Recent results in flavour physics

Nazila Mahmoudi
Lyon University & CERN

www.ipp.p.dur.ac.uk/Xmas/19/

Annual Theory Meeting – Durham, 16-18th December 2019
Why flavour physics?

CP violation:

The only CP violating parameter in the SM is the CKM phase. However, we know from baryogenesis that new sources of CP violation are needed.

The Standard Model flavour puzzle:

Why are the flavour parameters small and hierarchical?

The New Physics flavour puzzle:

If there is NP at the TeV scale, why are flavour changing neutral current (FCNC) so small? If NP has a generic flavour structure, it should contribute to FCNC processes.

Flavour physics is sensitive to new physics at $\Lambda_{\text{NP}} \gg E_{\text{experiments}}$

Flavour physics can discover new physics or probe it before it is directly observed in experiments.

→ ideal probes: rare B decays
Why flavour physics?

CP violation:

The only CP violating parameter in the SM is the CKM phase. However, we know from baryogenesis that new sources of CP violation are needed.

The Standard Model flavour puzzle:

Why are the flavour parameters small and hierarchical?

The New Physics flavour puzzle:

If there is NP at the TeV scale, why are flavour changing neutral current (FCNC) so small? If NP has a generic flavour structure, it should contribute to FCNC processes.

Flavour physics is sensitive to new physics at \(\Lambda_{NP} \gg E_{experiments} \)

Flavour physics can discover new physics or probe it before it is directly observed in experiments

\[\rightarrow \text{ideal probes: rare } B \text{ decays} \]
Why flavour physics?

CP violation:

The only CP violating parameter in the SM is the CKM phase. However, we know from baryogenesis that new sources of CP violation are needed.

The Standard Model flavour puzzle:

Why are the flavour parameters small and hierarchical?

The New Physics flavour puzzle:

If there is NP at the TeV scale, why are flavour changing neutral current (FCNC) so small? If NP has a generic flavour structure, it should contribute to FCNC processes

Flavour physics is sensitive to new physics at $\Lambda_{NP} \gg E_{\text{experiments}}$

Flavour physics can discover new physics or probe it before it is directly observed in experiments

→ ideal probes: rare B decays
Why flavour physics?

CP violation:

The only CP violating parameter in the SM is the CKM phase. However, we know from baryogenesis that new sources of CP violation are needed.

The Standard Model flavour puzzle:

Why are the flavour parameters small and hierarchical?

The New Physics flavour puzzle:

If there is NP at the TeV scale, why are flavour changing neutral current (FCNC) so small? If NP has a generic flavour structure, it should contribute to FCNC processes

Flavour physics is sensitive to new physics at \(\Lambda_{NP} \gg E_{experiments} \)

Flavour physics can discover new physics or probe it before it is directly observed in experiments

\[\rightarrow \text{ideal probes: rare } B \text{ decays} \]
Indirect search for new physics

For a long time, flavour physics objectives were focused on the tests of the unitarity triangle, but this is now well established!

Focus is now towards the New Physics!
And search for the indirect signs of New Physics!

→ Many flavour observables under investigation!
→ Interesting interplay between flavour, collider and dark matter searches
Prime example: $B_s \to \mu^+\mu^-$, $A/H \to \tau^+\tau^-$ and direct dark matter detection
(not covered in this talk)
→ Indirect hints for new physics: Flavour “anomalies”

Deviations from the Standard Model predictions in $b \to s\ell\ell$ transitions

Focus of the talk, since there are so few these days and they are still among our best bets!
For a long time, flavour physics objectives were focused on the tests of the unitarity triangle, but this is now well established!

Focus is now towards the New Physics!
And search for the indirect signs of New Physics!

→ Many flavour observables under investigation!
→ Interesting interplay between flavour, collider and dark matter searches
Prime example: $B_s \rightarrow \mu^+\mu^-$, $A/H \rightarrow \tau^+\tau^-$ and direct dark matter detection (not covered in this talk)
→ Indirect hints for new physics: Flavour “anomalies”
Deviations from the Standard Model predictions in $b \rightarrow s\ell\ell$ transitions

Focus of the talk, since there are so few these days and they are still among our best bets!
For a long time, flavour physics objectives were focused on the tests of the unitarity triangle, but this is now well established!

Focus is now towards the New Physics!
And search for the indirect signs of New Physics!

→ Many flavour observables under investigation!
→ Interesting interplay between flavour, collider and dark matter searches
Prime example: $B_s \to \mu^+\mu^-$, $A/H \to \tau^+\tau^-$ and direct dark matter detection
(not covered in this talk)

→ Indirect hints for new physics: Flavour “anomalies”

Focus of the talk, since there are so few these days and they are still among our best bets!
Indirect search for new physics

For a long time, flavour physics objectives were focused on the tests of the unitarity triangle, but this is now well established!

Focus is now towards the New Physics!
And search for the indirect signs of New Physics!

→ Many flavour observables under investigation!
→ Interesting interplay between flavour, collider and dark matter searches
Prime example: $B_s \rightarrow \mu^+ \mu^-$, $A/H \rightarrow \tau^+ \tau^-$ and direct dark matter detection (not covered in this talk)

→ Indirect hints for new physics: Flavour “anomalies”

Deviations from the Standard Model predictions in $b \rightarrow s ll$ transitions

Focus of the talk, since there are so few these days and they are still among our best bets!
Introduction
 → Theoretical framework

Observables
 → Definitions
 → Recent anomalies

Theoretical uncertainties
 → Hadronic effects
 → Statistical comparison of NP vs hadronic effects

NP global fits
 → Model independent implications

Specific NP models

Future prospects

Conclusions
Outline

- **Introduction**
 → Theoretical framework

- **Observables**
 → Definitions
 → Recent anomalies

- **Theoretical uncertainties**
 → Hadronic effects
 → Statistical comparison of NP vs hadronic effects

- **NP global fits**
 → Model independent implications

- **Specific NP models**

- **Future prospects**

- **Conclusions**

Not covered in this talk:
- $b \rightarrow c$ charged currents
- Kaon anomalies
Effective field theory

\[\mathcal{H}_{\text{eff}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left(\sum_{i=1\cdots 10, S, P} (C_i(\mu)O_i(\mu) + C'_i(\mu)O'_i(\mu)) \right) \]

Separation between short distance (Wilson coefficients) and long distance (local operators) effects

Operator set for \(b \rightarrow s \) **transitions:**

- **4-quark operators**
- **Chromomagnetic dipole operator**
- **Electromagnetic dipole operator**
- **Semileptonic operators**

\[O_{1,2} \propto (\bar{s}\Gamma_{\mu} c)(\bar{c}\Gamma^{\mu} b) \]

\[O_{3,4} \propto (\bar{s}\Gamma_{\mu} b) \sum_q (\bar{q}\Gamma^{\mu} q) \]

\[O_8 \propto (\bar{s}\sigma^{\mu\nu} T^a P_R) G^a_{\mu\nu} \]

\[O_7 \propto (\bar{s}\sigma^{\mu\nu} P_R) F^a_{\mu\nu} \]

\[O_9^\ell \propto (\bar{s}\gamma^{\mu} b_L)(\bar{\ell}\gamma_{\mu}\ell) \]

\[O_{10}^\ell \propto (\bar{s}\gamma^{\mu} b_L)(\bar{\ell}\gamma_{\mu}\gamma_5\ell) \]

+ the chirality flipped counter-parts of the above operators, \(O'_i \)
Wilson coefficients

The Wilson coefficients are calculated perturbatively and are process independent

Two main steps:

1. matching between the effective and full theories \rightarrow extraction of the $C_{i}^{\text{eff}}(\mu)$ at scale $\mu \sim M_W$

$$C_{i}^{\text{eff}}(\mu) = C_{i}^{(0)\text{eff}}(\mu) + \frac{\alpha_s(\mu)}{4\pi} C_{i}^{(1)\text{eff}}(\mu) + \cdots$$

2. Evolving the $C_{i}^{\text{eff}}(\mu)$ to the scale relevant for B decays, $\mu \sim m_b$ using the RGE runnings.

SM contributions known to NNLL (Bobeth, Misiak, Urban '99; Misiak, Steinhauser '04, Gorbahn, Haisch '04; Gorbahn, Haisch, Misiak '05; Czakon, Haisch, Misiak '06,...)

$$C_7 = -0.294 \quad C_9 = 4.20 \quad C_{10} = -4.01$$
Hadronic quantities

To compute the amplitudes:

\[A(A \rightarrow B) = \langle B|H_{\text{eff}}|A\rangle = \frac{G_F}{\sqrt{2}} \sum_i \lambda_i C_i(\mu) \langle B|O_i|A\rangle(\mu) \]

\(\langle B|O_i|A\rangle \): hadronic matrix element

How to compute matrix elements?

→ Model building, Lattice simulations, Light flavour symmetries, Heavy flavour symmetries, ...

→ Describe hadronic matrix elements in terms of **hadronic quantities**

Two types of hadronic quantities:

- **Decay constants**: Probability amplitude of hadronising quark pair into a given hadron
- **Form factors**: Transition from a meson to another through flavour change

Once the Wilson coefficients and hadronic quantities calculated, the physical observables (branching fractions,...) can be calculated.
Observables and Anomalies
\[b \rightarrow s \ell^+ \ell^- \text{ transitions: } B \rightarrow K^* \mu^+ \mu^- \]

Angular distributions

The full angular distribution of the decay \[\bar{B}^0 \rightarrow \bar{K}^{*0} \ell^+ \ell^- (\bar{K}^{*0} \rightarrow K^- \pi^+) \] is completely described by four independent kinematic variables: \(q^2 \) (dilepton invariant mass squared), \(\theta_\ell, \theta_{K^*}, \phi \)

Differential decay distribution:

\[
\frac{d^4 \Gamma}{dq^2 \, d \cos \theta_\ell \, d \cos \theta_{K^*} \, d \phi} = \frac{9}{32\pi} J(q^2, \theta_\ell, \theta_{K^*}, \phi)
\]

\[
J(q^2, \theta_\ell, \theta_{K^*}, \phi) = \sum_i J_i(q^2) f_i(\theta_\ell, \theta_{K^*}, \phi)
\]

↘ angular coefficients \(J_1 - 9 \)

↘ functions of the spin amplitudes \(A_0, A_\parallel, A_\perp, A_t, \) and \(A_S \)

Spin amplitudes: functions of Wilson coefficients and form factors

Main operators:

\[
\mathcal{O}_9 = \frac{e^2}{(4\pi)^2} (\bar{s}\gamma^\mu b_L)(\bar{\ell}\gamma_\mu \ell), \quad \mathcal{O}_{10} = \frac{e^2}{(4\pi)^2} (\bar{s}\gamma^\mu b_L)(\bar{\ell}\gamma_\mu \gamma_5 \ell)
\]

\[
\mathcal{O}_S = \frac{e^2}{16\pi^2} (\bar{s}^\alpha b^\alpha_L)(\bar{\ell} \ell), \quad \mathcal{O}_P = \frac{e^2}{16\pi^2} (\bar{s}^\alpha b^\alpha_R)(\bar{\ell} \gamma_5 \ell)
\]
Angular distributions

The full angular distribution of the decay $\bar{B}^0 \rightarrow \bar{K}^{*0} \ell^+ \ell^- \ (\bar{K}^{*0} \rightarrow K^- \pi^+)$ is completely described by four independent kinematic variables: q^2 (dilepton invariant mass squared), θ_ℓ, θ_{K^*}, ϕ

Differential decay distribution:

$$\frac{d^4\Gamma}{dq^2 \ d \cos \theta_\ell \ d \cos \theta_{K^*} \ d\phi} = \frac{9}{32\pi} J(q^2, \theta_\ell, \theta_{K^*}, \phi)$$

$$J(q^2, \theta_\ell, \theta_{K^*}, \phi) = \sum_i J_i(q^2) \ f_i(\theta_\ell, \theta_{K^*}, \phi)$$

- angular coefficients J_{1-9}
- functions of the spin amplitudes A_0, A_\parallel, A_\perp, A_t, and A_S

Spin amplitudes: functions of Wilson coefficients and form factors

Main operators:

$$O_9 = \frac{e^2}{(4\pi)^2} (\bar{s} \gamma^\mu b_L)(\bar{\ell} \gamma_\mu \ell), \quad O_{10} = \frac{e^2}{(4\pi)^2} (\bar{s} \gamma^\mu b_L)(\bar{\ell} \gamma_\mu \gamma_5 \ell)$$

$$O_S = \frac{e^2}{16\pi^2} (\bar{s}^\alpha b_R^\alpha)(\bar{\ell} \ell), \quad O_P = \frac{e^2}{16\pi^2} (\bar{s}^\alpha b_R^\alpha)(\bar{\ell} \gamma_5 \ell)$$

Nazila Mahmoudi

Durham - 17 Dec. 2019
Optimised observables: form factor uncertainties cancel at leading order

\begin{align*}
\langle P_1 \rangle_{\text{bin}} &= \frac{1}{2} \frac{\int_{\text{bin}} dq^2 [J_3 + \bar{J}_3]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \\
\langle P_2 \rangle_{\text{bin}} &= \frac{1}{8} \frac{\int_{\text{bin}} dq^2 [J_{6s} + \bar{J}_{6s}]}{\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}]} \\
\langle P'_4 \rangle_{\text{bin}} &= \frac{1}{\mathcal{N}'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_4 + \bar{J}_4] \\
\langle P'_5 \rangle_{\text{bin}} &= \frac{1}{2\mathcal{N}'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_5 + \bar{J}_5] \\
\langle P'_6 \rangle_{\text{bin}} &= \frac{-1}{2\mathcal{N}'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_7 + \bar{J}_7] \\
\langle P'_8 \rangle_{\text{bin}} &= \frac{-1}{\mathcal{N}'_{\text{bin}}} \int_{\text{bin}} dq^2 [J_8 + \bar{J}_8]
\end{align*}

with

\[\mathcal{N}'_{\text{bin}} = \sqrt{-\int_{\text{bin}} dq^2 [J_{2s} + \bar{J}_{2s}] \int_{\text{bin}} dq^2 [J_{2c} + \bar{J}_{2c}] + CP violating clean observables and other combinations

J. Matias et al., JHEP 1204 (2012) 104
S. Descotes-Genon et al., JHEP 1305 (2013) 137

Or alternatively:

\[S_i = \frac{J_i(s,c)}{\frac{d\Gamma}{dq^2} + \frac{d\bar{\Gamma}}{dq^2}} , \quad P'_{4,5,8} = \frac{S_{4,5,8}}{\sqrt{F_L(1 - F_L)}}\]
A consistent deviation pattern with the SM predictions in $b \rightarrow s$ measurements with muons in the final state:

- deviations with the SM predictions between 1 and 3.5 σ
- general trend: EXP $<$ SM in low q^2
- ... but the branching ratios have very large theory uncertainties!
LHCb anomalies

A consistent deviation pattern with the SM predictions in $b \rightarrow s$ measurements with muons in the final state:

- deviations with the SM predictions between 1 and 3.5 σ
- general trend: EXP < SM in low q^2
- ... but the branching ratios have very large theory uncertainties!
The LHCb anomalies (1)

$B \rightarrow K^* \mu^+ \mu^-$ angular observables, in particular P'_5 / S_5

- 2013 (1 fb$^{-1}$): disagreement with the SM for P_2 and P'_5 (PRL 111, 191801 (2013))
- March 2015 (3 fb$^{-1}$): confirmation of the deviations (LHCb-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

3.7σ deviation in the 3rd bin
The LHCb anomalies (1)

\[B \to K^* \mu^+ \mu^- \] angular observables, in particular \(P'_5 / S_5 \)

- 2013 \((1 \text{ fb}^{-1})\): disagreement with the SM for \(P_2 \) and \(P'_5 \) \((\text{PRL 111, 191801 (2013)})\)
- March 2015 \((3 \text{ fb}^{-1})\): confirmation of the deviations \((\text{LHCb-CONF-2015-002})\)
- Dec. 2015: 2 analysis methods, both show the deviations \((\text{JHEP 1602, 104 (2016)})\)

3.7\(\sigma\) deviation in the 3rd bin
The LHCb anomalies (1)

\[B \rightarrow K^* \mu^+ \mu^- \] angular observables, in particular \(P'_5 / S_5 \)

- 2013 (1 fb\(^{-1}\)): disagreement with the SM for \(P_2 \) and \(P'_5 \) \((PRL 111, 191801 (2013))\)
- March 2015 (3 fb\(^{-1}\)): confirmation of the deviations \((LHCb-CONF-2015-002)\)
- Dec. 2015: 2 analysis methods, both show the deviations \((JHEP 1602, 104 (2016))\)

![Graph showing deviations](image)

- **3.7\(\sigma\) deviation in the 3rd bin**
- **2.9\(\sigma\) in the 4th and 5th bins**
 - *(3.7\(\sigma\) combined)*
The LHCb anomalies (1)

$B \rightarrow K^* \mu^+ \mu^-$ angular observables, in particular P_5'/S_5

- 2013 (1 fb^{-1}): disagreement with the SM for P_2 and P_5' (PRL 111, 191801 (2013))
- March 2015 (3 fb^{-1}): confirmation of the deviations (LHCb-CONF-2015-002)
- Dec. 2015: 2 analysis methods, both show the deviations (JHEP 1602, 104 (2016))

- 3.7σ deviation in the 3rd bin
- 2.9σ in the 4th and 5th bins (3.7σ combined)

- 3.4σ combined fit (likelihood)
The LHCb anomalies (1)

$B \to K^* \mu^+ \mu^-$ angular observables, in particular P_5'/S_5

- 2013 (1 fb$^{-1}$): disagreement with the SM for P_2 and P_5' \textit{(PRL 111, 191801 (2013))}
- March 2015 (3 fb$^{-1}$): confirmation of the deviations \textit{(LHCb-CONF-2015-002)}
- Dec. 2015: 2 analysis methods, both show the deviations \textit{(JHEP 1602, 104 (2016))}

3.7σ deviation in the 3rd bin

2.9σ in the 4th and 5th bins (3.7σ combined)

Belle supports LHCb \textit{(arXiv:1604.04042)}

tension at 2.1σ

3.4σ combined fit (likelihood)
The LHCb anomalies (1)

Current picture

The deviations are still there!

Difficult to think of statistical fluctuations...

LHCb, JHEP 02 (2016) 104; Belle, PRL 118 (2017); ATLAS, ATLAS-CONF-2017-023; CMS, CMS-PAS-BPH-15-008
The LHCb anomalies (2)

\[B_s \rightarrow \phi \mu^+ \mu^- \] branching fraction

- Same theoretical description as \(B \rightarrow K^* \mu^+ \mu^- \)
 - Replacement of \(B \rightarrow K^* \) form factors with the \(B_s \rightarrow \phi \) ones
 - Also consider the \(B_s - \bar{B}_s \) oscillations

- June 2015 (3 fb\(^{-1}\)): the differential branching fraction is found to be 3.2\(\sigma \) below the SM predictions in the [1-6] GeV\(^2\) bin

\[JHEP \ 1509 (2015) \ 179 \]
Lepton flavour universality in $B^+ \rightarrow K^+\ell^+\ell^-$

- Theoretical description similar to $B \rightarrow K^*\mu^+\mu^-$, but different since K is scalar
- June 2014 (3 fb$^{-1}$): measurement of R_K in the [1-6] GeV2 bin

 \[
 R_K = \frac{BR(B^+ \rightarrow K^+\mu^+\mu^-) / BR(B^+ \rightarrow K^+e^+e^-)}{R_K^{SM}} = 1.0006 \pm 0.0004
 \]

 2.6σ tension in [1-6] GeV2 bin

\[
R_K^{exp} = 0.745^{+0.090}_{-0.074} \text{(stat)} \pm 0.036 \text{(syst)}
\]

PRL 113, 151601 (2014)

BaBar, PRD 86 (2012) 032012; Belle, PRL 103 (2009) 171801
Recent results

\[R_K = \frac{BR(B^+ \rightarrow K^+\mu^+\mu^-)}{BR(B^+ \rightarrow K^+e^+e^-)} \]

Run 1 \((PRL 113, 151601 (2014))\):
\[R_K([1.1, 6.0] \text{ GeV}^2) = 0.717^{+0.083+0.017}_{-0.071-0.016} \]

Run 2 \((\text{arXiv:1903.09252})\):
\[R_K([1.1, 6.0] \text{ GeV}^2) = 0.928^{+0.089+0.020}_{-0.076-0.017} \]

Combined result \((\text{arXiv:1903.09252})\):
\[R_K([1.1, 6.0] \text{ GeV}^2) = 0.846^{+0.060+0.016}_{-0.054-0.014} \]

Central value is now closer to the SM prediction, but the tension is still 2.5\(\sigma\) due to the smaller uncertainty of the new measurement.
Recent results

\[R_K = \frac{BR(B^+ \rightarrow K^+\mu^+\mu^-)}{BR(B^+ \rightarrow K^+e^+e^-)} \]

Run 1 \textit{(PRL 113, 151601 (2014))}:
\[R_K([1.1, 6.0] \text{ GeV}^2) = 0.717^{+0.083+0.017}_{-0.071-0.016} \]

Run 2 \textit{(arXiv:1903.09252)}:
\[R_K([1.1, 6.0] \text{ GeV}^2) = 0.928^{+0.089+0.020}_{-0.076-0.017} \]

Combined result \textit{(arXiv:1903.09252)}:
\[R_K([1.1, 6.0] \text{ GeV}^2) = 0.846^{+0.060+0.016}_{-0.054-0.014} \]

Central value is now closer to the SM prediction, but the tension is still 2.5\(\sigma\) due to the smaller uncertainty of the new measurement.
Recent results

\[R_K = \frac{BR(B^+ \to K^+ \mu^+ \mu^-)}{BR(B^+ \to K^+ e^+ e^-)} \]

\[R_K \quad \text{Run 1 (PRL 113, 151601 (2014))} \]

\[R_K([1.1, 6.0] \text{ GeV}^2) = 0.717^{+0.083+0.017}_{-0.071-0.016} \]

\[R_K \quad \text{Run 2 (arXiv:1903.09252)} \]

\[R_K([1.1, 6.0] \text{ GeV}^2) = 0.928^{+0.089+0.020}_{-0.076-0.017} \]

\[R_K^{\text{SM}} = 1.0006 \pm 0.0004 \]

Combined result (arXiv:1903.09252):

\[R_K([1.1, 6.0] \text{ GeV}^2) = 0.846^{+0.060+0.016}_{-0.054-0.014} \]

Central value is now closer to the SM prediction, but the tension is still 2.5\sigma due to the smaller uncertainty of the new measurement.
Lepton flavour universality in $B \rightarrow K^* \ell^+ \ell^-$

- LHCb measurement (April 2017):
 $$R_{K^*} = \frac{BR(B^0 \rightarrow K^{*0} \mu^+ \mu^-)}{BR(B^0 \rightarrow K^{*0} e^+ e^-)}$$

- Two q^2 regions: [0.045-1.1] and [1.1-6.0] GeV2

The LHCb anomalies

$$R^{exp,bin1}_{K^*} = 0.660^{+0.110}_{-0.070} \text{(stat)} \pm 0.024 \text{(syst)}$$

$$R^{exp,bin2}_{K^*} = 0.685^{+0.113}_{-0.069} \text{(stat)} \pm 0.047 \text{(syst)}$$

JHEP 08 (2017) 055

$$R^{SM,bin1}_{K^*} = 0.906 \pm 0.028$$

$$R^{SM,bin2}_{K^*} = 1.000 \pm 0.010$$

2.2-2.5σ tension with the SM predictions in each bin
Transversity amplitudes

Effective Hamiltonian for $b \to s\ell\ell$ transitions

$$\mathcal{H}_{\text{eff}} = \mathcal{H}_{\text{eff}}^{\text{had}} + \mathcal{H}_{\text{eff}}^{\text{sl}}$$

$$\mathcal{H}_{\text{eff}}^{\text{sl}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=7,9,10} C_i^{(i)} O_i^{(i)} \right]$$

$$\langle \bar{K}^*|\mathcal{H}_{\text{eff}}^{\text{sl}}|\bar{B}\rangle : \text{B} \to \text{K}^* \text{ form factors } V, A_{0,1,2}, T_{1,2,3}$$

Transversity amplitudes:

$$A_{\perp}^{L,R} \approx N_{\perp} \left\{ (C_9^+ + C_{10}^+) \frac{V(q^2)}{m_B + m_{K^*}} + \frac{2m_b}{q^2} C_7^+ T_1(q^2) \right\}$$

$$A_{\parallel}^{L,R} \approx N_{\parallel} \left\{ (C_9^- + C_{10}^-) \frac{A_1(q^2)}{m_B - m_{K^*}} + \frac{2m_b}{q^2} C_7^- T_2(q^2) \right\}$$

$$A_0^{L,R} \approx N_0 \left\{ (C_9^- + C_{10}^-) [(\ldots) A_1(q^2) + (\ldots) A_2(q^2)] + 2m_b C_7^- [(\ldots) T_2(q^2) + (\ldots) T_3(q^2)] \right\}$$

$$A_S = N_S (C_S - C'_S) A_0(q^2) \quad (C_i^\pm \equiv C_i \pm C'_i)$$
Transversity amplitudes

Effective Hamiltonian for $b \to s \ell\ell$ transitions

$$
\mathcal{H}_{\text{eff}} = \mathcal{H}_{\text{eff}}^{\text{had}} + \mathcal{H}_{\text{eff}}^{\text{sl}}
$$

$$
\mathcal{H}_{\text{eff}}^{\text{had}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1\ldots6} C_i O_i + C_8 O_8 \right]
$$

$$
\mathcal{A}_\lambda^{(\text{had})} = -i \frac{e^2}{q^2} \int d^4 x e^{-iq \cdot x} \langle \ell^+ \ell^- | j_{\mu}^{\text{em,lept}}(x) | 0 \rangle
$$

$$
\times \int d^4 y e^{iq \cdot y} \langle \bar{K}^*_{\lambda} | T \{ j_{\text{em, had}, \mu}(y) \mathcal{H}_{\text{eff}}^{\text{had}}(0) \} | \bar{B} \rangle
$$

$$
\equiv e^2 \frac{\epsilon_{\mu} L_{V}^{\mu}}{q^2} \left[\text{LO in } \mathcal{O}\left(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}} \right) + \right]
$$

$$
\text{Non-Fact., QCDf} \quad \text{power corrections}
$$

Beneke et al.; 106067; 0412400
Transversity amplitudes

Effective Hamiltonian for $b \rightarrow s \ell \ell$ transitions

$$\mathcal{H}_{\text{eff}} = \mathcal{H}_{\text{eff}}^{\text{had}} + \mathcal{H}_{\text{eff}}^{\text{sl}}$$

$$\mathcal{H}_{\text{eff}}^{\text{had}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1\ldots6} C_i O_i + C_8 O_8 \right]$$

$$\mathcal{A}_\lambda^{(\text{had})} = -\frac{i e^2}{q^2} \int d^4x e^{-i q \cdot x} \langle \ell^+ \ell^- | j_{\ell \mu}^{\text{em,lept}}(x) | 0 \rangle \times \int d^4y e^{i q \cdot y} \bar{K}^* | T \{ j_{\ell \mu}^{\text{em,had}}, \mu(y) \mathcal{H}_{\text{eff}}^{\text{had}}(0) \} | \bar{B} \rangle$$

$$\equiv e^2 \epsilon_{\mu} \mathcal{L}_{\nu}^{\mu,\nu} \left[\text{LO in } \mathcal{O} \left(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_K^*} \right) + \mathcal{O} \left(q^2 \right) \right]$$

Non-Fact., QCDf

Beneke et al.: 106067; 0412400

\rightarrow unknown

partial calculation: Khodjamirian et al., ...

1006.4945
Effective Hamiltonian for $b \rightarrow s\ell\ell$ transitions

$$\mathcal{H}_{\text{eff}} = \mathcal{H}_{\text{eff}}^{\text{had}} + \mathcal{H}_{\text{eff}}^{\text{sl}}$$

$$\mathcal{H}_{\text{eff}}^{\text{had}} = -\frac{4G_F}{\sqrt{2}} V_{tb} V_{ts}^* \left[\sum_{i=1}^{6} C_i O_i + C_8 O_8 \right]$$

$$\mathcal{A}_\lambda^{(\text{had})} = -i \frac{e^2}{q^2} \int d^4 x e^{-i q \cdot x} \langle \ell^+ \ell^- | j_{\mu}^{\text{em,lept}}(x) | 0 \rangle$$

$$\times \int d^4 y e^{i q \cdot y} \langle \bar{K}^* | T \{ j^{\text{em,had},\mu}(y) \mathcal{H}_{\text{eff}}^{\text{had}}(0) \} | \bar{B} \rangle$$

$$\equiv \frac{e^2}{q^2} \epsilon_\mu L_\lambda^{(\mu)} \left[\text{LO in } O\left(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}} \right) + h_\lambda(q^2) \right]$$

Non-Fact., QCDf

Beneke et al.: 106067; 0412400

The significance of the anomalies depends on the assumptions made for the unknown power corrections!

This does not affect R_K and R_{K^*}
Hadronic effects

Description also possible in terms of helicity amplitudes:

\[H_V(\lambda) = -i N' \left\{ C_9 \tilde{V}_{L\lambda}(q^2) + C_9' \tilde{V}_{R\lambda}(q^2) + \frac{m_B^2}{q^2} \left[\frac{2 \hat{m}_b}{m_B} (C_7 \tilde{T}_{L\lambda}(q^2) + C_7' \tilde{T}_{R\lambda}(q^2)) - 16\pi^2 N_{\lambda}(q^2) \right] \right\} \]

\[H_A(\lambda) = -i N' (C_{10} \tilde{V}_{L\lambda}(q^2) + C_{10}' \tilde{V}_{R\lambda}(q^2)), \]

\[N_{\lambda}(q^2) = \text{leading nonfact.} + h_\lambda \]

\[H_S = i N' \frac{\hat{m}_b}{m_W} (C_S - C_S') \tilde{S}(q^2) \]

Helicity FFs \(\tilde{V}_{L/R}, \tilde{T}_{L/R}, \tilde{S} \) are combinations of the standard FFs \(V, A_0,1,2, T_{1,2,3} \)

A possible parametrisation of the non-factorisable power corrections \(h_\lambda(=+,,-,0)(q^2) \):

\[h_\lambda(q^2) = h_\lambda^{(0)} + \frac{q^2}{1\text{GeV}^2} h_\lambda^{(1)} + \frac{q^4}{1\text{GeV}^4} h_\lambda^{(2)} \]

M. Ciuchini et al., JHEP 1606 (2016) 116

It seems

\[h_\lambda^{(0)} \rightarrow C_{7}^{NP}, \quad h_\lambda^{(1)} \rightarrow C_{9}^{NP} \]

and \(h_\lambda^{(2)} \) terms cannot be mimicked by \(C_7 \) and \(C_9 \)

M. Ciuchini et al., JHEP 1606 (2016) 116

However, \(\tilde{V}_{L(R)\lambda} \) and \(\tilde{T}_{L(R)\lambda} \) both have a \(q^2 \) dependence!
Description also possible in terms of helicity amplitudes:

\begin{align*}
H_V(\lambda) &= -i \, N' \left\{ C_9 \tilde{V}_{L\lambda}(q^2) + C'_9 \tilde{V}_{R\lambda}(q^2) + m_B^2 \frac{m_b}{q^2} \left[\frac{2}{m_B} (C_7 \tilde{T}_{L\lambda}(q^2) + C'_7 \tilde{T}_{R\lambda}(q^2)) - 16\pi^2 N_\lambda(q^2) \right] \right\} \\
H_A(\lambda) &= -i \, N' (C_{10} \tilde{V}_{L\lambda}(q^2) + C'_{10} \tilde{V}_{R\lambda}(q^2)), \\
H_S &= i \, N' \frac{m_b}{m_W} (C_S - C'_S) \tilde{S}(q^2) \\
N_\lambda(q^2) &= \text{leading nonfact.} + h_\lambda
\end{align*}

Helicity FFs $\tilde{V}_{L/R}$, $\tilde{T}_{L/R}$, \tilde{S} are combinations of the standard FFs $V, A_{0,1,2}, T_{1,2,3}$

A possible parametrisation of the non-factorisable power corrections $h_\lambda(=+, -, 0)(q^2)$:

\begin{equation*}
h_\lambda(q^2) = h_\lambda^{(0)} + \frac{q^2}{1\text{GeV}^2} h_\lambda^{(1)} + \frac{q^4}{1\text{GeV}^4} h_\lambda^{(2)}
\end{equation*}

M. Ciuchini et al., JHEP 1606 (2016) 116

It seems

\begin{align*}
h_\lambda^{(0)} &\rightarrow C_{7}^{NP}, \\
h_\lambda^{(1)} &\rightarrow C_{9}^{NP}
\end{align*}

and $h_\lambda^{(2)}$ terms cannot be mimicked by C_7 and C_9

M. Ciuchini et al., JHEP 1606 (2016) 116

However, $\tilde{V}_{L(R)\lambda}$ and $\tilde{T}_{L(R)\lambda}$ both have a q^2 dependence!
Hadronic effects

Description also possible in terms of helicity amplitudes:

\[H_V(\lambda) = -i \, N' \left\{ C_9 \tilde{V}_{L\lambda}(q^2) + C'_9 \tilde{V}_{R\lambda}(q^2) + \frac{m_B^2}{q^2} \left[\frac{2 \hat{m}_b}{m_B} \left(C_7 \tilde{T}_{L\lambda}(q^2) + C'_7 \tilde{T}_{R\lambda}(q^2) \right) - 16\pi^2 \mathcal{N}_\lambda(q^2) \right] \right\} \]

\[H_A(\lambda) = -i \, N' \left(C_{10} \tilde{V}_{L\lambda}(q^2) + C'_{10} \tilde{V}_{R\lambda}(q^2) \right), \]

\[\mathcal{N}_\lambda(q^2) = \text{leading nonfact.} + h_\lambda \]

\[H_S = i \, N' \frac{\hat{m}_b}{m_W} (C_S - C'_S) \hat{S}(q^2) \]

Helicity FFs \(\tilde{V}_{L/R}, \tilde{T}_{L/R}, \hat{S} \) are combinations of the standard FFs \(V, A_{0,1,2}, T_{1,2,3} \)

A possible parametrisation of the non-factorisable power corrections \(h_\lambda(=+,-,0)(q^2) \):

\[h_\lambda(q^2) = h_\lambda^{(0)} + \frac{q^2}{1 \text{GeV}^2} h_\lambda^{(1)} + \frac{q^4}{1 \text{GeV}^4} h_\lambda^{(2)} \]

M. Ciuchini et al., JHEP 1606 (2016) 116

It seems

\[h_\lambda^{(0)} \rightarrow C_{7}^{NP}, \quad h_\lambda^{(1)} \rightarrow C_{9}^{NP} \]

and \(h_\lambda^{(2)} \) terms cannot be mimicked by \(C_7 \) and \(C_9 \)

M. Ciuchini et al., JHEP 1606 (2016) 116

However, \(\tilde{V}_{L(R)\lambda} \) and \(\tilde{T}_{L(R)\lambda} \) both have a \(q^2 \) dependence!
Hadronic effects

$B \to K^*$ helicity form factors

q^4 terms can rise due to terms which multiply Wilson coefficients

C_7^{NP} and C_9^{NP} can each cause effects similar to $h^{(0,1,2)}_\lambda$
Hadronic effects

Hadronic power correction effect:

\[
\delta H_{V}^{\text{P.c.}}(\lambda) = iN' m_B^2 \frac{16\pi^2}{q^2} h_\lambda(q^2) = iN' m_B^2 \frac{16\pi^2}{q^2} \left(h_\lambda^{(0)} + q^2 h_\lambda^{(1)} + q^4 h_\lambda^{(2)} \right)
\]

New Physics effect:

\[
\delta H_{V}^{\text{NP}}(\lambda) = -iN' \tilde{V}_L(q^2) C_9^{\text{NP}} = iN' m_B^2 \frac{16\pi^2}{q^2} \left(a_\lambda C_9^{\text{NP}} + q^2 b_\lambda C_9^{\text{NP}} + q^4 c_\lambda C_9^{\text{NP}} \right)
\]

and similarly for \(C_7 \)

⇒ NP effects can be embedded in the hadronic effects.

We can do a fit for both (hadronic quantities \(h_{+, -, 0}^{(0,1,2)} \) (18 parameters) and Wilson coefficients \(C_i^{\text{NP}} \) (2 or 4 parameters))

Due to this embedding the two fits can be compared with the Wilk’s test
Hadronic effects

Hadronic power correction effect:

\[
\delta H^{p.c.}_V(\lambda) = iN' m_B^2 \frac{16\pi^2}{q^2} h_\lambda(q^2) = iN' m_B^2 \frac{16\pi^2}{q^2} \left(h^{(0)}_\lambda + q^2 h^{(1)}_\lambda + q^4 h^{(2)}_\lambda \right)
\]

New Physics effect:

\[
\delta H^{C_9}_{V_{NP}}(\lambda) = -iN' \tilde{V}_L(q^2) C_{9_{NP}} = iN' m_B^2 \frac{16\pi^2}{q^2} \left(a_\lambda C_{9_{NP}} + q^2 b_\lambda C_{9_{NP}} + q^4 c_\lambda C_{9_{NP}} \right)
\]

and similarly for \(C_7 \)

\(\Rightarrow \) NP effects can be embedded in the hadronic effects.

We can do a fit for both (hadronic quantities \(h^{(0,1,2)}_+, -, 0 \) (18 parameters) and Wilson coefficients \(C_{i_{NP}} \) (2 or 4 parameters))

Due to this embedding the two fits can be compared with the Wilk’s test
Wilk’s test

SM vs 2 parameters and 4 parameters p-values were independently computed through 2D profile likelihood integration, and they give similar results

For low q^2 (up to 8 GeV2):

<table>
<thead>
<tr>
<th></th>
<th>2 (δC_9)</th>
<th>4 ($\delta C_7, \delta C_9$)</th>
<th>18 ($h^{(0,1,2)}_{+,-,0}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>3.7×10^{-5} (4.1σ)</td>
<td>6.3×10^{-5} (4.0σ)</td>
<td>6.1×10^{-3} (2.7σ)</td>
</tr>
<tr>
<td>2</td>
<td>$- 0.13$ (1.5σ)</td>
<td>$- 0.45$ (0.76σ)</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>$- - 0.61$ (0.52σ)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\rightarrow Adding δC_9 improves over the SM hypothesis by 4.1σ

\rightarrow Including in addition δC_7 or hadronic parameters improves the situation only mildly

\rightarrow One cannot rule out the hadronic option

Adding 16 more parameters does not really improve the fits

The situation is still inconclusive
Estimates of hadronic effects

Various methods for hadronic effects

\[
e^2 \frac{\varepsilon_{\mu} L^\mu_V}{q^2} \left[Y(q^2) \tilde{V}_\lambda + \text{LO in } \mathcal{O}(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}}) + h_\lambda(q^2)\right]
\]

<table>
<thead>
<tr>
<th></th>
<th>factorisable</th>
<th>non-factorisable</th>
<th>power corrections (soft gluon)</th>
<th>region of calculation</th>
<th>physical region of interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>(q^2 \lesssim 7) GeV^2</td>
<td>directly</td>
</tr>
<tr>
<td>Khodjamirian et al. [1006.4945]</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>(q^2 < 1) GeV^2</td>
<td>extrapolation by dispersion relation</td>
</tr>
<tr>
<td>Bobeth et al. [1707.07305]</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>(q^2 < 0) GeV^2</td>
<td>extrapolation by analyticity</td>
</tr>
</tbody>
</table>

![Graph](image-url)
Global fits
Many observables → **Global fits** of the LHCb data

Relevant \mathcal{O}perators:

$$
\mathcal{O}_7, \mathcal{O}_8, \mathcal{O}_{9\mu,e}, \mathcal{O}_{10\mu,e} \quad \text{and} \quad \mathcal{O}_{(S,P)} \propto (\bar{s}_L b_R)(\bar{l}(1, \gamma_5)l)
$$

NP manifests itself in the shifts of the individual coefficients with respect to the SM values:

$$
C_i(\mu) = C_i^{\text{SM}}(\mu) + \delta C_i
$$

→ Scans over the values of δC_i
→ Calculation of flavour observables
→ Comparison with experimental results
→ Constraints on the Wilson coefficients C_i
Global fits

Theoretical uncertainties and correlations

- Monte Carlo analysis
- variation of the “standard” input parameters: masses, scales, CKM, ...
- decay constants taken from the latest lattice results
- $B \rightarrow K^{(*)}$ and $B_s \rightarrow \phi$ form factors are obtained from the lattice+LCSR combinations (1411.3161, 1503.05534), including all the correlations
- Parameterisation of uncertainties from power corrections:

\[
A_k \rightarrow A_k \left(1 + a_k \exp(i\phi_k) + \frac{q^2}{6 \text{ GeV}^2} b_k \exp(i\theta_k)\right)
\]

- $|a_k|$ between 10 to 60%, $b_k \sim 2.5a_k$
- Low recoil: $b_k = 0$

\Rightarrow Computation of a (theory + exp) correlation matrix
Global fits

Global fits of the observables obtained by minimisation of

$$\chi^2 = (\vec{O}^{\text{th}} - \vec{O}^{\text{exp}}) \cdot (\Sigma^{\text{th}} + \Sigma^{\text{exp}})^{-1} \cdot (\vec{O}^{\text{th}} - \vec{O}^{\text{exp}})$$

$$(\Sigma^{\text{th}} + \Sigma^{\text{exp}})^{-1}$$ is the inverse covariance matrix.

More than 100 observables relevant for leptonic and semileptonic decays:

- $\text{BR}(B \to X_s \gamma)$
- $\text{BR}(B \to X_d \gamma)$
- $\Delta_0(B \to K^* \gamma)$
- $\text{BR}^{\text{low}}(B \to X_s \mu^+ \mu^-)$
- $\text{BR}^{\text{high}}(B \to X_s \mu^+ \mu^-)$
- $\text{BR}^{\text{low}}(B \to X_s e^+ e^-)$
- $\text{BR}^{\text{high}}(B \to X_s e^+ e^-)$
- $\text{BR}(B_s \to \mu^+ \mu^-)$
- $\text{BR}(B_d \to \mu^+ \mu^-)$
- $\text{BR}(B \to K^0 \mu^+ \mu^-)$
- $\text{BR}(B \to K^{*+} \mu^+ \mu^-)$
- $\text{BR}(B \to K^+ \mu^+ \mu^-)$
- $\text{BR}(B \to K^* e^+ e^-)$
- R_K
- $B \to K^{*0} \mu^+ \mu^-$: BR, F_L, A_{FB}, S_3, S_4, S_5, S_7, S_8, S_9
 in 8 low q^2 and 4 high q^2 bins
- $B_s \to \phi \mu^+ \mu^-$: BR, F_L, S_3, S_4, S_7
 in 3 low q^2 and 2 high q^2 bins
Single operator fits

Comparison of one-operator NP fits:

(under the assumption of 10% non-factorisable power corrections)

<table>
<thead>
<tr>
<th>All observables except R_K, R_{K^*} $(\chi_{SM}^2 = 100.2)$</th>
<th>Only R_K, R_{K^*} $(\chi_{SM}^2 = 16.9)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>δC_9</td>
<td>δC_9</td>
</tr>
<tr>
<td>-1.00 ± 0.20</td>
<td>-2.04 ± 5.93</td>
</tr>
<tr>
<td>χ^2_{min}</td>
<td>χ^2_{min}</td>
</tr>
<tr>
<td>82.5</td>
<td>16.8</td>
</tr>
<tr>
<td>Pull_{SM}</td>
<td>Pull_{SM}</td>
</tr>
<tr>
<td>4.2σ</td>
<td>0.3σ</td>
</tr>
<tr>
<td>$\delta C_{LL\ell}$</td>
<td>$\delta C_{LL\ell}$</td>
</tr>
<tr>
<td>-0.48 ± 0.15</td>
<td>-0.37 ± 0.12</td>
</tr>
<tr>
<td>χ^2_{min}</td>
<td>χ^2_{min}</td>
</tr>
<tr>
<td>89.1</td>
<td>7.0</td>
</tr>
<tr>
<td>Pull_{SM}</td>
<td>Pull_{SM}</td>
</tr>
<tr>
<td>3.3σ</td>
<td>3.1σ</td>
</tr>
</tbody>
</table>

$\delta C_{\ell\ell}$ basis corresponds to $\delta C_9 = -\delta C_{10\mu}$.

\rightarrow C_9 and $C_{9\mu}$ solutions are favoured with SM pulls of 4.2 and 4.5σ.

\rightarrow Good fits possible for $R_{K(*)}$ ratios with NP in $C_9^{e/\mu}$, $C_{10\mu}^{e/\mu}$ or $C_{LL\ell}^{e/\mu}$.
Two operator fits

all observables except R_K and R_{K^*} (with the assumption of 10% power corrections)

Pull: 4.1σ 4.1σ 1.1σ
Two operator fits

all observables except R_K and R_K^* (with the assumption of 10% power corrections)

Pull: 4.1σ

Using only the data on R_K and R_K^*

Pull: 3.1σ
Using **all** the relevant data on $b \rightarrow s$ transitions:

assuming 10% error for the power corrections

<table>
<thead>
<tr>
<th>All observables ($\chi^2_{SM} = 117.03$)</th>
<th>b.f. value</th>
<th>χ_{min}</th>
<th>Pull$_{SM}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>δC_9</td>
<td>-1.01 ± 0.20</td>
<td>99.2</td>
<td>4.2σ</td>
</tr>
<tr>
<td>δC^μ_9</td>
<td>-0.93 ± 0.17</td>
<td>89.4</td>
<td>5.3σ</td>
</tr>
<tr>
<td>δC^e_9</td>
<td>0.78 ± 0.26</td>
<td>106.6</td>
<td>3.2σ</td>
</tr>
<tr>
<td>δC_{10}</td>
<td>0.25 ± 0.23</td>
<td>115.7</td>
<td>1.1σ</td>
</tr>
<tr>
<td>δC^μ_{10}</td>
<td>0.53 ± 0.17</td>
<td>105.8</td>
<td>3.3σ</td>
</tr>
<tr>
<td>δC^e_{10}</td>
<td>-0.73 ± 0.23</td>
<td>105.2</td>
<td>3.4σ</td>
</tr>
<tr>
<td>δC^μ_{LL}</td>
<td>-0.41 ± 0.10</td>
<td>96.6</td>
<td>4.5σ</td>
</tr>
<tr>
<td>δC^e_{LL}</td>
<td>0.40 ± 0.13</td>
<td>105.8</td>
<td>3.3σ</td>
</tr>
</tbody>
</table>

The NP significance is reduced by at least 0.5σ compared to before.

In cases of flavour-symmetric C_9 and C_{10}, which are independent from the changes in the ratios, one finds the same NP significance as expected.
More complete analyses

In a New Physics model:

- new vector bosons: C_7, C_9, C_{10}
- new fermions: C_7, C_8, C_9, C_{10}
- extended Higgs sector/new scalars: C_S, C_P

E.g. in the MSSM, 2HDM, ...: $C_7, C_8, C_9, C_{10}, C_S, C_P$

Considering only one or two Wilson coefficients may not give the full picture!

A generic set of Wilson coefficients:

complex $C_7, C_8, C_9, C_{10}, C_S, C_P +$ primed coefficients

The available observables are mainly insensitive to the imaginary parts, one can limit the set to

real $C_7, C_8, C_9, C_{10}, C_S, C_P +$ primed coefficients

corresponding to 20 degrees of freedom.
More complete analyses

In a New Physics model:

- new vector bosons: C_7, C_9, C_{10}
- new fermions: C_7, C_8, C_9, C_{10}
- extended Higgs sector/new scalars: C_S, C_P

e.g. in the MSSM, 2HDM, ...: $C_7, C_8, C_9, C_{10}, C_S, C_P$

Considering only one or two Wilson coefficients may not give the full picture!

A generic set of Wilson coefficients:

complex $C_7, C_8, C_9^\ell, C_{10}^\ell, C_S^\ell, C_P^\ell +$ primed coefficients

The available observables are mainly insensitive to the imaginary parts, one can limit the set to

real $C_7, C_8, C_9^\ell, C_{10}^\ell, C_S^\ell, C_P^\ell +$ primed coefficients

corresponding to 20 degrees of freedom.
More complete analyses

In a New Physics model:
- new vector bosons: C_7, C_9, C_{10}
- new fermions: C_7, C_8, C_9, C_{10}
- extended Higgs sector/new scalars: C_S, C_P

e.g. in the MSSM, 2HDM, ...: $C_7, C_8, C_9, C_{10}, C_S, C_P$

Considering only one or two Wilson coefficients may not give the full picture!

A generic set of Wilson coefficients:

$$\text{complex } C_7, C_8, C_9^\ell, C_{10}^\ell, C_S^\ell, C_P^\ell + \text{primed coefficients}$$

The available observables are mainly insensitive to the imaginary parts, one can limit the set to

$$\text{real } C_7, C_8, C_9^\ell, C_{10}^\ell, C_S^\ell, C_P^\ell + \text{primed coefficients}$$

corresponding to 20 degrees of freedom.
Set: real C_7, C_8, C_9^ℓ, C_{10}^ℓ, C_S^ℓ, C_P^ℓ + primed coefficients (20 (16) degrees of freedom)

<table>
<thead>
<tr>
<th>All observables with $\chi^2_{SM} = 117.03$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi^2_{\text{min}} = 71.96$; $\text{Pull}_{SM} = 3.3\ (3.8)\sigma$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>δC_7</th>
<th>δC_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.01 ± 0.04</td>
<td>0.82 ± 0.72</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\delta C_7'$</th>
<th>$\delta C_8'$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.01 ± 0.03</td>
<td>-1.65 ± 0.47</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>δC_9^μ</th>
<th>δC_9^e</th>
<th>δC_{10}^μ</th>
<th>δC_{10}^e</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.37 ± 0.25</td>
<td>-6.55 ± 2.37</td>
<td>-0.11 ± 0.27</td>
<td>2.34 ± 3.11</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$\delta C_9'^\mu$</th>
<th>$\delta C_9'^e$</th>
<th>$\delta C_{10}'^\mu$</th>
<th>$\delta C_{10}'^e$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.23 ± 0.62</td>
<td>0.75 ± 2.82</td>
<td>-0.16 ± 0.36</td>
<td>1.67 ± 3.05</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>C_{Q_1}</th>
<th>$C_{Q_1}^e$</th>
<th>C_{Q_2}</th>
<th>$C_{Q_2}^e$</th>
</tr>
</thead>
<tbody>
<tr>
<td>-0.01 ± 0.09</td>
<td>undetermined</td>
<td>-0.05 ± 0.19</td>
<td>undetermined</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$C_{Q_1}'^\mu$</th>
<th>$C_{Q_1}'^e$</th>
<th>$C_{Q_2}'^\mu$</th>
<th>$C_{Q_2}'^e$</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.13 ± 0.09</td>
<td>undetermined</td>
<td>-0.18 ± 0.20</td>
<td>undetermined</td>
</tr>
</tbody>
</table>

Wilks’ test:
- No real improvement in the fits when going beyond the C_9^μ case
- Pull with the SM decreases when all Wilson coefficients are varied
- Many parameters are very weakly constrained
NP scenarios
New physics scenarios

Global fits: New physics is likely to appear in C_9:

$$O_9 = \frac{e^2}{(4\pi)^2} (\bar{s}\gamma^\mu b_L)(\bar{\ell}\gamma_\mu \ell)$$

It can also affect other Wilson coefficients in a lesser extent.

However, difficult to generate $\delta C_9 \sim -1$ at loop level...

Very difficult in the MSSM!
Fit results in the pMSSM
Fit results in the pMSSM
Fit results in the pMSSM

![Graphs showing fit results in the pMSSM](image-url)
Contributions to C_9 and C'_9 can come from Z and photon penguins, and box diagrams

- Z-penguins suppressed by small vector coupling
- charged Higgs contributions proportional to $1/\tan^2 \beta$
- other penguin diagrams suppressed by the LHC squark and gluino mass limits
- in any case, only box diagrams can lead to lepton flavour non-universality...
- ... but box diagrams suppressed by the LEP slepton and chargino mass bounds
Global fits: New physics is likely to appear in C_9:

$$O_9 = \frac{e^2}{(4\pi)^2} (s \gamma^\mu b_L)(\bar{\ell} \gamma^\mu \ell)$$

It can also affect other Wilson coefficients in a lesser extent.

However, difficult to generate $\delta C_9 \sim -1$ at loop level...

→ Need for tree level diagrams...

Mainstream scenarios:

- Z' bosons
- leptoquarks
- composite models
Z’ bosons

Z’ obvious candidate to generate the O_9 operator

Needs:
- Flavour-changing couplings to left-handed quarks
- Vector-like couplings to leptons
- Flavour violation or non-universality in the lepton sector

Strong constraints from $B_s - \bar{B}_s$ mixing and LEP contact interactions.

Anomalies consistent with a Z’ of 1 to 10 TeV

Can appear in many models, like 331 models, gauge $L_\mu - L_\tau$ models, ...

See e.g. Altmannshofer et al. 1308.1501, Gauld et al. 1308.1959, Buras et al. 1309.2466, Gauld et al. 1310.1082, Buras et al. 1311.6729, Altmannshofer et al. 1403.1269, Buras et al. 1409.4557, Glashow et al. 1411.0565, Crivellin et al. 1501.00993, Altmannshofer et al. 1411.3161, Crivellin et al. 1503.03477, Niehoff et al. 1503.03865, Crivellin et al. 1505.02026, Celis et al. 1505.03079, ...
Leptoquarks

- t-channel diagrams
- Different possible representations, can be scalar or vector
- Cannot alter only C_9, but both C_9 and C_{10} ($= -C_9$)
- Cannot be lepton flavour non-universal and conserve lepton number simultaneously

Model can be tested with $R_K(*)$ measurements and searches for $b \rightarrow s\mu^±e^±$ and $\mu \rightarrow e\gamma$

Possible scenario: two leptoquarks coupling to one lepton type only.

See e.g. Hiller et al. 1408.1627, Biswas et al. 1409.0882, Buras et al. 1409.4557, Sahoo et al. 1501.05193, Hiller et al. 1411.4773, Becirevic et al. 1503.09024, Alonso et al. 1505.05164, ...
Neutral resonance ρ_μ coupling to the muons via composite elementary mixing
requires some compositeness for the muons
can allow for lepton flavour violating couplings
constrained by the LEP Z-width measurements and $B_s - \bar{B}_s$ mixing

Nonperturbative physics, making predictions more difficult...

See e.g. Gripaios et al. 1412.1791, Niehoff, et al. 1503.03865, Niehoff et al. 1508.00569, Carmona et al. 1510.07658, ...
Future prospects
How to resolve the issue?

1) Improving the precision of the theoretical calculations

- still some QCD ingredients unknown, or only partially known
 → New methods and alternative approaches are required
 → Several attempts already in the literature

2) Cross-check with other $R_{\mu/e}$ ratios

- R_K and R_{K^*} ratios are theoretically very clean
- The tensions cannot be explained by hadronic uncertainties

Cross-checks needed with other ratios:

<table>
<thead>
<tr>
<th>Obs.</th>
<th>Predictions assuming 12 fb$^{-1}$ luminosity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C_9^μ</td>
</tr>
<tr>
<td>$R_{K_F}^{[1,1.6.0]}$</td>
<td>[0.785, 0.913]</td>
</tr>
<tr>
<td>$R_{S_S}^{[1,1.6.0]}$</td>
<td>[-0.787, 0.394]</td>
</tr>
<tr>
<td>$R_{K^{[1,15.19]}}$</td>
<td>[0.621, 0.803]</td>
</tr>
<tr>
<td>$R_{K^{[15.19]}}$</td>
<td>[0.597, 0.802]</td>
</tr>
<tr>
<td>$R_{K^{[1,1.6.0]}}$</td>
<td>[0.748, 0.852]</td>
</tr>
</tbody>
</table>

A confirmation of the deviations in the ratios would indirectly confirm the NP interpretation of the anomalies in the angular observables!
How to resolve the issue?

1) Improving the precision of the theoretical calculations
 - still some QCD ingredients unknown, or only partially known
 → New methods and alternative approaches are required
 → Several attempts already in the literature

2) Cross-check with other $R_{\mu/e}$ ratios
 - R_K and R_{K^*} ratios are theoretically very clean
 - The tensions cannot be explained by hadronic uncertainties

Cross-checks needed with other ratios:

<table>
<thead>
<tr>
<th>Obs.</th>
<th>Predictions assuming 12 fb$^{-1}$ luminosity</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>C^μ_9</td>
</tr>
<tr>
<td>$R_{F_L}^{[1,1,6,0]}$</td>
<td>[0.785, 0.913]</td>
</tr>
<tr>
<td>$R_{S_s}^{[1,1,6,0]}$</td>
<td>[-0.787, 0.394]</td>
</tr>
<tr>
<td>$R_{K}^{[15,19]}$</td>
<td>[0.621, 0.803]</td>
</tr>
<tr>
<td>$R_{K^*}^{[15,19]}$</td>
<td>[0.597, 0.802]</td>
</tr>
<tr>
<td>$R_{K}^{[1,1,6,0]}$</td>
<td>[0.748, 0.852]</td>
</tr>
<tr>
<td>$R_{[15,19]}$</td>
<td>...</td>
</tr>
</tbody>
</table>

A confirmation of the deviations in the ratios would indirectly confirm the NP interpretation of the anomalies in the angular observables!
3) Future LHCb prospects

Global fits using the angular observables only (NO theoretically clean R ratios)
Considering several luminosities, assuming the current central values

LHCb will be able to establish new physics within the angular observables even in the pessimistic case that there will be no theoretical improvements!
4) Cross-check with inclusive modes

Inclusive decays are theoretically cleaner (see e.g. T. Huber, T. Hurth, E. Lunghi, JHEP 1506 (2015) 176)

At Belle-II, for inclusive $b \to s \ell \ell$:

Predictions based on our model-independent analysis

black cross: future measurements at Belle-II assuming the best fit solution
red cross: SM predictions

→ Belle-II will check the NP interpretation with theoretically clean modes
Cooking scenarios

Cooking a New Physics scenario
Cooking scenarios

Cooking a New Physics scenario

Model-independent approach

\[C_9, \text{a bit of } C_{10}, \ldots \]
Cooking scenarios

Cooking a New Physics scenario

Model-independent approach

\[\downarrow \]

gives us the ingredients

\[C_9, \text{ a bit of } C_{10}, \ldots \]

Simplified models

\[\downarrow \]

\[Z', \text{ Lepto quarks, } \ldots \]
Cooking scenarios

Cooking a New Physics scenario

Model-independent approach

\[\downarrow \]

gives us the ingredients

\[C_9, \text{a bit of } C_{10}, \ldots \]

Simplified models

\[\downarrow \]

\[Z', \text{ Lepto quarks, } \ldots \]

UV-complete theory

\[\downarrow \]

The real model
Could the anomalies be explained by:

- Statistical fluctuations alone?
- Experimental issues alone?
- Underestimated theoretical uncertainties alone?
- Unknown pieces in the theoretical calculations alone?
 - Combination of above?
 - New Physics option?
Final remarks

Could the anomalies be explained by:

- Statistical fluctuations alone?
- Experimental issues alone?
- Underestimated theoretical uncertainties alone?
- Unknown pieces in the theoretical calculations alone?
 - Combination of above?
 - New Physics option?
Could the anomalies be explained by:

- Statistical fluctuations alone? **NO!**
- Experimental issues alone?
- Underestimated theoretical uncertainties alone?
- Unknown pieces in the theoretical calculations alone?
 - Combination of above?
 - New Physics option?
Could the anomalies be explained by:

- Statistical fluctuations alone? **NO!**
- Experimental issues alone?
 - Underestimated theoretical uncertainties alone?
 - Unknown pieces in the theoretical calculations alone?
 - Combination of above?
- New Physics option?
Could the anomalies be explained by:

- Statistical fluctuations alone? × NO!
- Experimental issues alone? × NO!
- Underestimated theoretical uncertainties alone?
- Unknown pieces in the theoretical calculations alone?
 ▶ Combination of above?
 ▶ New Physics option?
Could the anomalies be explained by:

- Statistical fluctuations alone? ✗ NO!
- Experimental issues alone? ✗ NO!
- Underestimated theoretical uncertainties alone?

- Unknown pieces in the theoretical calculations alone?
 - Combination of above?

- New Physics option?
Final remarks

Could the anomalies be explained by:

- Statistical fluctuations alone? \(\times\) NO!
- Experimental issues alone? \(\times\) NO!
- Underestimated theoretical uncertainties alone? \(\times\) NO!
- Unknown pieces in the theoretical calculations alone?
 - Combination of above?
 - New Physics option?
Final remarks

Could the anomalies be explained by:

- Statistical fluctuations alone? **NO!**
- Experimental issues alone? **NO!**
- Underestimated theoretical uncertainties alone? **NO!**
- Unknown pieces in the theoretical calculations alone?
 - Combination of above?
 - New Physics option?
Could the anomalies be explained by:

- Statistical fluctuations alone? \(\times \) NO!
- Experimental issues alone? \(\times \) NO!
- Underestimated theoretical uncertainties alone? \(\times \) NO!
- Unknown pieces in the theoretical calculations alone? \(\times \) NO!

▶ Combination of above?

▶ New Physics option?
Could the anomalies be explained by:

- Statistical fluctuations alone? ✗ NO!
- Experimental issues alone? ✗ NO!
- Underestimated theoretical uncertainties alone? ✗ NO!
- Unknown pieces in the theoretical calculations alone? ✗ NO!

▶ Combination of above?

▶ New Physics option?
Could the anomalies be explained by:

- Statistical fluctuations alone? × NO!
- Experimental issues alone? × NO!
- Underestimated theoretical uncertainties alone? × NO!
- Unknown pieces in the theoretical calculations alone? × NO!

▶ Combination of above? ✓ POSSIBLE

▶ New Physics option?
Could the anomalies be explained by:

- Statistical fluctuations alone? ✗ NO!
- Experimental issues alone? ✗ NO!
- Underestimated theoretical uncertainties alone? ✗ NO!
- Unknown pieces in the theoretical calculations alone? ✗ NO!

▶ Combination of above? ✔ POSSIBLE

▶ New Physics option?
Could the anomalies be explained by:

- Statistical fluctuations alone? × NO!
- Experimental issues alone? × NO!
- Underestimated theoretical uncertainties alone? × NO!
- Unknown pieces in the theoretical calculations alone? × NO!

▶ Combination of above? ✓ POSSIBLE

▶ New Physics option? ✓ POSSIBLE
Could the anomalies be explained by:

- Statistical fluctuations alone? **NO!**
- Experimental issues alone? **NO!**
- Underestimated theoretical uncertainties alone? **NO!**
- Unknown pieces in the theoretical calculations alone? **NO!**

▶ Combination of above? **POSSIBLE**

Is Nature teasing us?

▶ New Physics option? **POSSIBLE**
Could the anomalies be explained by:

- Statistical fluctuations alone? ✓ NO!
- Experimental issues alone? ✓ NO!
- Underestimated theoretical uncertainties alone? ✓ NO!
- Unknown pieces in the theoretical calculations alone? ✓ NO!

▶ Combination of above? ✓ POSSIBLE

Is Nature teasing us?

▶ New Physics option? ✓ POSSIBLE

Or teaching us?
Final remarks

Could the anomalies be explained by:

- Statistical fluctuations alone? ✗ NO!
- Experimental issues alone? ✗ NO!
- Underestimated theoretical uncertainties alone? ✗ NO!
- Unknown pieces in the theoretical calculations alone? ✗ NO!

- Combination of above? ✓ POSSIBLE

 Is Nature teasing us?

- New Physics option? ✓ POSSIBLE

 Or teaching us?

The next round of LHCb results will give us the verdict!
Path to New Physics

We may be in such a situation:

Columbus had Toscanelli’s map.
It was terribly wrong, but served the purpose!
$B \rightarrow D^{(*)} \ell \nu$
Fit results for two operators: form factor dependence

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- $2 \times$ form factor errors (dashed line)
- $4 \times$ form factor errors (dotted line)

\[
(C_9 - C_{10}) (C_9 - C'_9) (C^e_9 - C^\mu_9)
\]
Fit results for two operators: form factor dependence

Fits with different assumptions for the form factor uncertainties:
- correlations ignored (solid line)
- normal form factor errors (filled areas)
- $2 \times$ form factor errors (dashed line)
- $4 \times$ form factor errors (dotted line)

$(C_9 - C_{10})$

$(C_9 - C'_9)$

$(C_9^e - C_9^\mu)$
Fit results for two operators: form factor dependence

Fits with different assumptions for the form factor uncertainties:

- correlations ignored (solid line)
- normal form factor errors (filled areas)
- $2 \times$ form factor errors (dashed line)
- $4 \times$ form factor errors (dotted line)

$$(C_9 - C_{10})$$

$$(C_9 - C_9')$$

$$(C_9^e - C_9^\mu)$$

The size of the form factor errors has a crucial role in constraining the allowed region!
The role of (pseudo)scalar operators

Imposing $\text{BR}(B_s \to \mu^+ \mu^-)$, if C_S and C_P independent, there exists a degeneracy between C_{10} and C_P so that large values for C_P are possible.
The role of (pseudo)scalar operators

Imposing \(\text{BR}(B_s \to \mu^+ \mu^-) \), if \(C_S \) and \(C_P \) independent, there exists a degeneracy between \(C_{10} \) and \(C_P \) so that large values for \(C_P \) are possible.

Even if \(C_S = -C_P \), allowing for small variations of \(C_{S,P} \) alleviates the constraints from \(B_s \to \mu^+ \mu^- \) on \(C_{10} \).
Estimates of hadronic effects

Various methods for hadronic effects

\[\frac{e^2}{q^2} \epsilon_\mu L^\mu_V \left[Y(q^2) \tilde{V}_\lambda + \text{LO in } O(\frac{\Lambda}{m_b}, \frac{\Lambda}{E_{K^*}}) + h_\lambda(q^2) \right] \]

<table>
<thead>
<tr>
<th></th>
<th>factorisable</th>
<th>non-factorisable</th>
<th>power corrections (soft gluon)</th>
<th>region of calculation</th>
<th>physical region of interest</th>
</tr>
</thead>
<tbody>
<tr>
<td>Standard</td>
<td>✓</td>
<td>✓</td>
<td>✗</td>
<td>(q^2 \lesssim 7 \text{ GeV}^2)</td>
<td>directly</td>
</tr>
<tr>
<td>Khodjamirian et al.</td>
<td>✓</td>
<td>✗</td>
<td>✓</td>
<td>(q^2 < 1 \text{ GeV}^2)</td>
<td>extrapolation by dispersion relation</td>
</tr>
<tr>
<td>[1006.4945]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bobeth et al.</td>
<td>✓</td>
<td>✓</td>
<td>✓</td>
<td>(q^2 < 0 \text{ GeV}^2)</td>
<td>extrapolation by analyticity</td>
</tr>
<tr>
<td>[1707.07305]</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
A generic set of Wilson coefficients:

complex C_7, C_8, C_9^ℓ, C_{10}^ℓ, C_5^ℓ, C_P^ℓ + primed coefficients

The available observables are mainly insensitive to the imaginary parts, one can limit the set to

real C_7, C_8, C_9^ℓ, C_{10}^ℓ, C_5^ℓ, C_P^ℓ + primed coefficients

corresponding to 20 degrees of freedom.

Some of the coefficients may have only weak effects on the observables, and affect the number of dof without affecting the χ^2, acting as *spurious* degrees of freedom.

effective degrees of freedom (e-dof): degrees of freedom minus the parameters δC_i only weakly affecting the χ^2, defined such as

$$|\chi^2(\delta C_i = 1) - \chi^2(\delta C_i = 0)| < 1$$
A generic set of Wilson coefficients:

\[
\text{complex } C_7, C_8, C_9, C_{10}, C_S, C_P + \text{ primed coefficients}
\]

The available observables are mainly insensitive to the imaginary parts, one can limit the set to

\[
\text{real } C_7, C_8, C_9, C_{10}, C_S, C_P + \text{ primed coefficients}
\]

corresponding to 20 degrees of freedom.

Some of the coefficients may have only weak effects on the observables, and affect the number of dof without affecting the χ^2, acting as \textit{spurious} degrees of freedom.

\textit{Effective degrees of freedom} (e-dof): degrees of freedom minus the parameters δC_i only weakly affecting the χ^2, defined such as

\[
|\chi^2(\delta C_i = 1) - \chi^2(\delta C_i = 0)| < 1
\]
A generic set of Wilson coefficients:

complex $C_7, C_8, C_9^\ell, C_{10}^\ell, C_S^\ell, C_P^\ell$ + primed coefficients

The available observables are mainly insensitive to the imaginary parts, one can limit the set to

real $C_7, C_8, C_9^\ell, C_{10}^\ell, C_S^\ell, C_P^\ell$ + primed coefficients

corresponding to 20 degrees of freedom.

⚠️ Some of the coefficients may have only weak effects on the observables, and affect the number of dof without affecting the χ^2, acting as *spurious* degrees of freedom.

effective degrees of freedom (e-dof): degrees of freedom minus the parameters δC_i only weakly affecting the χ^2, defined such as

$$|\chi^2(\delta C_i = 1) - \chi^2(\delta C_i = 0)| < 1$$
A generic set of Wilson coefficients:

\[\text{complex } C_7, C_8, C_9, C_{10}, C_S, C_P + \text{ primed coefficients} \]

The available observables are mainly insensitive to the imaginary parts, one can limit the set to

\[\text{real } C_7, C_8, C_9, C_{10}, C_S, C_P + \text{ primed coefficients} \]

corresponding to 20 degrees of freedom.

⚠️ Some of the coefficients may have only weak effects on the observables, and affect the number of dof without affecting the \(\chi^2 \), acting as _spurious_ degrees of freedom.

effective degrees of freedom (e-dof): degrees of freedom minus the parameters \(\delta C_i \) only weakly affecting the \(\chi^2 \), defined such as

\[|\chi^2(\delta C_i = 1) - \chi^2(\delta C_i = 0)| < 1 \]