HIGGS cosmological history.

> Géraldine SERVANT DESY/U.Hamburg

UK Annual meeting, Durham Dec. 17 2019

CLUSTER OF EXCELLENCE QUANTUM UNIVERSE

Higgs in the early universe :

Does the Higgs help solving any of the open problems?

- Inflation

- Dark Matter
- Matter-antimatter asymmetry

Higgs in the early universe :

Are there any imprints from the Higgs' early behaviour in cosmological observables?

Higgs cosmology at the EW epoch.

Still many open exotic possibilities regarding what happened when the energy density of the universe was (EW scale)⁴.

THE HIGGS POTENTIAL .

> How did we end up here ?

***1404.3565

HIGGS EFFECTIVE POTENTIAL AT HIGH TEMPERATURE .

HIGH TEMPERATURE EW SYM. RESTORATION.

WHICH ALTERNATIVE HIGGS STORIES ?

-1-

First-order EW Phase transition .

First-order EW phase transition

Nucleation, expansion and collision of Higgs bubbles

Framework for EW baryogenesis ! Stochastic bgd of gravitational waves detectable at LISA !

EW baryogenesis during a first-order EW phase transition

Kuzmin, Rubakov, Shaposhnikov'85 Cohen, Kaplan, Nelson'91

 $T_n \equiv nucleation temperature$

The EW baryogenesis miracle.

The EW baryogenesis miracle.

All parameters fixed by EW physics. If new CP violating source of order 1 then we get just the right baryon asymmetry.

Gravitational Waves from a first-order phase transition .

[LISA Cosmology Working group, 1512.06239]

 $T_* = 200 \text{ GeV}, g_* = 100.$

10-3

f(Hz)

 10^{-2}

 10^{-1}

 10^{-4}

10-15

10-16

 10^{-5}

What makes the EW phase transition 1st-order ?

> O(1) modifications to the Higgs potential

> Extra EW-scale scalar(s) coupled to the Higgs

What makes the EW phase transition 1st-order ?

> Extra EW-scale scalar(s) coupled to the Higgs

EFT approach to EW phase transition of limited use. $V(\phi) = -\mu_h^2 |\phi|^2 - \lambda |\phi|^4 + \frac{|\phi|^6}{\Lambda^2}$

What makes the EW phase transition 1st-order ?

Extra EW-scale scalar(s) coupled to the Higgs 2 main classes of models

Standard polynomial potentials, e.g extra singlet S, 2HDM... under specific choices of parameters.

-Effect of cross-quartic $\lambda_{\phi S} \phi^2 S^2$

-Moderate strength of EW phase transition $\frac{\phi}{\tau} \stackrel{<}{\scriptstyle \sim} {\rm O}(1)$

2- Higgs emerging after confinement phase transition of strongly interacting new sector.

- -Higgs potential is trigonometric function
- -Fate of the Higgs ruled by the dilaton
- -Unbounded strength, $\underline{\phi}$ can naturally be >>1

The most studied case: First-order EW phase transition from an extra scalar singlet .

with Z₂: <s> ~0 today, no mixing —>nightmare scenario

Z₂ case.

FIG. 6: Phase transition dynamics in the $\kappa - \eta$ plane, with $m_S = 300$ GeV. In region B (red) bubble walls accelerate to relativistic speeds and EWBG cannot occur, while in region A (blue) EWBG is possible.

5

Z₂ case.

Exact Z2 case mostly excluded by direct DM searches even if S is sub-component (< 1%) of DM.

First-order EW phase transition in a 2-Higgsmodel.

EDM threat on EW baryogenesis .

$|d_e| < 1.1 \cdot 10^{-29} \,\mathrm{e} \cdot \mathrm{cm}$

ACME II, Oct. 2018.

The most shaking news of the last years for EW baryogenesis practitioners!

1- EW baryogenesis from extra singlet.

1110.2876

Well-motivated CP source for EW baryogenesis : modified Top-yukawa ("Top-transport" EW baryogenesis)

 $\frac{s}{f}H\bar{Q}_3(a+ib\gamma_5)t+\mathrm{h.}c.$

2- EW baryogenesis in Two-Higgs-Doublet.

Summary on minimally extended renormalizable scalar sectors***

Faded motivation for EW baryogenesis with top-transport after ACME18 Ways out to evade EDM bounds: Hide of in leptons, or dark sector 1811.11104, 1903.11255 1811.09719

-2- Still, 1st-order EW phase transition possible -> LHC & gravitational waves tests.

*** (Both S and 2HDM well-motivated in non-minimal Composite Higgs models)

EW Phase transition in Composite Higgs Models

EW phase transition in Composite Higgs models .

> Higgs potential emerges at E≲f.

For PNGB:
$$V_h \sim f^4 \left[\alpha \sin^2 \left(\frac{h}{f} \right) + \beta \sin^4 \left(\frac{h}{f} \right) \right]$$

f~O(TeV): confinement scale of new strongly interacting sector, described by VEV of dilaton field <χ>, Pseudo-Nambu-Goldstone Boson of spontaneously broken conformal symmetry of the strong sector

$$V = V_{\chi}(\chi) + V_{h}(\chi, h) \underset{\text{dynamics}}{\text{intertwinned}}$$

χ dominates the dynamics

$$V(\chi) = \chi^4 \times f(\chi^\epsilon)$$

l*ɛ*/<<1

Nearly conformal potential : T_n << f , SUPERCOOLING 1104.4791

1803.08546, 1804.07314

unbroken EW symmetry

1803.08546 ,1804.07314

Strongly 1st order TeV scale confinement phase transition .

Strongly 1st order TeV scale confinement phase transition .

Randall, Servant'06 Hassanain, March-Russell, Schwellinger'07 Nardini,Quiros,Wulzer'07 Konstandin,Servant'11 Konstandin,Nardini,Quiros'10 Bunk, Hubisz, Jain'17 Dillon, El-Menoufi,Huber,Manuel'17 VonHarling,Servant'17 Megias, Nardini, Quiros' 18 Bruggisser, VonHarling, Matsedonskyi, Servant'18 Baratella, Pomarol, Rompineve'18 31

Impact on EW phase transition in Composite Higgs.

Which tunneling trajectory ?

1804.07314

1st-order EW phase transition .

1804.07314

χ1

Constraints from reheating.

After confining phase transition: universe may be reheated above the sphaleron freese out temperature

To preserve baryon asymmetry from washout:

LIGHT DILATON WINDOW <~ 700 GeV

Unavoidable? (see next...)

Collider bounds on dilaton .

Higgs-like couplings suppressed by v/f

Imaginary part of correction to Top quark Yukawa

1804.07314

Higgs coupling deviations to W and Z .

1804.07314

Supercooled EW Phase transition down to QCD temperatures.

Supercooled EW phase transition induced by TeV-scale confinement phase transition .

-4-

High-temperature EW symmetry non-restoration .

HIGH TEMPERATURE EW SYM. RESTORATION.

EW Symmetry restoration comes from the competition of two opposite terms in Higgs mass parameter

High-scale (T>TeV) EW phase transition .

- Motivation: EW baryogenesis using high-scale sources of CP violation, allowed by data
- Prediction: Large number of new weak-scale (m<~300 GeV) scalars</p>

High-scale (T>TeV) EW phase transition .

EW symmetry non-restoration at T>M_H.

χ's should be lighter than 300 GeV to avoid sphaleron washout of baryon asymmetry!

High-scale EW phase transition from new EW-scale singlet fermions .

Add n new fermions N with Higgsdependent mass contribution. Mass vanishes at <h>≠0

Matsedonskyi-Servant, to appear

$$m_N(h) = m_N^{(0)} - \lambda_N h^2 / \Lambda = 0 \quad \longrightarrow \quad h^2 = m_N^{(0)} \Lambda / \lambda_N,$$

Why pushing up the temperature of the EW phase transition ?

Major implications even if pushed by only a few hundreds of GeV

Early baryon asymmetry safe from sphaleron wash-out even in models with B-L=0

> opens large new windows of theory space for successful EW baryogenesis

Why pushing up the temperature of the EW phase transition ?

Baryon asymmetry produced during higher T phase transition is never washed out

EW symmetry: never-restored .

-5-

Cosmological relaxation of the EW scale .

Cosmological relaxation of the EW scale through Higgs-axion interplay.

dynamical $\mu_{\rm H}$ (not a temperature effect)

$$\mu_{\rm H}^2 = \Lambda^2 - g \Lambda^3 \phi {\color{red} {\rm relaxion}}$$

Testable?...

Start in symmetric phase

Standard EWPT after relaxation (which is followed by reheating)

Prediction: Very light relaxion

Cosmological relaxation of the EW scale a la Hook-Marques-Tavares.

$$\mu_{\rm H}^2 = -\Lambda^2 + g\Lambda^3 \phi$$

1607.01786 1805.04543 1911.08473

Start in EW-broken phase at early times

Restore EW symmetry due to reheating after relaxation

A whole set of different scenarios!

recent critical review:1911.08473

Conclusion .

It remains very open how EW symmetry got broken in early universe

First-order EW phase transition: well alive and still likely

supercooled EW phase transition: generic in Composite Higgs with light dilaton, rich pheno and cosmo. *Testable through light dilaton signatures*

EW baryogenesis: under threat by EDM bounds

- Top transport may remain open only in composite Higgs.
- **OP** in hidden sector, e.g. new leptons

EW phase transition occurring at high temperatures >> 100 GeV, via large number of new O(few100 GeV) singlet scalars or singlet fermions.

 Broken EW sym. at early times may happen in models of EW scale cosmological relaxation (not a temperature effect) although followed by SM-like EW phase transition

> Associated predictions: light weakly coupled relaxion. Testable signatures: not yet clear, work in progress.

Conclusion .

It remains very open how EW symmetry got broken in early universe

Probing the EW phase transition will keep us busy for the next 2 decades through complementarity of studies in theory, lattice, experiments in Colliders, EDMs, gravitational waves, cosmology, axions.

~light dilaton generically needed \rightarrow direct searches+Higgs physics

Constraints from reheating

Amount of supercooling in Composite Higgs EWPT Strength

 \rightarrow

EW symmetry non-restoration at T>M_H.

SUMMARY OF PRINCIPLE: Massless or sufficiently light (m<T) particles coupled to the Higgs produce a dip

in the Higgs potential of the size $\sim -T^4$

h

 h_3

 $V'' \propto T^2 (m(h)^2)''$