offers no hint why this is possible.
- 2. It is very generally applicable.

Duality Between Color and Kinematics

ZB, Carrasco, Johansson (2007)

coupling color factor momentum dependent kinematic factor
$$-gf^{abc}(\eta_{\mu\nu}(k_1-k_2)_{\rho}+\text{cyclic})$$

Color factors based on a Lie algebra: $[T^a, T^b] = if^{abc}T^c$

Jacobi Identity
$$f^{a_1a_2b}f^{ba_4a_3} + f^{a_4a_2b}f^{ba_3a_1} + f^{a_4a_1b}f^{ba_2a_3} = 0$$

$$\mathcal{A}_4^{\text{tree}} = g^2 \left(\frac{n_s c_s}{s} + \frac{n_t c_t}{t} + \frac{n_u c_u}{u} \right)$$

Use 1 = s/s = t/t = u/u to assign 4-point diagram to others.

$$s = (k_1 + k_2)^2$$
 $t = (k_1 + k_4)^2$
 $u = (k_1 + k_3)^2$

Color factors satisfy Jacobi identity:

Numerator factors satisfy similar identity:

$$c_u = c_s - c_t$$
$$n_u = n_s - n_t$$

Proven at tree level

Duality Between Color and Kinematics

Consider five-point tree amplitude:

ZB, Carrasco, Johansson (BCJ)

12

$$c_1 + c_2 + c_3 = 0 \iff n_1 + n_2 + n_3 = 0$$

Claim: We can always find a rearrangement so color and kinematics satisfy the *same* algebraic constraint equations.

Progress on unraveling relations.

BCJ, Bjerrum-Bohr, Feng, Damgaard, Vanhove, ; Mafra, Stieberger, Schlotterer; Tye and Zhang; Feng, Huang, Jia; Chen, Du, Feng; Du, Feng, Fu; Naculich, Nastase, Schnitzer O'Connell and Montiero; Bjerrum-Bohr, Damgaard, O'Connell and Montiero; O'Connell, Montiero, White; Du, Feng and Teng, Song and Schlotterer, etc.

Higher-Point Gravity and Gauge Theory

ZB, Carrasco, Johansson

gauge theory
$$A_n^{\text{tree}}=ig^{n-2}\sum_i\frac{c_i\,n_i}{D_i}$$
 kinematic numerator factor Feynman propagators

$$c_k = c_i - c_j$$
$$n_k = n_i - n_j$$

$$c_i \rightarrow n_i$$

color factor

$$c_k = c_i - c_j$$
 $n_k = n_i - n_j$
 $c_i \rightarrow n_i$

Einstein gravity: $\mathcal{M}_n^{\text{tree}} = i\kappa^{n-2} \sum_i \frac{n_i^2}{D_i}$

$$n_i \sim k_4 \cdot k_5 \, k_2 \cdot \varepsilon_1 \, \varepsilon_2 \cdot \varepsilon_3 \, \varepsilon_4 \cdot \varepsilon_5 + \cdots$$

Gravity and gauge theory kinematic numerators are the same!

Same ideas conjectured to hold at loop level.

Cries out for a unified description of gravity with gauge theory, presumably along the lines of string theory. 13

Web of Theories

ZB, Carrasco, Chiodaroli, Johansson, Roiban arXiv:1909.01358, Section 5.

Double copy links various theories through their component theories.

Double Copy for Classical Solutions

Goal is to formulate gravity solutions directly in terms of gauge theory

Variety of special cases:

- Schwarzschild and Kerr black holes.
- Solutions with cosmological constant.
- Radiation from accelerating black hole.
- Maximally symmetric space times.
- Plane wave background.
- Gravitational radiation.

Monteiro, O'Connell and White;

Luna, Monteiro, O'Connell and White;

Luna, Monteiro, Nicholsen, O'Connell and White;

Ridgway and Wise; Carrillo González, Penco, Trodden;

Adamo, Casali, Mason, Nekovar;

Goldberger and Ridgway; Chen;

etc

Luna, Monteiro, Nicholson, Ochirov;

Bjerrum-Bohr, Donoghue, Vanhove;

O'Connell, Westerberg, White; Kosower, Maybee, O'Connell; Adamo, Casali, Mason, Nekovar

Still no general understanding. But plenty of examples.

Understanding UV of Gravity

UV Behavior of Gravity?

Gravity:
$$\int \prod_{i=1}^{L} \frac{d^{D} p_{i}}{(2\pi)^{D}} \frac{\cdots \kappa p_{j}^{\mu} p_{j}^{\nu} \cdots}{\text{propagators}}$$

Gauge theory:
$$\int \prod_{i=1}^{L} \frac{d^{D} p_{i}}{(2\pi)^{D}} \frac{\cdots g p_{j}^{\nu} \cdots}{\text{propagators}}$$

- Extra powers of loop momenta in numerator means integrals are badly behaved in the UV and must diverge at some loop order.
- Much more sophisticated power counting in supersymmetric theories but this is basic idea.
 - With more supersymmetry expect better UV properties.
 - Need to worry about "hidden cancellations".
 - N = 8 supergravity *best* theory to study.

N = 8 supergravity: Where is First D = 4 UV Divergence?

3 loops <i>N</i> = 8	Green, Schwarz, Brink (1982); Howe and Stelle (1989); Marcus and Sagnotti (1985)	X	"shut up and calculate" ZB, Kosower, Carrasco, Dixon, Johansson, Roiban; ZB, Davies, Dennen, A. Smirnov, V. Smirnov; series of calculations.
5 loops <i>N</i> = 8	Bern, Dixon, Dunbar, Perelstein, Rozowsky (1998); Howe and Stelle (2003,2009)	X	
6 loops <i>N</i> = 8	Howe and Stelle (2003)	X	
7 loops <i>N</i> = 8	Grisaru and Siegel (1982); Bossard, Howe, Stelle (2009);Vanhove; Björnsson, Green (2010); Kiermaier, Elvang, Freedman(2010); Ramond, Kallosh (2010); Biesert et al (2010); Bossard, Howe, Stelle, Vanhove (2011)	?	This is what we are most interested in.
3 loops <i>N</i> = 4	Bossard, Howe, Stelle, Vanhove (2011)	X	
4 loops <i>N</i> = 5	Bossard, Howe, Stelle, Vanhove (2011)	X	
4 loops <i>N</i> = 4	Vanhove and Tourkine (2012)	√ ←	Weird structure. Anomaly-like behavior of divergence.
9 loops <i>N</i> = 8	Berkovits, Green, Russo, Vanhove (2009)	X «	Retracted, but perhaps to be unretracted.

- Track record of predictions from standard symmetries not great.
- Conventional wisdom holds that it will diverge sooner or later.

Supersymmetry and Ultraviolet Divergences

Bossard, Howe, Stelle; Elvang, Freedman, Kiermaier; Green, Russo, Vanhove; Green and Björnsson; Bossard, Hillmann and Nicolai; Ramond and Kallosh; Broedel and Dixon; Elvang and Kiermaier; Beisert, Elvang, Freedman, Kiermaier, Morales, Stieberger; Bossard, Howe, Stelle, Vanhove, etc

Poor UV behavior, unless new types of cancellations between diagrams exist that are "not consequences of supersymmetry in any conventional sense"

Bjornsson and Green

- N = 4 sugra should diverge at 3 loops in D = 4.
- N = 5 sugra should diverge at 4 loops in D = 4.
- Half maximal sugra diverges at 2 loops in D = 5.
- N = 8 sugra should diverge at 5 loops in D = 24/5.
- N = 8 sugra should diverge at 7 loops in D = 4.

Consensus agreement from all power-counting methods.

Scorecard on Symmetry Predictions

- N = 4 sugra should diverge at 3 loops in D = 4.
- N = 5 sugra should diverge at 4 loops in D = 4.
- Half maximal sugra diverges at 2 loops in D = 5.
- N = 8 sugra should diverge at 5 loops in D = 24/5.
- N = 8 sugra should diverge at 7 loops in D = 4.

key question

ZB, Davies, Dennen (2012, 2014); ZB, Davies, Dennen, Huang(2012) ZB, Carrasco, Chen, Edison, Johansson, Roiban, Parra-Martinez, Zeng (2018)

• UV cancellation of N=5 supergravity at 4 loops in D=4 definite mystery. Problem with standard symmetry arguments.

Freedman, Kallosh and Yamada (2018)

What is the difference between N = 5 and N = 8? D = 4 has extra cancellations.

Edison, Herrmann, Parra-Martinez, Trnka (2019)

Goal is to provide definitive answers. Need to go to 7 loops!

N = 8 UV at Five loops

ZB, Carrasco, Chen, Edison, Johansson, Roiban, Parra-Martinez, Zeng (2018)

Using the above ideas and some generalization even 5 loops possible.

In D = 24/5 we obtain a divergence:

Basis of UV divergent integrals

$$\mathcal{M}_{4}^{(5)}\Big|_{\text{leading}} = -\frac{16 \times 629}{25} \left(\frac{\kappa}{2}\right)^{12} (s^2 + t^2 + u^2)^2 stu M_{4}^{\text{tree}} \left(\frac{1}{48} \bigodot + \frac{1}{16} \bigodot \right)$$

- Mysterious "enhanced UV cancellations" exist in supergravity. Still need to be understood. Role of four dimensions?
- "Impossible" multiloop gravity calculations are pretty standard by now using modern amplitude methods.

Applications to Gravitational Wave Physics

Outline

Era of gravitational wave astronomy has begun.

For an instant, brighter in gravitational radiation than all the stars in the visible universe are in EM radiation!

Can Particle Theory Help with Gravitational Waves?

What does particle physics have to do with classical dynamics of astrophysical objects?

Black-holes and neutron stars are point particles as far as long wavelength radiation is concerned.

EFT approach: Goldberger, Rothstein, Porto; Vaydia, Foffa, Porto, Rothstein, Sturani; etc

Will explain that the tools that we use in particle physics are ideally suited to push the state of the art in gravitational-wave physics.

Goal: Improve on post-Newtonian Theory

Small errors accumulate. Need for high precision.

Post Newtonian Approximation

For orbital mechanics:

Expand in G and v^2

 $m = m_A + m_B, \ \nu = \mu/M,$

virial theorem

In center of mass frame:

$$\begin{split} \frac{H}{\mu} &= \frac{P^2}{2} - \frac{Gm}{R} &\longleftarrow \text{Newton} \\ &+ \frac{1}{c^2} \bigg\{ - \frac{P^4}{8} + \frac{3\nu P^4}{8} + \frac{Gm}{R} \left(- \frac{P_R^2 \nu}{2} - \frac{3P^2}{2} - \frac{\nu P^2}{2} \right) + \frac{G^2 m^2}{2R^2} \bigg\} \\ &+ \dots \end{split}$$

Hamiltonian known to 4PN order.

2PN: Ohta, Okamura, Kimura and Hiida.

3PN: Damour, Jaranowski and Schaefer; L. Blanchet and G. Faye.

4PN: Damour, Jaranowski and Schaefer; Foffa, Porto, Rothstein, Sturani.

Scattering Amplitudes and Gravitational Radiation

Can we simplify the types of calculations needed for LIGO?

A small industry has developed to study this.

- Connection to scattering amplitudes.

 Bjerrum-Bohr, Donoghue, Holstein, Plante, Pierre Vanhove; Luna, Nicholson, O'Connell, White; Guevara;
 Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove; Cheung, Rothstein, Solon; Damour; Bautista, Guevara;
 Kosower, Maybee, O'Connell; Plefka, Steinhoff, Wormsbecher; Foffa, Mastrolia, Sturani, Sturm;
 Guevara, Ochirov, Vines; Chung, Huang, Kim, Lee; etc.
- Worldline approach for radiation and double copy.

 Goldberger and Ridgway; Goldberger, Li, Prabhu, Thompson; Chester; Shen
- Removing the dilaton contamination.

Luna, Nicholson, O'Connell, White; Johansson, Ochirov; Johansson, Kalin; Henrik Johansson, Gregor Kälin, Mogull.

Key Question: Can we calculate something of direct interest to LIGO/Virgo, decisively *beyond* previous state of the art?

Which problem to solve?

ZB, Cheung, Roiban, Shen, Solon, Zeng

Some problems for (analytic) theorists:

- 1. Spin.
- 2. Finite size effects.
- 3. New physics effects.
- 4. Radiation.
- → 5. High orders in perturbation theory. ←

Which problem should we solve?

- Needs to be extremely difficult using standard methods.
- Needs to be of direct importance to LIGO theorists.
- Needs to be in a form that can in principle enter LIGO analysis pipeline.

2-body Hamiltonian at 3rd post-Minkowskian order

PN versus PM expansion for conservative two-body dynamics

current known PN results

 $1 \rightarrow Mc^2$, current known PM results

 $1 \to Mc^2, \qquad v^2 \to \frac{v^2}{c^2}, \qquad \frac{1}{r} \to \frac{GM}{rc^2}.$

overlap between PN & PM results

unknown

• PM results (Westfahl 79, Westfahl &

(Westfahl 79, Westfahl & Goller 80, Portilla 79-80, Bel et al. 81, Ledvinka et al. 10, Damour 16-17, Guevara 17, Vines 17, Bini & Damour 17-18, Vines in prep)

Our Approach

Inefficient: Start with quantum theory and take $\hbar \to 0$

Efficient: Almost magical simplifications for gravity amplitudes.

EFT methods efficiently target pieces we want.

Efficiency wins

2 Body Potentials and Amplitudes

Iwasaki; Gupta, Radford; Donoghue; Holstein, Donoghue; Holstein and A. Ross; Bjerrum-Bohr, Donoghue, Vanhove; Neill, Rothstein; Bjerrum-Bohr, Damgaard, Festuccia, Planté. Vanhove; Chueng, Rothstein, Solon; Chung, Huang, Kim, Lee; etc.

Tree-level: Fourier transform gives classical potential.

$$V(r) = \int \frac{d^3q}{(2\pi)^3} e^{-i\mathbf{q}\cdot\mathbf{r}} A^{\text{tree}}(\mathbf{q})$$

Beyond 1 loop things quickly become less obvious:

- What you learned in grad school on \hbar and classical limits is wrong! Loops have classical pieces.
- $1/\hbar^L$ scaling of at L loop.

 $e^{iS_{
m classical}/\hbar}$

- Double counting and iteration, IR singularities.
- Cross terms between $1/\hbar$ and \hbar .
- Which corners of multiloop integrals are classical? How to extract?

Piece of loops are classical: Our task is to efficiently extract these pieces.

We harness EFT to clean up confusion

EFT is a Clean Approach

Build EFT from which we can read off potential. Avoids a variety of confusions related to taking classical limit.

Goldberger and Rothstein Neill, Rothstein Cheung, Rothstein, Solon (2018)

$$L_{\text{kin}} = \int_{\mathbf{k}} A^{\dagger}(-\mathbf{k}) \left(i\partial_{t} + \sqrt{\mathbf{k}^{2} + m_{A}^{2}} \right) A(\mathbf{k})$$
$$+ \int_{\mathbf{k}} B^{\dagger}(-\mathbf{k}) \left(i\partial_{t} + \sqrt{\mathbf{k}^{2} + m_{B}^{2}} \right) B(\mathbf{k})$$

A, B scalars represents spinless black holes

$$L_{\text{int}} = -\int_{\boldsymbol{k},\boldsymbol{k'}} V(\boldsymbol{k},\boldsymbol{k'}) A^{\dagger}(\boldsymbol{k'}) A(\boldsymbol{k}) B^{\dagger}(-\boldsymbol{k'}) B(-\boldsymbol{k})$$
potential

$$H = \sqrt{k^2 + m_1^2} + \sqrt{k^2 + m_2^2} + V$$

2 body Hamiltonian in c.o.m. frame.

Match amplitudes of this theory to the full theory in classical limit to extract a potential.

EFT Matching

Cheung, Rothstein, Solon

Roundabout, but efficiently determines potential. IR singularities cancel trivially.

Full Theory: Unitarity + Double Copy

- Long-range force: Two matter lines must be separated by cut propagators.
- Classical potential: 1 matter line per loop is cut (on-shell).

Neill and Rothstein; Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove; Cheung, Rothstein, Solon

Only independent unitarity cut for 2 PM.

exposed lines on-shell (long range). Classical pieces simple!

Independent generalized unitarity cuts for 3 PM.

Use our amplitudes tools for this part.

Generalized Unitarity Cuts

Primary means of construction uses BCJ in *D* dimensions, but KLT with helicity should have better scaling at higher loops and gives compact expressions.

2nd post-Minkowkian order

$$\begin{split} C_{\text{GR}} &= \sum_{h_5,h_6=\pm} M_3^{\text{tree}}(3^s,6^{h_6},-7^s) \, M_3^{\text{tree}}(7^s,-5^{h_5},2^s) \, M_4^{\text{tree}}(1^s,5^{-h_5},-6^{-h_6},4^s) \\ &= \sum_{h_5,h_6=\pm} it [A_3^{\text{tree}}(3^s,6^{h_6},-7^s) \, A_3^{\text{tree}}(7^s,-5^{h_5},2^s) \, A_4^{\text{tree}}(1^s,5^{-h_5},-6^{-h_6},4^s)] \\ &\qquad \times \left[A_3^{\text{tree}}(3^s,6^{h_6},-7^s) \, A_3^{\text{tree}}(7^s,-5^{h_5},2^s) \, A_4^{\text{tree}}(4^s,5^{-h_5},-6^{-h_6},1^s) \right] \end{split}$$

By correlating gluon helicities, removing dilaton is trivial.

$$h_{\mu\nu}^{-} \to A_{\mu}^{-} A_{\nu}^{-}$$
 $h_{\mu\nu}^{+} \to A_{\mu}^{+} A_{\nu}^{+}$ Forbid: $A_{\mu}^{+} A_{\nu}^{-}$

Problem of computing the generalized cuts in gravity is reduced to multiplying and summing gauge-theory tree amplitudes.

Gauge-Theory Warm-up

$$A^{\text{tree}}(1^s, 2^+, 3^+, 4^s) = i \frac{m_1^2[23]}{\langle 23 \rangle t_{12}}$$
$$A^{\text{tree}}(1^s, 2^+, 3^-, 4^s) = -i \frac{\langle 3|1|2|^2}{\langle 23 \rangle [23]t_{12}}$$

color-ordered gauge-theory tree amplitudes

- This is all you need for 2 PM.
- Scaling with number of loops is very good.

$$s_{23} = (p_2 + p_3)^2$$
$$t_{ij} = 2p_i \cdot p_j$$

$$C_{\text{YM}} = 2\left(\frac{\mathcal{E}^2 + \mathcal{O}^2}{s_{23}^2} + m_1^2 m_2^2\right) \frac{1}{t_{15}}$$

sum over helicities gauge theory

$$\mathcal{E}^2 = \frac{1}{4}s_{23}^2(t_{15} - t_{12})^2$$

$$\mathcal{O}^2 = \mathcal{E}^2 - s_{23}m_2^2(s_{23}m_1^2 + s_{23}t_{15} + t_{15}^2)$$

One-Loop Gravity Warmup

$$s_{23} = (p_2 + p_3)^2$$

$$t_{ij} = 2p_i \cdot p_j$$

Apply unitarity and KLT relations. Import gauge-theory results.

$$C_{GR} = 2\left[\frac{1}{t^4}\left(\mathcal{E}^4 + \mathcal{O}^4 + 6\mathcal{E}^2\mathcal{O}^2\right) + m_1^4 m_2^4\right] \left[\frac{1}{t_{15}} + \frac{1}{t_{45}}\right]$$

- Same building blocks as gauge theory.
- Double copy is visible even though we removed dilaton and axion.

We can extract classical scattering angles or potentials following literature.

Damour; Bjerrum-Bohr, Damgaard, Festuccia, Planté, Vanhove; Cheung, Rothstein, Solon; Koemans Collado, Di Vecchia, Russo; etc.

Two Loops and 3 PM

- Somewhat more complicated than previous one loop, but no problem.
- Evaluated using both BCJ and KLT double copies.
- To interface easily with EFT approach, merged unitarity cuts into Feynman-like diagrams to get integrand.

Integrand organized into 8 independent diagrams that may contribute in classical limit:

Integration + Extraction of Potential

To integrate, follow path of Cheung, Rothstein and Solon.

- Efficiently targets the classical pieces of integrals we want.
- Integrals reduce via energy residues to 3 dimensional integrals.

$$\ell_0 \ll |\vec{\ell}| \ll |\vec{p}| \ll m_i$$
 potential classical nonrelativistic

Integrals much simpler than for full quantum theory

Detail are found in our paper.

Various checks using standard machinery used in QCD: IBP, Mellin-Barnes, differential equations, sector decomposition.

Amplitude in Classical Potential Limit

ZB, Cheung, Roiban, Shen, Solon, Zeng (2019)

Classical limit. The $O(G^3)$ or 3PM terms are:

rapidity

$$\mathcal{M}_{3} = \frac{\pi G^{3} \nu^{2} m^{4} \log \mathbf{q}^{2}}{6 \gamma^{2} \xi} \left[3 - 6\nu + 206\nu\sigma - 54\sigma^{2} + 108\nu\sigma^{2} + 4\nu\sigma^{3} - \frac{48\nu \left(3 + 12\sigma^{2} - 4\sigma^{4} \right) \operatorname{arcsinh} \sqrt{\frac{\sigma - 1}{2}}}{\sqrt{\sigma^{2} - 1}} - \frac{18\nu\gamma \left(1 - 2\sigma^{2} \right) \left(1 - 5\sigma^{2} \right)}{\left(1 + \gamma \right) \left(1 + \sigma \right)} \right] + \frac{8\pi^{3} G^{3} \nu^{4} m^{6}}{\gamma^{4} \xi} \left[3\gamma \left(1 - 2\sigma^{2} \right) \left(1 - 5\sigma^{2} \right) F_{1} - 32m^{2} \nu^{2} \left(1 - 2\sigma^{2} \right)^{3} F_{2} \right]$$

$$m = m_A + m_B,$$
 $\mu = m_A m_B/m,$ $\nu = \mu/m,$ $\gamma = E/m,$ $\xi = E_1 E_2/E^2,$ $E = E_1 + E_2,$ $\sigma = p_1 \cdot p_2/m_1 m_2,$

 F_1 and F_2 IR divergent iteration terms that don't affect potential.

Amplitude containing classical potential is remarkably simple!

Conservative 3PM Hamiltonian

ZB, Cheung, Roiban, Shen, Solon, Zeng (2019)

The 3PM Hamiltonian:

$$H(\boldsymbol{p}, \boldsymbol{r}) = \sqrt{\boldsymbol{p}^2 + m_1^2} + \sqrt{\boldsymbol{p}^2 + m_2^2} + V(\boldsymbol{p}, \boldsymbol{r})$$
$$V(\boldsymbol{p}, \boldsymbol{r}) = \sum_{i=1}^{3} c_i(\boldsymbol{p}^2) \left(\frac{G}{|\boldsymbol{r}|}\right)^i,$$

$$c_{1} = \frac{\nu^{2}m^{2}}{\gamma^{2}\xi} \left(1 - 2\sigma^{2}\right), \qquad c_{2} = \frac{\nu^{2}m^{3}}{\gamma^{2}\xi} \left[\frac{3}{4} \left(1 - 5\sigma^{2}\right) - \frac{4\nu\sigma\left(1 - 2\sigma^{2}\right)}{\gamma\xi} - \frac{\nu^{2}(1 - \xi)\left(1 - 2\sigma^{2}\right)^{2}}{2\gamma^{3}\xi^{2}} \right],$$

$$c_{3} = \frac{\nu^{2}m^{4}}{\gamma^{2}\xi} \left[\frac{1}{12} \left(3 - 6\nu + 206\nu\sigma - 54\sigma^{2} + 108\nu\sigma^{2} + 4\nu\sigma^{3}\right) - \frac{4\nu\left(3 + 12\sigma^{2} - 4\sigma^{4}\right)\operatorname{arcsinh}\sqrt{\frac{\sigma - 1}{2}}}{\sqrt{\sigma^{2} - 1}} \right.$$

$$\left. - \frac{3\nu\gamma\left(1 - 2\sigma^{2}\right)\left(1 - 5\sigma^{2}\right)}{2(1 + \gamma)(1 + \sigma)} - \frac{3\nu\sigma\left(7 - 20\sigma^{2}\right)}{2\gamma\xi} - \frac{\nu^{2}\left(3 + 8\gamma - 3\xi - 15\sigma^{2} - 80\gamma\sigma^{2} + 15\xi\sigma^{2}\right)\left(1 - 2\sigma^{2}\right)}{4\gamma^{3}\xi^{2}} \right.$$

$$\left. + \frac{2\nu^{3}(3 - 4\xi)\sigma\left(1 - 2\sigma^{2}\right)^{2}}{\gamma^{4}\xi^{3}} + \frac{\nu^{4}(1 - 2\xi)\left(1 - 2\sigma^{2}\right)^{3}}{2\gamma^{6}\xi^{4}} \right],$$

$$m = m_A + m_B, \qquad \mu = m_A m_B/m, \qquad \nu = \mu/m, \qquad \gamma = E/m, \ \xi = E_1 E_2/E^2, \qquad E = E_1 + E_2, \qquad \sigma = p_1 \cdot p_2/m_1 m_2,$$

Key Checks

Primary check:

ZB, Cheung, Roiban, Shen, Solon, Zeng

Compare to 4PN Hamiltonian of Damour, Jaranowski, Schäfer, used in high precision template construction.

Need canonical transformation:

$$(\boldsymbol{r}, \boldsymbol{p}) \to (\boldsymbol{R}, \boldsymbol{P}) = (A \, \boldsymbol{r} + B \, \boldsymbol{p}, C \, \boldsymbol{p} + D \, \boldsymbol{r})$$

$$A = 1 - \frac{Gm\nu}{2|\boldsymbol{r}|} + \cdots, \quad B = \frac{G(1 - 2/\nu)}{4m|\boldsymbol{r}|} \boldsymbol{p} \cdot \boldsymbol{r} + \cdots$$

$$C = 1 + \frac{Gm\nu}{2|\boldsymbol{r}|} + \cdots, \quad D = -\frac{Gm\nu}{2|\boldsymbol{r}|^3} \boldsymbol{p} \cdot \boldsymbol{r} + \cdots,$$

Our Hamiltonian equivalent to 4PN Hamiltonian on overlap.

Bini and Damour recently verified we correctly overlap the 5 PN result.

4 PN Hamiltonian

Damour, Jaranowski, Schaefer

$$\mathbf{n} = \mathbf{\hat{r}}$$

$$\widehat{H}_{N}(\mathbf{r}, \mathbf{p}) = \frac{\mathbf{p}^{2}}{2} - \frac{1}{r},$$

$$c^{2} \widehat{H}_{1PN}(\mathbf{r}, \mathbf{p}) = \frac{1}{8} (3\nu - 1)(\mathbf{p}^{2})^{2} - \frac{1}{2} \left\{ (3 + \nu)\mathbf{p}^{2} + \nu(\mathbf{n} \cdot \mathbf{p})^{2} \right\} \frac{1}{r} + \frac{1}{2r^{2}},$$

$$c^{4} \widehat{H}_{2PN}(\mathbf{r}, \mathbf{p}) = \frac{1}{16} \left(1 - 5\nu + 5\nu^{2} \right) (\mathbf{p}^{2})^{3} + \frac{1}{8} \left\{ \left(5 - 20\nu - 3\nu^{2} \right) (\mathbf{p}^{2})^{2} - 2\nu^{2} (\mathbf{n} \cdot \mathbf{p})^{2} \mathbf{p}^{2} - 3\nu^{2} (\mathbf{n} \cdot \mathbf{p})^{4} \right\} \frac{1}{r} + \frac{1}{2} \left\{ (5 + 8\nu)\mathbf{p}^{2} + 3\nu(\mathbf{n} \cdot \mathbf{p})^{2} \right\} \frac{1}{r^{2}} - \frac{1}{4} (1 + 3\nu) \frac{1}{r^{3}},$$

$$c^{6} \widehat{H}_{3PN}(\mathbf{r}, \mathbf{p}) = \frac{1}{128} \left(-5 + 35\nu - 70\nu^{2} + 35\nu^{3} \right) (\mathbf{p}^{2})^{4} + \frac{1}{16} \left\{ \left(-7 + 42\nu - 53\nu^{2} - 5\nu^{3} \right) (\mathbf{p}^{2})^{3} + (2 - 3\nu)\nu^{2} (\mathbf{n} \cdot \mathbf{p})^{2} (\mathbf{p}^{2})^{2} + 3(1 - \nu)\nu^{2} (\mathbf{n} \cdot \mathbf{p})^{4} \mathbf{p}^{2} - 5\nu^{3} (\mathbf{n} \cdot \mathbf{p})^{6} \right\} \frac{1}{r}$$

$$+ \left\{ \frac{1}{16} \left(-27 + 136\nu + 109\nu^2 \right) (\mathbf{p}^2)^2 + \frac{1}{16} (17 + 30\nu)\nu (\mathbf{n} \cdot \mathbf{p})^2 \mathbf{p}^2 + \frac{1}{12} (5 + 43\nu)\nu (\mathbf{n} \cdot \mathbf{p})^4 \right\} \frac{1}{r^2}$$

$$+\left\{ \left(-\frac{25}{8} + \left(\frac{\pi^2}{64} - \frac{335}{48} \right) \nu - \frac{23\nu^2}{8} \right) \mathbf{p}^2 + \left(-\frac{85}{16} - \frac{3\pi^2}{64} - \frac{7\nu}{4} \right) \nu (\mathbf{n} \cdot \mathbf{p})^2 \right\} \frac{1}{r^3} + \left\{ \frac{1}{8} + \left(\frac{109}{12} - \frac{21}{32} \pi^2 \right) \nu \right\} \frac{1}{r^4},$$

4 PN Hamiltonian

$$c^{8} \widehat{H}_{\mathrm{PN}}^{\mathrm{broal}}(\mathbf{r}, \mathbf{p}) = \left(\frac{7}{256} - \frac{63}{256}\nu + \frac{189}{256}\nu^{2} - \frac{105}{128}\nu^{3} + \frac{63}{256}\nu^{4}\right)(\mathbf{p}^{2})^{5}$$

$$+ \left\{\frac{45}{128}(\mathbf{p}^{2})^{4} - \frac{45}{16}(\mathbf{p}^{2})^{4} \nu + \left(\frac{423}{64}(\mathbf{p}^{2})^{4} - \frac{3}{32}(\mathbf{n} \cdot \mathbf{p})^{2}(\mathbf{p}^{2})^{3} - \frac{9}{64}(\mathbf{n} \cdot \mathbf{p})^{4}(\mathbf{p}^{2})^{2}\right) \nu^{2}$$

$$+ \left(-\frac{1013}{256}(\mathbf{p}^{2})^{4} + \frac{23}{64}(\mathbf{n} \cdot \mathbf{p})^{2}(\mathbf{p}^{2})^{3} + \frac{69}{6128}(\mathbf{n} \cdot \mathbf{p})^{4}(\mathbf{p}^{2})^{2} - \frac{5}{64}(\mathbf{n} \cdot \mathbf{p})^{6}\mathbf{p}^{2} + \frac{35}{256}(\mathbf{n} \cdot \mathbf{p})^{8}\right) \nu^{3}$$

$$+ \left(-\frac{35}{128}(\mathbf{p}^{2})^{4} - \frac{5}{32}(\mathbf{n} \cdot \mathbf{p})^{2}(\mathbf{p}^{2})^{3} - \frac{9}{64}(\mathbf{n} \cdot \mathbf{p})^{4}(\mathbf{p}^{2})^{2} - \frac{5}{32}(\mathbf{n} \cdot \mathbf{p})^{6}\mathbf{p}^{2} - \frac{35}{128}(\mathbf{n} \cdot \mathbf{p})^{8}\right) \nu^{4}\right\} \frac{1}{r}$$

$$+ \left\{\frac{13}{8}(\mathbf{p}^{2})^{3} + \left(-\frac{791}{64}(\mathbf{p}^{2})^{3} + \frac{49}{16}(\mathbf{n} \cdot \mathbf{p})^{2}(\mathbf{p}^{2})^{2} - \frac{889}{192}(\mathbf{n} \cdot \mathbf{p})^{4}\mathbf{p}^{2} + \frac{369}{160}(\mathbf{n} \cdot \mathbf{p})^{6}\right) \nu^{2}$$

$$+ \left(\frac{4857}{256}(\mathbf{p}^{2})^{3} - \frac{545}{64}(\mathbf{n} \cdot \mathbf{p})^{2}(\mathbf{p}^{2})^{2} + \frac{9475}{768}(\mathbf{n} \cdot \mathbf{p})^{4}\mathbf{p}^{2} - \frac{1151}{128}(\mathbf{n} \cdot \mathbf{p})^{6}\right) \nu^{2}$$

$$+ \left(\frac{2335}{32}(\mathbf{p}^{2})^{3} + \frac{1135}{256}(\mathbf{n} \cdot \mathbf{p})^{2}(\mathbf{p}^{2})^{2} - \frac{1649}{768}(\mathbf{n} \cdot \mathbf{p})^{4}\mathbf{p}^{2} + \frac{10353}{1280}(\mathbf{n} \cdot \mathbf{p})^{6}\right) \nu^{3}\right\} \frac{1}{r^{2}}$$

$$+ \left\{\frac{105}{16384} - \frac{1189789}{28800}\right) (\mathbf{p}^{2})^{2} + \left(-\frac{127}{3} - \frac{4035\pi^{2}}{2048}\right) (\mathbf{n} \cdot \mathbf{p})^{2}\mathbf{p}^{2} + \left(\frac{375\pi^{2}}{8192} - \frac{23533}{1280}\right) (\mathbf{n} \cdot \mathbf{p})^{4}\right) \nu^{2}$$

$$+ \left(-\frac{553}{128}(\mathbf{p}^{2})^{2} - \frac{225}{64}(\mathbf{n} \cdot \mathbf{p})^{2}\mathbf{p}^{2} - \frac{381}{128}(\mathbf{n} \cdot \mathbf{p})^{4}\right) \nu^{3}\right\} \frac{1}{r^{3}}$$

$$+ \left\{\frac{105}{32}\mathbf{p}^{2} + \left(\left(\frac{185761}{19200} - \frac{21837\pi^{2}}{8192}\right)\mathbf{p}^{2} + \left(\frac{3401779}{57600} - \frac{28691\pi^{2}}{24576}\right) (\mathbf{n} \cdot \mathbf{p})^{2}\right) \nu^{2}\right\} \frac{1}{r^{4}}$$

$$+ \left(\left(\frac{672811}{19200} - \frac{158177\pi^{2}}{49152}\right)\mathbf{p}^{2} + \left(\frac{110099\pi^{2}}{49152} - \frac{21827}{3840}\right) (\mathbf{n} \cdot \mathbf{p})^{2}\right) \nu^{2}\right\} \frac{1}{r^{5}}$$

Damour, Jaranowski, Schaefer

$$\mathbf{n} = \mathbf{\hat{r}}$$

After canonical transformation we match all but G^4 and G^5 terms

Mess is partly due to their gauge choice.

Ours is all orders in p at G^3

Tests of Our 3PM Hamiltonian for LIGO

Antonelli, Buonanno, Steinhoff, van de Meent, and Vines, arXiv:1901.07102

(8 days after our paper!)

Test against numerical relativity.

Fed into EOB models, which are needed for good agreement.

Note: Not conclusive, e. g. radiation not taken into accounted

numerical relativity taken as truth

"This rather encouraging result motivates a more comprehensive study..."

Outlook

- Most exciting part is that methods are far from exhausted.
- Started working on 4th PM order. Methods certainly look up to the task.
- Greater improvements on horizon.

Obvious topics to investigate:

- Higher orders. Resummation in G.
- Radiation.
- Spin (hot topic).
- Finite size effects.

Expect many advances in coming years.

Summary

- Particle physics give us new ways to think about problems of current interest in general relativity.
- Double-copy idea gives a unified framework for gravity and gauge theory.
- Sample applications:
 - Web of theories.
 - High loop order explorations of supergravity, especially UV.
 - 2 body Hamiltonians for gravitional radiation.

Expect many more advances in coming years, not only for gravitational-wave physics, but more generally for understanding gravity and its relation to the other forces via double copy.

Further Reading

Double Copy:

Z. Bern, J. J. Carrasco, M. Chiodaroli, H. Johansson, R. Roiban. "The Duality Between Color and Kinematics and its Applications" arXiv:1909.01358

Binary Black Hole Physics from Amplitudes:

Z. Bern, C. Cheung, R. Roiban, Chia-Hsien Shen, M. P. Solon, M. Zeng "Black Hole Binary Dynamics from the Double Copy and Effective Theory" arXiv:1908.01493

Extra Slides

Feynman Diagrams for Gravity

We will be talking about high order processes

- Calculations to settle this seemed utterly hopeless!
- Seemed destined for dustbin of undecidable questions.

At present there is only one basic approach to carry out such computations, which I will outline.

Higher-loop Structure.

Green Schwarz, Brink; ZB, Dixon, Dunbar, Perelstein, Rozowsky; Carrasco, Dixon, Johansson, Roiban; ZB, Carrasco, Chen, Edison, Johansson, Roiban, Parra-Martinez, Zeng

Over the years we've obtained results for N=8 sugrathrough five loops. Vacuum diagrams capture UV divergences.

$$\mathcal{M}_{4}^{(1)}\Big|_{\text{leading}} = -3 \mathcal{K}_{G} \left(\frac{\kappa}{2}\right)^{4} \qquad , \qquad D_{c} = 8$$

$$\mathcal{M}_{4}^{(2)}\Big|_{\text{leading}} = -8 \mathcal{K}_{G} \left(\frac{\kappa}{2}\right)^{6} (s^{2} + t^{2} + u^{2}) \left(\frac{1}{4}\right) + \frac{1}{4}\right) \qquad D_{c} = 7$$

$$\mathcal{M}_{4}^{(3)}\Big|_{\text{leading}} = -60 \mathcal{K}_{G} \left(\frac{\kappa}{2}\right)^{8} stu \left(\frac{1}{6}\right) + \frac{1}{2}\right) \qquad D_{c} = 6$$

$$\mathcal{M}_{4}^{(4)}\Big|_{\text{leading}} = -\frac{23}{2} \mathcal{K}_{G} \left(\frac{\kappa}{2}\right)^{10} (s^{2} + t^{2} + u^{2})^{2} \left(\frac{1}{4}\right) + \frac{1}{2}\right) \qquad D_{c} = \frac{11}{2}$$

$$\mathcal{M}_{4}^{(5)}\Big|_{\text{leading}} = -\frac{16 \times 629}{25} \mathcal{K}_{G} \left(\frac{\kappa}{2}\right)^{12} (s^{2} + t^{2} + u^{2})^{2} \left(\frac{1}{48}\right) + \frac{1}{16}\right) \qquad D_{c} = \frac{24}{5}$$

We now have a lot of theoretical "data" to guide us to 6,7 loops.