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Higgs in the early universe :

2

- Matter-antimatter asymmetry

- Inflation

 - Dark Matter

 Does the Higgs help solving any 
of the open problems?



Higgs in the early universe :

3

 Are there any imprints from the 
Higgs’ early behaviour in 

cosmological observables?



This talk :

 Still many open exotic possibilities 
regarding what happened when the energy 

density of the universe was (EW scale)4.

4

 Higgs cosmology at the EW epoch.
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THE HIGGS POTENTIAL .

 TODAY, T=0

> How did we end up here ?

Tested part of 
the potential

 We’re here.

5



HEATING UP THE STANDARD MODEL .
 EW sym. restored at T≳160 GeV*** 

through a smooth crossover
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Tc

No departure from thermal equilibrium
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It would have been different if mH≲70 GeV
Electroweak phase transition

Lattice calculations show the SM Higgs mass is too large.

RHW ⌘ mH/mW

Endpoint at:

mH ⇡ 67 GeV

- Csikor, Fodor, Heitger, Phys. Rev. Lett. 82, 21 (1999)

Higgs mass is too large in the SM. The Higgs potential must be modified.
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FIG. 2: The evolution of the effective potential with temperature
in the SM (top) and with varying Yukawas (bottom). The vary-
ing Yukawa calculation includes all SM fermions with y1 = 1,
n1 = 1 and their respective y0, chosen to return the observed fermion
masses today (for the neutrinos we have assumed Dirac neutrinos and
m⌫ = 0.05 eV). In the varying Yukawa case we find a first-order
phase transition with �c = 230 GeV and Tc = 128 GeV (second
order transition at Tc = 163 GeV for the constant Yukawa case).

different speeds. Large values of n mean the Yukawa cou-
pling remain large for a greater range of � away from zero.
We will see that large n strengthen the phase transition.

We study the strength of the EWPT for different choices of
n, y1 ⇠ O(1) and the number of degrees of freedom, g, of the
species with the �-dependent Yukawa coupling. The results
do not depend strongly on the choice of y0 as long as y0 ⌧ 1.
The top Yukawa is assumed to be constant and take its SM
value.

Of course, in a realistic model the different fermion species
will take on different values of n, y1 and y0 (also the underly-
ing model determines whether only quarks, only leptons or all
fermion masses are controlled by the same flavon). Our aim
here is to simply illustrate the effect through a simple ansatz
and an overall variation of n, g and y1.

The possibility that the Yukawa couplings could change
during the EWPT was raised in [35] but the impact on the na-
ture of the EWPT was ignored, the emphasis was on the pos-
sibility to get large CP violation from the CKM matrix during
the EWPT. We show in the next section the three main effects

FIG. 3: Solid lines: Contours of �c/Tc = 1 for different choices of
y1 and y0 = 0.02, areas above these lines allow for EW baryoge-
nesis. Dashed lines: areas above these lines are disallowed (for the
indicated choices of y1 and y0) due to the EW minimum not being
the global one.

that Eq. (2) has on the Higgs effective potential.

IV. EFFECTIVE HIGGS POTENTIAL WITH VARYING
YUKAWAS

We consider the effective potential given by the sum of the
tree level potential, the one-loop zero temperature correction,
the one-loop finite temperature correction and the daisy cor-
rection [36]

Ve↵ = Vtree(�) + V

0
1 (�) + V

T
1 (�, T ) + VDaisy(�, T ). (4)

In the framework we have in mind, this potential depends
as well on the additional flavon field(s) coupling to the
Higgs. However, for the generic points we want to stress,
we should ignore the flavon(s) degrees of freedom and take
the SM tree level potential. We study the evolution of the
effective potential with temperature numerically, including
the SM fermionic dof with varying Yukawas, in addition to
the usual bosonic SM fields. An example of the evolution of
the effective potential with varying Yukawa couplings, with a
comparison to the SM case (constant Yukawas), is shown in
Fig. 2. We next scan over n and g for different choices of y1
and find the strength of the phase transition, as characterised
by the ratio of the critical VEV to temperature, �c/Tc

(successful EW baryogenesis requires �c/Tc & 1 [37]).
Our results are summarised in Fig. 3. Below we discuss
the different terms of the effective potential and identify the
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coupled to the Higgs
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For high-T, m/T<<1:



3

FIG. 2: The evolution of the effective potential with temperature
in the SM (top) and with varying Yukawas (bottom). The vary-
ing Yukawa calculation includes all SM fermions with y1 = 1,
n1 = 1 and their respective y0, chosen to return the observed fermion
masses today (for the neutrinos we have assumed Dirac neutrinos and
m⌫ = 0.05 eV). In the varying Yukawa case we find a first-order
phase transition with �c = 230 GeV and Tc = 128 GeV (second
order transition at Tc = 163 GeV for the constant Yukawa case).

different speeds. Large values of n mean the Yukawa cou-
pling remain large for a greater range of � away from zero.
We will see that large n strengthen the phase transition.

We study the strength of the EWPT for different choices of
n, y1 ⇠ O(1) and the number of degrees of freedom, g, of the
species with the �-dependent Yukawa coupling. The results
do not depend strongly on the choice of y0 as long as y0 ⌧ 1.
The top Yukawa is assumed to be constant and take its SM
value.

Of course, in a realistic model the different fermion species
will take on different values of n, y1 and y0 (also the underly-
ing model determines whether only quarks, only leptons or all
fermion masses are controlled by the same flavon). Our aim
here is to simply illustrate the effect through a simple ansatz
and an overall variation of n, g and y1.

The possibility that the Yukawa couplings could change
during the EWPT was raised in [35] but the impact on the na-
ture of the EWPT was ignored, the emphasis was on the pos-
sibility to get large CP violation from the CKM matrix during
the EWPT. We show in the next section the three main effects

FIG. 3: Solid lines: Contours of �c/Tc = 1 for different choices of
y1 and y0 = 0.02, areas above these lines allow for EW baryoge-
nesis. Dashed lines: areas above these lines are disallowed (for the
indicated choices of y1 and y0) due to the EW minimum not being
the global one.

that Eq. (2) has on the Higgs effective potential.

IV. EFFECTIVE HIGGS POTENTIAL WITH VARYING
YUKAWAS

We consider the effective potential given by the sum of the
tree level potential, the one-loop zero temperature correction,
the one-loop finite temperature correction and the daisy cor-
rection [36]

Ve↵ = Vtree(�) + V

0
1 (�) + V

T
1 (�, T ) + VDaisy(�, T ). (4)

In the framework we have in mind, this potential depends
as well on the additional flavon field(s) coupling to the
Higgs. However, for the generic points we want to stress,
we should ignore the flavon(s) degrees of freedom and take
the SM tree level potential. We study the evolution of the
effective potential with temperature numerically, including
the SM fermionic dof with varying Yukawas, in addition to
the usual bosonic SM fields. An example of the evolution of
the effective potential with varying Yukawa couplings, with a
comparison to the SM case (constant Yukawas), is shown in
Fig. 2. We next scan over n and g for different choices of y1
and find the strength of the phase transition, as characterised
by the ratio of the critical VEV to temperature, �c/Tc

(successful EW baryogenesis requires �c/Tc & 1 [37]).
Our results are summarised in Fig. 3. Below we discuss
the different terms of the effective potential and identify the
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At high T:



WHICH ALTERNATIVE 
HIGGS STORIES ?
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 First-order 
EW  Phase transition .

-1-
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First-order EW phase transition .

> Framework for EW baryogenesis !
> Stochastic bgd of gravitational waves 

detectable at LISA !

Nucleation, expansion and collision of Higgs bubbles

Barrier separates 2 
degenerate minima

2 phases can coexist

tunneling
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EW baryogenesis during a first-order EW 
phase transition .

 Baryon asymmetry created at 
vicinity of CP-violating bubble wall.broken phase 

<Φ>≠0

h�(Tn)i
Tn

& 1Strength of EW phase transition ≡

Tn ≡ nucleation temperature
12

Kuzmin, Rubakov, Shaposhnikov’85
Cohen, Kaplan, Nelson’91
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Broken Symmetric

Figure 1: A cut through the bubble wall, which moves from the left to the right (in the direction

of positive z, i.e. v

w

> 0). In blue we show the profile of the Higgs vev through the bubble

wall. The rate for the sphaleron transitions (yellow, rescaled to one) only becomes important

in front of the bubble wall.

is a measure for the density of left handed quarks in front of the bubble wall. The first term

in the parenthesis on the right hand side of equation (1) represents the excess of left handed

quarks being converted into a net baryon number by the weak sphaleron. The second term

in this parenthesis accounts for the washout, i.e. the fact that the sphaleron tends to relax

any baryon asymmetry to zero if it has enough time to do so. If the bubble wall advances

at a very low speed compared to the typical di↵usion time scale, the sphaleron washes-out

the baryon asymmetry. If, however, the wall has a sizable velocity, a non-negligible fraction

of the baryon asymmetry di↵uses into the bubble, where the weak sphaleron is suppressed

due to the fact that the electroweak symmetry is broken. This way we can freeze the baryon

asymmetry inside the bubble.

The whole mechanism is illustrated figure 1 which also clarifies our notations and conven-

tions.

From equation (1) it is clear that the main di�culty will be to calculate the density of

the excess of left-handed fermions in front of the bubble wall. This will be determined by the

way the fermions are transported through the bubble wall, i.e. how they interact with the

wall and among them selfs while moving through the wall. We therefore want to determine

the profiles of the chemical potentials (µ
i

) of each one of the particle species. It is clear that

their local velocity in the plasma (u
i

) is influencing the di↵usion through the bubble wall.

We therefore have to determine µ
i

and u

i

simultaneously. For electroweak baryogenesis, only

the CP-violating contribution is of interest, which is the only part that we will calculate.

Therefore the (CP-violating part of the) chemical potentials and the local velocities will also

crucially depend on the (new) source of CP-violation that has to be present in order to create

an excess of left-handed particles. This gives rise to a system of coupled di↵erential equations

2
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Géraldine Servant

1,2

1 DESY, Notkestrasse 85, 22607 Hamburg, Germany
2 II. Institute of Theoretical Physics, University of Hamburg, 22761 Hamburg, Germany

E-mail: geraldine.servant@desy.de

Abstract. bla

1. Introduction

bla

2. LISA as a window on fundamental physics: the electroweak scale and beyond

3. Calculation of the GW spectrum from cosmological phase transitions

4. Theoretical motivations

baryogenesis

5. Supercooled electroweak phase transition

6. Flavour physics and EW symmetry breaking interplay

Table 1. jpconf.cls class file options.

Option Description

a4paper Set the paper size and margins for A4 paper.
letterpaper Set the paper size and margins for US letter paper.

�ws = 10�6 T e�
Esph

T
�(T )
v (1)

⌘B ⇠ �ws µL Lw

g⇤ T
(2)

µL ⇠ Y
00
Y ⇠ �CP

L2
w T

(3)

Lw ⇠ 1

T
(4)

13

: sphaleron rate
bubble wall velocity

The EW baryogenesis miracle .

bubble wall



-6 -4 -2 2 4 6

Broken Symmetric

GWs at LISA
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Gravitational Waves from a first-order phase 
transition .
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Figure 3: Example output of the PTPlot tool. The plot shows an example of the GW power

spectrum from a first-order PT, along with the LISA sensitivity curve (h2⌦Sens(f) taken from the

LISA Science Requirements Document [65]). The parameters of the example model are vw = 0.9,

↵ = 0.1, �/H⇤ = 50, T⇤ = 200 GeV, g⇤ = 100.

time are shaded on these SNR plots. Note that for producing the SNR curves the duration

of the source is taken to be the Hubble time or the fluid turnover time, whichever is shorter,

as the most conservative estimate possible [17, 20].

On the other hand, for an SNR plot in the �/H⇤-↵ plane, which is more practical for

model builders, the input parameters can be plotted directly, but the contours are deformed

by the inverse mapping from U f and HnR⇤ to ↵ and �/H⇤.
Figs. 2 and 3 show three example plots produced by the PTPlot tool. The two plots in

Fig. 2 display the SNR in the Ūf vs R⇤H⇤ and ↵ vs �/H⇤ parameter spaces. Figure 3 shows

the expected GW power spectrum for some example model and the LISA sensitivity curve.

All sensitivity plots presented in Sec. 6 were made with PTPlot.

5 Determining ↵, �, and H⇤ in specific models

When considering a specific model, the parameters ↵, �, and T⇤ (or H⇤) entering the energy

budget (and PTPlot) need to be computed microphysically. This is typically done using

a perturbative e↵ective potential approach (implicitly assumed in the discussion of Sec. 2),

which can result in significant uncertainties in the predicted GW parameters. Here, we discuss

methods for going beyond the standard approach and the corresponding uncertainties as they

relate to LISA.

The majority of GW predictions in specific BSM scenarios rely on the computation of

the e↵ective potential V [{�i}], through a perturbative expansion to one- or sometimes two-

loop order in 4D. Here, {�i} denotes the set of scalar fields involved in the transition (the

order parameters). Under the assumption that the {�i} are homogeneous, one may compute
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Fig. 2 display the SNR in the Ūf vs R⇤H⇤ and ↵ vs �/H⇤ parameter spaces. Figure 3 shows

the expected GW power spectrum for some example model and the LISA sensitivity curve.

All sensitivity plots presented in Sec. 6 were made with PTPlot.

5 Determining ↵, �, and H⇤ in specific models

When considering a specific model, the parameters ↵, �, and T⇤ (or H⇤) entering the energy

budget (and PTPlot) need to be computed microphysically. This is typically done using

a perturbative e↵ective potential approach (implicitly assumed in the discussion of Sec. 2),

which can result in significant uncertainties in the predicted GW parameters. Here, we discuss

methods for going beyond the standard approach and the corresponding uncertainties as they

relate to LISA.

The majority of GW predictions in specific BSM scenarios rely on the computation of

the e↵ective potential V [{�i}], through a perturbative expansion to one- or sometimes two-

loop order in 4D. Here, {�i} denotes the set of scalar fields involved in the transition (the

order parameters). Under the assumption that the {�i} are homogeneous, one may compute

20



What makes the EW phase transition 
1st-order ?

> Extra EW-scale scalar(s) coupled to the Higgs  

> O(1) modifications to the Higgs potential  

16



What makes the EW phase transition 
1st-order ?

> Extra EW-scale scalar(s) coupled to the Higgs  
EFT approach to EW phase transition of limited use.
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Figure 4: Plot of the ratio ⌅n = ⇧⌃(Tn)⌃/Tn characterizing the strength of the phase transition
using the thermal mass approximation of [2] (left) and the complete one-loop potential
(right). The contours are for ⌅n = {1, 2, 3, 4} from top to bottom. f is the decay constant
of the strong sector the Higgs emerges from, and mh is the physical Higgs mass.

detailed in this article. We compare these results with the sensitivities of current gravity
wave detectors, and of proposed gravity wave detectors of the future.

3.2.1 Characterizing the spectrum

Previous studies [24, 25, 26] of the gravity wave spectrum culminate in showing that it can
be fully characterized by the knowledge of only two parameters derived ultimately from the
e�ective potential6. The first one is the rate of time-variation of the nucleation rate, named
⇥. Its inverse gives the duration of the phase transition, therefore defining the characteristic
frequency of the spectrum. The second important parameter, �, measures the ratio of the
latent heat to the energy density of the dominant kind, which is radiation at the epoch
considered: � ⇥ ⇤/⇧rad. They are both numerically computed from the e�ective action S3/T
at the nucleation temperature as follows. The time-dependence of the rate of nucleation is
mainly concentrated in the e�ective action and ⇥ is defined by ⇥ ⇥ �dSE/dt

��
tn

. Using the

6This conclusion is valid under the assumption of detonation. However, in practice the bubble expand in
a thermal bath and not in the vacuum and friction e�ects taking place in the plasma slow down the bubble
velocity. Therefore, it might be important to consider the deflagration regime as in Ref. [27]. When the
phase transition is weakly first order, we obtained under the approximations of [28] a wall velocity lower
than the speed of sound. However, in the interesting region where the phase transition gets stronger, we
approach the detonation regime and the approximations of [28] have to be refined to accurately compute the
wall velocity.

17

Λ

region where EW phase 
transition is 1st order

strong enough  
for EW baryogenesis  

if Λ      850 GeV�

0711.2511

+�m2
H(T )T

2 (28)

Vh ⇠ f 4


↵ sin2

✓
h

f

◆
+ � sin4

✓
h

f

◆�
(29)

��S�
2S2 (30)

�

T
O(1) (31)

Z2 (32)

s ! �s (33)

V = V�(�) + Vh(�, h) (34)

V (�) = �µ2
h|�|2 � �|�|4 + |�|6

⇤2
(35)

V (�) = �µ2
h|�|2 � �|�|4 + |�|6

⇤2
(36)

4

->

17

hep-ph/0407019



What makes the EW phase transition 
1st-order ?

2 main classes of models
11<1- Standard polynomial potentials, e.g extra singlet S, 2HDM… 

under specific choices of parameters. 

2- Higgs emerging after confinement phase transition of 
strongly interacting new sector.

-Effect of cross-quartic

+�m2
H(T )T

2 (28)

V ⇠ f 4


↵ sin2

✓
h

f

◆
+ � sin4(

h

f
)

�
(29)

��S�
2S2 (30)

4

-Higgs potential is trigonometric function

-Moderate strength  of EW phase transition

+�m2
H(T )T

2 (28)

V ⇠ f 4


↵ sin2

✓
h

f

◆
+ � sin4(

h

f
)

�
(29)

��S�
2S2 (30)

�

T
O(1) (31)

4

≲

-Fate of the Higgs ruled by the dilaton
-Unbounded strength,      can naturally be >>1 

+�m2
H(T )T

2 (28)

V ⇠ f 4


↵ sin2

✓
h

f

◆
+ � sin4(

h

f
)

�
(29)

��S�
2S2 (30)

�

T
O(1) (31)

4

> Extra EW-scale scalar(s) coupled to the Higgs  

18



The most studied case: First-order EW phase 
transition from an extra scalar singlet .

2

ory approach, in which the details of the strong dynamics
at the strong coupling scale are integrated out. In such
a framework, one only needs to specify the light degrees
of freedom, together with the operators of low dimension
that are present in the low-energy effective Lagrangian.
The simplest such Lagrangian would contain only the

SM degrees of freedom, together with additional oper-
ators beginning at dimension six. Such a Lagrangian
would arise, for example, as the low energy limit of the
‘minimal composite Higgs model’ [22], based on the coset
SO(5)/SO(4). Clearly, since the SM on its own is defi-
cient from the point of view of EWBG, the dimension-six
(or higher) operators must have a large effect on both the
EWPhT (via sextic and higher contributions to the Higgs
potential [29–31]) and on CP -violating physics [31, 32],
but this conflicts with the need for a large strong-coupling
scale (which suppresses the higher-dimension operators)
and in any case might jeopardize the validity of the ef-
fective field theory expansion.
However, there does not seem to be any compelling rea-

son (pace Occam) to choose the composite Higgs model
based on the coset SO(5)/SO(4) over one based on a
larger coset, and featuring the same desirable properties
[33, 34]. On the contrary, from the point of view of the
EWPhT, we know that the most favorable case (at the
renormalizable level) occurs when the Higgs sector is ex-
tended to include a gauge singlet scalar and that in this
way, one may have a strongly first-order phase transi-
tion (for a recent comprehensive analysis, see [35] and
references therein). Such a scenario is realized in the
composite Higgs model based on the global symmetry
breaking pattern SO(6) → SO(5) [33], where the coset
is five-dimensional and the low-energy spectrum includes
four degrees of freedom corresponding to the Higgs dou-
blet plus one, real, singlet PNGB. What is more, the
non-renormalizable operators in the low-energy effective
Lagrangian of this model begin at dimension-five and in-
clude an operator coupling the singlet and the Higgs to
a pair of top quarks that violates CP .
In this article, we show that such a model can generate

the baryon asymmetry. As we have argued, it suffices to
study the low-energy effective theory of the SM plus a
singlet, including the aforementioned dimension-five op-
erator. The scenario offers a testable way to explain the
origin of the baryon asymmetry and can also be compared
with constraints on new, CP -violating physics coming
from electric dipole moment (EDM) tests and from LEP.
In Section II we summarize the features of the compos-

ite Higgs model with a singlet that are relevant for baryo-
genesis (more details are given in Appendix A) and in
Section III we study how the baryon asymmetry arises in
this scenario. In Section IV, we study electric dipole mo-
ment and LEP constraints, while in Section V we quan-
tify how much explicit CP violation is needed to obtain
a sufficient net baryon asymmetry. In Section VI we esti-
mate the characteristics of the phase transition (such as
the wall thickness and critical temperature) in a special
case where the theory is approximately Z2-symmetric:

then the structure of the effective Lagrangian is simpler
and allows for an analytical study. Finally, in Section VII
we present our conclusions. In Appendix B, we collect the
transport equations used to calculate the baryon asym-
metry.

II. THE SM PLUS A SINGLET FROM A
COMPOSITE HIGGS

We are interested in composite Higgs models that, in
the low energy spectrum, include the SM and a fur-
ther real, scalar degree of freedom, singlet under the SM
gauge group. One example is the model based on the
SO(6)/SO(5) coset of ref. [33], which we summarize in
Appendix A. In this Section, we highlight the features
that play a rôle in EWBG: in particular, we concentrate
on the effective scalar potential and on the couplings be-
tween the Higgs and top-quark sectors, which, from natu-
ralness arguments, are expected to be mostly composite.
The most general effective scalar potential at the renor-

malizable level is

V = V even + V odd , (1)

with

V even ≡ −µ2
h|H |2 + λh|H |4

−
1

2
µ2
ss

2 +
1

4
λss

4 +
1

2
λms2|H |2, (2)

V odd ≡
1

2
µms|H |2 + µ3

1s+
1

3
µ3s

3 , (3)

where µh,s,m,1,3 have dimension of mass and λh,s,m are di-
mensionless1; H denotes the Higgs SU(2)L doublet with
physical component h/

√
2. V even(odd) denotes the part

of the potential that is even (odd) with respect to the Z2

transformation

s → −s . (4)

While this is an isometry of the coset space, whether
or not it is a symmetry of the effective Lagrangian de-
pends on how the SM fermions are coupled to the sigma
model [33].
Let us now consider the couplings between the singlet

and the fermions. Lorentz invariance alone allows the
singlet s to couple to a Dirac fermion F via

sF̄ (a+ ibγ5)F , (5)

where a (b) is a dimensionless coefficient describing its
(pseudo)scalar-like couplings. In the SM, however, the

1 The singlet extension of the SM can produce a strongly first-
order phase transition already at the renormalizable level. So,
provided v and ∆s (the jump in s at the EWPhT) are small
compared to f , we can ignore higher dimension operators in the
potential or the scalar kinetic terms.
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on the effective scalar potential and on the couplings be-
tween the Higgs and top-quark sectors, which, from natu-
ralness arguments, are expected to be mostly composite.
The most general effective scalar potential at the renor-

malizable level is
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where µh,s,m,1,3 have dimension of mass and λh,s,m are di-
mensionless1; H denotes the Higgs SU(2)L doublet with
physical component h/

√
2. V even(odd) denotes the part

of the potential that is even (odd) with respect to the Z2

transformation

s → −s . (4)

While this is an isometry of the coset space, whether
or not it is a symmetry of the effective Lagrangian de-
pends on how the SM fermions are coupled to the sigma
model [33].
Let us now consider the couplings between the singlet

and the fermions. Lorentz invariance alone allows the
singlet s to couple to a Dirac fermion F via

sF̄ (a+ ibγ5)F , (5)

where a (b) is a dimensionless coefficient describing its
(pseudo)scalar-like couplings. In the SM, however, the

1 The singlet extension of the SM can produce a strongly first-
order phase transition already at the renormalizable level. So,
provided v and ∆s (the jump in s at the EWPhT) are small
compared to f , we can ignore higher dimension operators in the
potential or the scalar kinetic terms.
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ory approach, in which the details of the strong dynamics
at the strong coupling scale are integrated out. In such
a framework, one only needs to specify the light degrees
of freedom, together with the operators of low dimension
that are present in the low-energy effective Lagrangian.
The simplest such Lagrangian would contain only the

SM degrees of freedom, together with additional oper-
ators beginning at dimension six. Such a Lagrangian
would arise, for example, as the low energy limit of the
‘minimal composite Higgs model’ [22], based on the coset
SO(5)/SO(4). Clearly, since the SM on its own is defi-
cient from the point of view of EWBG, the dimension-six
(or higher) operators must have a large effect on both the
EWPhT (via sextic and higher contributions to the Higgs
potential [29–31]) and on CP -violating physics [31, 32],
but this conflicts with the need for a large strong-coupling
scale (which suppresses the higher-dimension operators)
and in any case might jeopardize the validity of the ef-
fective field theory expansion.
However, there does not seem to be any compelling rea-

son (pace Occam) to choose the composite Higgs model
based on the coset SO(5)/SO(4) over one based on a
larger coset, and featuring the same desirable properties
[33, 34]. On the contrary, from the point of view of the
EWPhT, we know that the most favorable case (at the
renormalizable level) occurs when the Higgs sector is ex-
tended to include a gauge singlet scalar and that in this
way, one may have a strongly first-order phase transi-
tion (for a recent comprehensive analysis, see [35] and
references therein). Such a scenario is realized in the
composite Higgs model based on the global symmetry
breaking pattern SO(6) → SO(5) [33], where the coset
is five-dimensional and the low-energy spectrum includes
four degrees of freedom corresponding to the Higgs dou-
blet plus one, real, singlet PNGB. What is more, the
non-renormalizable operators in the low-energy effective
Lagrangian of this model begin at dimension-five and in-
clude an operator coupling the singlet and the Higgs to
a pair of top quarks that violates CP .
In this article, we show that such a model can generate

the baryon asymmetry. As we have argued, it suffices to
study the low-energy effective theory of the SM plus a
singlet, including the aforementioned dimension-five op-
erator. The scenario offers a testable way to explain the
origin of the baryon asymmetry and can also be compared
with constraints on new, CP -violating physics coming
from electric dipole moment (EDM) tests and from LEP.
In Section II we summarize the features of the compos-

ite Higgs model with a singlet that are relevant for baryo-
genesis (more details are given in Appendix A) and in
Section III we study how the baryon asymmetry arises in
this scenario. In Section IV, we study electric dipole mo-
ment and LEP constraints, while in Section V we quan-
tify how much explicit CP violation is needed to obtain
a sufficient net baryon asymmetry. In Section VI we esti-
mate the characteristics of the phase transition (such as
the wall thickness and critical temperature) in a special
case where the theory is approximately Z2-symmetric:

then the structure of the effective Lagrangian is simpler
and allows for an analytical study. Finally, in Section VII
we present our conclusions. In Appendix B, we collect the
transport equations used to calculate the baryon asym-
metry.
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that play a rôle in EWBG: in particular, we concentrate
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or not it is a symmetry of the effective Lagrangian de-
pends on how the SM fermions are coupled to the sigma
model [33].
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and the fermions. Lorentz invariance alone allows the
singlet s to couple to a Dirac fermion F via

sF̄ (a+ ibγ5)F , (5)

where a (b) is a dimensionless coefficient describing its
(pseudo)scalar-like couplings. In the SM, however, the

1 The singlet extension of the SM can produce a strongly first-
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ory approach, in which the details of the strong dynamics
at the strong coupling scale are integrated out. In such
a framework, one only needs to specify the light degrees
of freedom, together with the operators of low dimension
that are present in the low-energy effective Lagrangian.
The simplest such Lagrangian would contain only the

SM degrees of freedom, together with additional oper-
ators beginning at dimension six. Such a Lagrangian
would arise, for example, as the low energy limit of the
‘minimal composite Higgs model’ [22], based on the coset
SO(5)/SO(4). Clearly, since the SM on its own is defi-
cient from the point of view of EWBG, the dimension-six
(or higher) operators must have a large effect on both the
EWPhT (via sextic and higher contributions to the Higgs
potential [29–31]) and on CP -violating physics [31, 32],
but this conflicts with the need for a large strong-coupling
scale (which suppresses the higher-dimension operators)
and in any case might jeopardize the validity of the ef-
fective field theory expansion.
However, there does not seem to be any compelling rea-

son (pace Occam) to choose the composite Higgs model
based on the coset SO(5)/SO(4) over one based on a
larger coset, and featuring the same desirable properties
[33, 34]. On the contrary, from the point of view of the
EWPhT, we know that the most favorable case (at the
renormalizable level) occurs when the Higgs sector is ex-
tended to include a gauge singlet scalar and that in this
way, one may have a strongly first-order phase transi-
tion (for a recent comprehensive analysis, see [35] and
references therein). Such a scenario is realized in the
composite Higgs model based on the global symmetry
breaking pattern SO(6) → SO(5) [33], where the coset
is five-dimensional and the low-energy spectrum includes
four degrees of freedom corresponding to the Higgs dou-
blet plus one, real, singlet PNGB. What is more, the
non-renormalizable operators in the low-energy effective
Lagrangian of this model begin at dimension-five and in-
clude an operator coupling the singlet and the Higgs to
a pair of top quarks that violates CP .
In this article, we show that such a model can generate

the baryon asymmetry. As we have argued, it suffices to
study the low-energy effective theory of the SM plus a
singlet, including the aforementioned dimension-five op-
erator. The scenario offers a testable way to explain the
origin of the baryon asymmetry and can also be compared
with constraints on new, CP -violating physics coming
from electric dipole moment (EDM) tests and from LEP.
In Section II we summarize the features of the compos-

ite Higgs model with a singlet that are relevant for baryo-
genesis (more details are given in Appendix A) and in
Section III we study how the baryon asymmetry arises in
this scenario. In Section IV, we study electric dipole mo-
ment and LEP constraints, while in Section V we quan-
tify how much explicit CP violation is needed to obtain
a sufficient net baryon asymmetry. In Section VI we esti-
mate the characteristics of the phase transition (such as
the wall thickness and critical temperature) in a special
case where the theory is approximately Z2-symmetric:

then the structure of the effective Lagrangian is simpler
and allows for an analytical study. Finally, in Section VII
we present our conclusions. In Appendix B, we collect the
transport equations used to calculate the baryon asym-
metry.

II. THE SM PLUS A SINGLET FROM A
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We are interested in composite Higgs models that, in
the low energy spectrum, include the SM and a fur-
ther real, scalar degree of freedom, singlet under the SM
gauge group. One example is the model based on the
SO(6)/SO(5) coset of ref. [33], which we summarize in
Appendix A. In this Section, we highlight the features
that play a rôle in EWBG: in particular, we concentrate
on the effective scalar potential and on the couplings be-
tween the Higgs and top-quark sectors, which, from natu-
ralness arguments, are expected to be mostly composite.
The most general effective scalar potential at the renor-
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where µh,s,m,1,3 have dimension of mass and λh,s,m are di-
mensionless1; H denotes the Higgs SU(2)L doublet with
physical component h/

√
2. V even(odd) denotes the part

of the potential that is even (odd) with respect to the Z2

transformation

s → −s . (4)

While this is an isometry of the coset space, whether
or not it is a symmetry of the effective Lagrangian de-
pends on how the SM fermions are coupled to the sigma
model [33].
Let us now consider the couplings between the singlet

and the fermions. Lorentz invariance alone allows the
singlet s to couple to a Dirac fermion F via

sF̄ (a+ ibγ5)F , (5)

where a (b) is a dimensionless coefficient describing its
(pseudo)scalar-like couplings. In the SM, however, the

1 The singlet extension of the SM can produce a strongly first-
order phase transition already at the renormalizable level. So,
provided v and ∆s (the jump in s at the EWPhT) are small
compared to f , we can ignore higher dimension operators in the
potential or the scalar kinetic terms.
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ory approach, in which the details of the strong dynamics
at the strong coupling scale are integrated out. In such
a framework, one only needs to specify the light degrees
of freedom, together with the operators of low dimension
that are present in the low-energy effective Lagrangian.
The simplest such Lagrangian would contain only the

SM degrees of freedom, together with additional oper-
ators beginning at dimension six. Such a Lagrangian
would arise, for example, as the low energy limit of the
‘minimal composite Higgs model’ [22], based on the coset
SO(5)/SO(4). Clearly, since the SM on its own is defi-
cient from the point of view of EWBG, the dimension-six
(or higher) operators must have a large effect on both the
EWPhT (via sextic and higher contributions to the Higgs
potential [29–31]) and on CP -violating physics [31, 32],
but this conflicts with the need for a large strong-coupling
scale (which suppresses the higher-dimension operators)
and in any case might jeopardize the validity of the ef-
fective field theory expansion.
However, there does not seem to be any compelling rea-

son (pace Occam) to choose the composite Higgs model
based on the coset SO(5)/SO(4) over one based on a
larger coset, and featuring the same desirable properties
[33, 34]. On the contrary, from the point of view of the
EWPhT, we know that the most favorable case (at the
renormalizable level) occurs when the Higgs sector is ex-
tended to include a gauge singlet scalar and that in this
way, one may have a strongly first-order phase transi-
tion (for a recent comprehensive analysis, see [35] and
references therein). Such a scenario is realized in the
composite Higgs model based on the global symmetry
breaking pattern SO(6) → SO(5) [33], where the coset
is five-dimensional and the low-energy spectrum includes
four degrees of freedom corresponding to the Higgs dou-
blet plus one, real, singlet PNGB. What is more, the
non-renormalizable operators in the low-energy effective
Lagrangian of this model begin at dimension-five and in-
clude an operator coupling the singlet and the Higgs to
a pair of top quarks that violates CP .
In this article, we show that such a model can generate

the baryon asymmetry. As we have argued, it suffices to
study the low-energy effective theory of the SM plus a
singlet, including the aforementioned dimension-five op-
erator. The scenario offers a testable way to explain the
origin of the baryon asymmetry and can also be compared
with constraints on new, CP -violating physics coming
from electric dipole moment (EDM) tests and from LEP.
In Section II we summarize the features of the compos-

ite Higgs model with a singlet that are relevant for baryo-
genesis (more details are given in Appendix A) and in
Section III we study how the baryon asymmetry arises in
this scenario. In Section IV, we study electric dipole mo-
ment and LEP constraints, while in Section V we quan-
tify how much explicit CP violation is needed to obtain
a sufficient net baryon asymmetry. In Section VI we esti-
mate the characteristics of the phase transition (such as
the wall thickness and critical temperature) in a special
case where the theory is approximately Z2-symmetric:

then the structure of the effective Lagrangian is simpler
and allows for an analytical study. Finally, in Section VII
we present our conclusions. In Appendix B, we collect the
transport equations used to calculate the baryon asym-
metry.

II. THE SM PLUS A SINGLET FROM A
COMPOSITE HIGGS

We are interested in composite Higgs models that, in
the low energy spectrum, include the SM and a fur-
ther real, scalar degree of freedom, singlet under the SM
gauge group. One example is the model based on the
SO(6)/SO(5) coset of ref. [33], which we summarize in
Appendix A. In this Section, we highlight the features
that play a rôle in EWBG: in particular, we concentrate
on the effective scalar potential and on the couplings be-
tween the Higgs and top-quark sectors, which, from natu-
ralness arguments, are expected to be mostly composite.
The most general effective scalar potential at the renor-
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where µh,s,m,1,3 have dimension of mass and λh,s,m are di-
mensionless1; H denotes the Higgs SU(2)L doublet with
physical component h/
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2. V even(odd) denotes the part

of the potential that is even (odd) with respect to the Z2

transformation

s → −s . (4)

While this is an isometry of the coset space, whether
or not it is a symmetry of the effective Lagrangian de-
pends on how the SM fermions are coupled to the sigma
model [33].
Let us now consider the couplings between the singlet

and the fermions. Lorentz invariance alone allows the
singlet s to couple to a Dirac fermion F via

sF̄ (a+ ibγ5)F , (5)

where a (b) is a dimensionless coefficient describing its
(pseudo)scalar-like couplings. In the SM, however, the

1 The singlet extension of the SM can produce a strongly first-
order phase transition already at the renormalizable level. So,
provided v and ∆s (the jump in s at the EWPhT) are small
compared to f , we can ignore higher dimension operators in the
potential or the scalar kinetic terms.
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as S has no VEV today:  
no Higgs-S mixing-> no EW precision tests , tiny 

modifications of higgs couplings at colliders

sufficient, based on existing studies for precision measurements of higgs self-couplings. Remarkably,
the fact that this scenario is testable at the SPPC/FCC demonstrates that it may be possible to postulate
a “no-lose” theorem for EWBG with future colliders.

Our paper is organized as follows. In Section 2, we define the Z
2

symmetric singlet scalar model
and the two-dimensional parameter plane that illustrates its entire phenomenology. Section 3 contains
our analyses of the one-step and two-step phase transitions which enable EWBG in this model. Sec-
tions 4 and 5 examine direct and indirect signatures of the singlet scalar at colliders, and show how
the discovery potential overlaps with the EWBG-favored regions of parameter space. We consider
cosmological constraints on the singlet in Section 6 and show that, under certain assumptions, the en-
tire parameter space can be excluded by future direct detection experiments. Renormalization group
(RG) evolution and the implications of strong couplings are discussed in Section 7. We summarize
our findings and discuss implications in Section 8.

2 A “Nightmare Scenario” for a Strong Electroweak Phase Transition

Our putative nightmare scenario is constructed to hide the effects of a strong first-order phase transi-
tion, as discussed in Section 1.

2.1 Model Definition

We define our model by the following most general renormalizable tree-level higgs potential for the
SM higgs and a single real scalar:
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After substituting H = (G+, (h+iG0

)/
p
2) and focusing on the field h which becomes the SM higgs

after acquiring a VEV1, this becomes
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This scenario of adding a singlet with a Z
2

symmetry to the SM has been well-studied in a variety
of different contexts [50–56]. In this work, we focus on adding one real singlet with a mass larger
than mh/2 to avoid exotic higgs decays, and an unbroken Z

2

symmetry under which S ! �S to
avoid singlet-higgs mixing. In our choice of parametrization, the higgs acquires a VEV hhi = v =

µ/
p
� ⇡ 246 GeV and a mass at tree-level mh =

p
2µ ⇡ 125 GeV. In Section 3 we adopt

renormalization conditions to ensure that loop corrections do not change these values from their tree-
level expectation. Therefore we can define the higgs Lagrangian parameters � =

m2

h
2v2

⇡ 0.129 and
µ =

mhp
2

⇡ 88.4 GeV.

2.2 Physical Parameter Space

The model is determined by three new parameters, µS ,�HS and �S . However, in the context of our
nightmare scenario, it is straightforward to show that all relevant physics can be recast into the simple
two-dimensional plane of the physical singlet mass and its coupling to the higgs.

1For simplicity, we use h for the neutral real component of H as well as the SM higgs.
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FIG. 4: Phase transition dynamics in the mS �  plane, with
⌘ = ⌘min + 2.5. Same labeling and color code as in Fig. 1.

FIG. 5: Phase transition dynamics in the  � ⌘ plane, with
mS = 300 GeV. Same labeling and color code as in Fig. 1.

ble nucleation, depend on the singlet quartic coupling ⌘
as well as m

S

and . We find that for larger ⌘, it is easier
to find points in the two-step region where the thermal
EWPT does occur, and is strongly first-order. The rea-
son is that as ⌘ is increased, the critical temperature of
the transition between the EW-symmetric and broken
vacua increases, and both the height and the width of
the potential barrier decrease; see Fig. 3. This makes
tunneling between the two vacua easier, allowing a ther-
mal phase transition to occur. The e↵ect of varying ⌘ on
the viable parameter space is illustrated in Figs. 4 and 5.
Note, however, that even at large ⌘, most of the two-
step region is eliminated by the requirement of bubble
nucleation at non-zero temperature.

Even if this requirement is satisfied, models in which
the nucleation temperature T

N

significantly below the

FIG. 6: Phase transition dynamics in the  � ⌘ plane, with
mS = 300 GeV. In region B (red) bubble walls accelerate to
relativistic speeds and EWBG cannot occur, while in region
A (blue) EWBG is possible.

critical temperature T
c

are likely to fail the BM crite-
rion for relativistic bubble wall motion. This is because
in this case, the symmetry-breaking vacuum would typ-
ically have a significantly lower vacuum energy at T

N

compared to the symmetric vacuum, resulting in a strong
outward pressure on the bubble wall. To check this, we
implemented the BM criterion, Eq. (11), in our scans.
The result, shown in Fig. 6, is consistent with expec-
tations. The BM criterion eliminates a region bordering
that where no thermal EWPT occurs, since by continuity
this is the region where T

N

is the lowest. This extra con-
straint must also be taken into account in the discussion
of collider probes of EWBG.

IV. DISCUSSION

We re-considered the dynamics of EWPT in a model
with a singlet scalar field S coupled to the SM via a
Z2-symmetric Higgs portal, Eq. (1). We found that the
requirements of thermal EWPT (bubble nucleation at
non-zero temperature) and non-relativistic bubble wall
motion eliminate much of the parameter space that was
previously thought to provide viable EWBG models. In
particular, most of the parameter space where a two-step
phase transition was thought to occur, is now eliminated.
The e↵ect of the new requirements in the region where a
one-step transition was expected is less significant.
The model studied here has recently emerged as a use-

ful benchmark for planning the physics program at fu-
ture colliders. While absence of mixing between dou-
blet and singlet states makes this model challenging to
probe at the LHC, Ref. [36] argued that the proposed
future facilities will be able to probe the EWBG sce-
nario in this model conclusively. This can be achieved
with a combination of Higgs cubic coupling measure-
ments [15], direct Higgs portal searches in channels such
as pp ! V SS, qqSS [36, 37], and a very precise measure-
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rion for relativistic bubble wall motion. This is because
in this case, the symmetry-breaking vacuum would typ-
ically have a significantly lower vacuum energy at T
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compared to the symmetric vacuum, resulting in a strong
outward pressure on the bubble wall. To check this, we
implemented the BM criterion, Eq. (11), in our scans.
The result, shown in Fig. 6, is consistent with expec-
tations. The BM criterion eliminates a region bordering
that where no thermal EWPT occurs, since by continuity
this is the region where T
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is the lowest. This extra con-
straint must also be taken into account in the discussion
of collider probes of EWBG.

IV. DISCUSSION

We re-considered the dynamics of EWPT in a model
with a singlet scalar field S coupled to the SM via a
Z2-symmetric Higgs portal, Eq. (1). We found that the
requirements of thermal EWPT (bubble nucleation at
non-zero temperature) and non-relativistic bubble wall
motion eliminate much of the parameter space that was
previously thought to provide viable EWBG models. In
particular, most of the parameter space where a two-step
phase transition was thought to occur, is now eliminated.
The e↵ect of the new requirements in the region where a
one-step transition was expected is less significant.
The model studied here has recently emerged as a use-

ful benchmark for planning the physics program at fu-
ture colliders. While absence of mixing between dou-
blet and singlet states makes this model challenging to
probe at the LHC, Ref. [36] argued that the proposed
future facilities will be able to probe the EWBG sce-
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sufficient, based on existing studies for precision measurements of higgs self-couplings. Remarkably,
the fact that this scenario is testable at the SPPC/FCC demonstrates that it may be possible to postulate
a “no-lose” theorem for EWBG with future colliders.

Our paper is organized as follows. In Section 2, we define the Z
2

symmetric singlet scalar model
and the two-dimensional parameter plane that illustrates its entire phenomenology. Section 3 contains
our analyses of the one-step and two-step phase transitions which enable EWBG in this model. Sec-
tions 4 and 5 examine direct and indirect signatures of the singlet scalar at colliders, and show how
the discovery potential overlaps with the EWBG-favored regions of parameter space. We consider
cosmological constraints on the singlet in Section 6 and show that, under certain assumptions, the en-
tire parameter space can be excluded by future direct detection experiments. Renormalization group
(RG) evolution and the implications of strong couplings are discussed in Section 7. We summarize
our findings and discuss implications in Section 8.

2 A “Nightmare Scenario” for a Strong Electroweak Phase Transition

Our putative nightmare scenario is constructed to hide the effects of a strong first-order phase transi-
tion, as discussed in Section 1.

2.1 Model Definition

We define our model by the following most general renormalizable tree-level higgs potential for the
SM higgs and a single real scalar:

V
0

= �µ2|H|2 + �|H|4 + 1

2

µ2

SS
2

+ �HS |H|2S2

+

1

4

�SS
4. (2.1)

After substituting H = (G+, (h+iG0

)/
p
2) and focusing on the field h which becomes the SM higgs

after acquiring a VEV1, this becomes

V
0

= �1

2

µ2h2 +
1

4

�h4 +
1

2

µ2

SS
2

+

1

2

�HSh
2S2

+

1

4

�SS
4. (2.2)

This scenario of adding a singlet with a Z
2

symmetry to the SM has been well-studied in a variety
of different contexts [50–56]. In this work, we focus on adding one real singlet with a mass larger
than mh/2 to avoid exotic higgs decays, and an unbroken Z

2

symmetry under which S ! �S to
avoid singlet-higgs mixing. In our choice of parametrization, the higgs acquires a VEV hhi = v =

µ/
p
� ⇡ 246 GeV and a mass at tree-level mh =

p
2µ ⇡ 125 GeV. In Section 3 we adopt

renormalization conditions to ensure that loop corrections do not change these values from their tree-
level expectation. Therefore we can define the higgs Lagrangian parameters � =

m2

h
2v2

⇡ 0.129 and
µ =

mhp
2

⇡ 88.4 GeV.

2.2 Physical Parameter Space

The model is determined by three new parameters, µS ,�HS and �S . However, in the context of our
nightmare scenario, it is straightforward to show that all relevant physics can be recast into the simple
two-dimensional plane of the physical singlet mass and its coupling to the higgs.

1For simplicity, we use h for the neutral real component of H as well as the SM higgs.
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Poorly constrained

15

5

FIG. 4: Phase transition dynamics in the mS �  plane, with
⌘ = ⌘min + 2.5. Same labeling and color code as in Fig. 1.

FIG. 5: Phase transition dynamics in the  � ⌘ plane, with
mS = 300 GeV. Same labeling and color code as in Fig. 1.

ble nucleation, depend on the singlet quartic coupling ⌘
as well as m

S

and . We find that for larger ⌘, it is easier
to find points in the two-step region where the thermal
EWPT does occur, and is strongly first-order. The rea-
son is that as ⌘ is increased, the critical temperature of
the transition between the EW-symmetric and broken
vacua increases, and both the height and the width of
the potential barrier decrease; see Fig. 3. This makes
tunneling between the two vacua easier, allowing a ther-
mal phase transition to occur. The e↵ect of varying ⌘ on
the viable parameter space is illustrated in Figs. 4 and 5.
Note, however, that even at large ⌘, most of the two-
step region is eliminated by the requirement of bubble
nucleation at non-zero temperature.

Even if this requirement is satisfied, models in which
the nucleation temperature T

N

significantly below the

FIG. 6: Phase transition dynamics in the  � ⌘ plane, with
mS = 300 GeV. In region B (red) bubble walls accelerate to
relativistic speeds and EWBG cannot occur, while in region
A (blue) EWBG is possible.

critical temperature T
c

are likely to fail the BM crite-
rion for relativistic bubble wall motion. This is because
in this case, the symmetry-breaking vacuum would typ-
ically have a significantly lower vacuum energy at T

N

compared to the symmetric vacuum, resulting in a strong
outward pressure on the bubble wall. To check this, we
implemented the BM criterion, Eq. (11), in our scans.
The result, shown in Fig. 6, is consistent with expec-
tations. The BM criterion eliminates a region bordering
that where no thermal EWPT occurs, since by continuity
this is the region where T

N

is the lowest. This extra con-
straint must also be taken into account in the discussion
of collider probes of EWBG.

IV. DISCUSSION

We re-considered the dynamics of EWPT in a model
with a singlet scalar field S coupled to the SM via a
Z2-symmetric Higgs portal, Eq. (1). We found that the
requirements of thermal EWPT (bubble nucleation at
non-zero temperature) and non-relativistic bubble wall
motion eliminate much of the parameter space that was
previously thought to provide viable EWBG models. In
particular, most of the parameter space where a two-step
phase transition was thought to occur, is now eliminated.
The e↵ect of the new requirements in the region where a
one-step transition was expected is less significant.
The model studied here has recently emerged as a use-

ful benchmark for planning the physics program at fu-
ture colliders. While absence of mixing between dou-
blet and singlet states makes this model challenging to
probe at the LHC, Ref. [36] argued that the proposed
future facilities will be able to probe the EWBG sce-
nario in this model conclusively. This can be achieved
with a combination of Higgs cubic coupling measure-
ments [15], direct Higgs portal searches in channels such
as pp ! V SS, qqSS [36, 37], and a very precise measure-

[1704.03381]
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Figure 2. Parameter space of the scalar singlet model relevant for EWBG along with the reach
of various collider experiments. The yellow shaded region is excluded because in that region, the
electroweak minimum is not the global minimum at zero temperature. In the grey region, the
universe is trapped in a metastable vacuum that preserves electroweak symmetry. The blue region
realises a strong first-order phase transition whereas the light blue region can still be allowed due
to the cosmological modification. Regions above the dotted and dashed lines will be accessible at
colliders. Here ��3 ⌘ (�SM

3 ��3)/�SM
3 is the modification of the triple Higgs coupling with respect

to the SM.

to the modified points. Fitting a function is necessary as otherwise this algorithm becomes

highly unstable. This is because the result of one such modification is not a smooth

function and the second derivative can grow uncontrollably, which would lead to an even

bigger growth in subsequent modifications. We choose to fit a polynomial of order 5, and

have checked that using higher powers does not increase the accuracy of the result any

further. After 20 such modifications, we again calculate the tunnelling action along the

modified path by solving Eq. (3.9). This gives us the next approximation of the S
3

and

dt/dr along the path for further path modification. After a few such steps, the action

stabilises which means a solution has been found.

We have checked that the above algorithm converges to the same result with any

reasonable initial guess for the path. However, in practice it is most convenient to start

with a path that is obtained by choosing S that minimises the potential for each h between

the initial and final vacuum. In fact, in this model, this simple choice proves to be a very

good approximation and the path obtained using the path modification algorithm decreases

the resulting action only by a few percent. This leads to a negligible modification of the

transition temperature T⇤.

Now, we are ready to use the action in Eq. (3.3) and the decay width in Eq. (3.2)

to find T⇤. We assume that the phase transition proceeds when at least one bubble is

– 7 –

Figure 5. Parameter space of the scalar singlet model relevant for EWBG together with the
DM abundance and corresponding direct detection exclusion limits. Constraints from the vacuum
structure of the theory are also taken into account, hence the reason why the abundance or the
direct detection limits do not enter into the gray or yellow shaded regions.

5 Cosmological modification

To ensure that we discuss all the parameter space where the scalar singlet model is viable,

we also discuss a possible modification of the cosmological history which can expand this

area significantly. We will focus on a very simple and generic cosmological modification

that can describe the e↵ects of most existing cosmological models.

We assume an additional contribution to the energy budget of the early universe ⇢N .

The modified Friedmann equation reads

H2 ⌘
✓
ȧ

a

◆
2

=
8⇡

3M2

p

⇣⇢R
a4

+
⇢N
an

⌘
, (5.1)

where a ⌘ a(t) is the scale factor and n > 4 such that the new component dilutes before it

modifies any cosmological measurements. The first of such important measurements comes

from Big Bang Nucleosynthesis (see e.g. Refs. [80, 81]). We can directly measure the Hubble

rate at that time since we precisely know when the neutrons have to freeze-out in order to

save a fraction of them required to recreate observed abundances of light elements. While

the observed expansion is consistent with a universe filled with the SM radiation, within

experimental uncertainties, we can still add a small fraction of the additional component

⇢N .

First, we translate the e↵ective number of neutrino species into a modification of the

– 15 –

Exact Z2 case mostly excluded by direct DM searches even 
if S is sub-component (< 1%) of DM . 21
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First-order EW phase transition in a 2-Higgs-
doublet model .

2

each fermion type to couple to one doublet only [21]. By
convention, up-type quarks always couple to the second
doublet, but which doublet couples to leptons and down-
type quarks may vary. We will focus here on the so-
called Type I model, in which all fermions couple to the
same doublet. Another scenario is the so-called Type II
model, where down-type quarks and leptons couple to a
different doublet from up-type quarks, and of which the
scalar sector of the MSSM is a particular instance.
In order to study the strength of the EWPT in 2HDMs,

we perform a Monte Carlo scan over a wide range ofmH0
,

mA0
, mH± , tanβ, α − β and µ using an in-house nu-

merical code developed in [20]. The code is interfaced
to 2HDMC [22] and HiggsBounds [23] to select points
in parameter space that satisfy unitarity, perturbativ-
ity, electroweak precision constraints and collider bounds.
Stability of the potential is checked at 1-loop level by re-
quiring that the electroweak minimum (i.e. the one for
which v21 + v22 = v2) be the deepest minimum of the ef-
fective potential [20]. As for flavor constraints, for the
Type I model the only relevant one1 comes from b → sγ,
which we take into account [13]. In addition, the mea-
sured properties of h, impose further constraints on tanβ
and α−β (see e.g. [14]). We note that, while the type of
2HDM considered is irrelevant for the EWPT (since all
types couple in the same way to the top quark), it does
affect constraints from colliders and Higgs properties. We
choose a Type I 2HDM, which is less constrained than
a Type II. The results below show that a strong EWPT
prefers a SM-like state h, and thus 2HDMs with a strong
EWPT also satisfy Type II constraints.
A point in our scan satisfying the above constraints is

called a physical point. For each of them, the strength of
the EWPT is computed via the thermal 1-loop effective
potential by increasing the temperature until a point is
reached when the potential has two degenerate minima,
which then defines the critical temperature Tc. The phase
transition is considered strong when vc/Tc ≥ 1 [25, 26],
with vc the magnitude of the broken vev at Tc (see [20]
for details).
In Figure 1 we show the heat-maps of physical points

(left) and points with a strongly first order EWPT (right)
in the planes (mH0

,α− β) and (mH0
,mA0

). Altogether,
a strong EWPT, as needed for Electroweak Baryogenesis,
favours the light Higgs state h to have SM-like properties,
i.e. small α−β and moderate tanβ [20, 24]. The range of
α− β leading to a strong EWPT shrinks as the CP-even
state H0 becomes heavier. This can be understood from
the fact that away from the alignment limit α ≃ β, both
h and H0 “share” the vev v, i.e. both participate in the
EWPT, and the phase transition becomes weaker as the

1 The points excluded by other constraints, in particular B0
− B̄0

mixing and Z → bb̄, are also excluded by b → sγ.
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FIG. 1. Heat-maps for the physical region (left) and region
with a strongly first order EWPT (right). Top: (mH0

,α−β)-
plane. Bottom: (mH0

,mA0
)-plane. The dotted-black line

corresponds to mA0
= mH0

+mZ .

states participating in it get heavier (see e.g. [26]). In
addition, Figure 1 shows that a strong EWPT in 2HDMs
scenarios strongly favours a rather heavy CP-odd scalar
state A0 (mA0

> 300 GeV), together with a large mass
splitting mA0

−mH0
! v.

As we discuss in the next section, these results point
towards the A0 → ZH0 decay channel as a ‘smoking gun’
signature of 2HDMs with a strong EWPT, to be searched
for at the upcoming 14 TeV run of the LHC.

II. The Decay A0 → Z H0

Current 2HDM searches at LHC are mainly motivated
by the MSSM, where scalar mass splittings are dictated
by the gauge couplings and do not exceed mZ . The
decays Si → ZSj (for Si ∈ H0, A0) are not kinemati-
cally allowed, and ATLAS/CMS searches are thus not
tailored to them. Most searches so far have focused on
H0 → W+W− [27, 28] and H0 → ZZ [29, 30], or on
the search of the CP-odd state via A0 → τ+τ− [31] and
A0 → Zh [32, 33].
Our results from the previous section show, however,

that a strong EWPT in 2HDMs strongly favours a heavy
CP-odd state A0 with a mass splitting mA0

−mH0
! v, in

addition to α ∼ β (although a small departure from this
limit is allowed). The decay A0 → ZH0 is then strongly
favoured both due to the large amount of phase space
available, and because the coupling gA0ZH0

∼ cos(α −
β) is unsuppressed in the alignment limit. In contrast,
the coupling gA0Zh ∼ sin(α − β) vanishes in that limit,
and the decay A0 → Zh is further suppressed due to
A0 → ZH0 remaining dominant away from alignment
(see Figure 2).
The competing decay channels would then be A0 → tt̄

and possibly A0 → W±H∓. The former is suppressed
as (tanβ)−2, which is moderate in the scenarios under

1405.5537
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1 Introduction

Electric dipole moments (EDM) provide one of the best indirect probes for new-physics. Since a
non-zero EDM requires a violation of the CP symmetry, and the Standard Model (SM) contributions
are accidentally highly suppressed, the EDM is an exceptionally clean observable to uncover beyond
the SM (BSM) physics. Indeed, if BSM physics lies at the TeV scale, we expect new interactions and
therefore new sources of CP violation to be present,1 inducing sizable EDM to be observed in the
near future. For this reason, experimental bounds on the electron and neutron EDM have provided
the most substantial constraints on the best motivated BSM scenarios, such as supersymmetry or
composite Higgs models.

The ACME experiment has recently released a new bound on the electron EDM that improve
by a factor ⇠ 8.6 their previous bound [1]:

|de| < 1.1 · 10�29 e · cm . (1.1)

1As in the SM, we can expect that any parameter of the BSM that can be complex will be complex, providing
unavoidably large new sources of CP violation.

2
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FIG. 2: Shaded region: for f/b = 500GeV, mh = 120GeV
and ms = 80, 130GeV (upper and lower plots), the ∆Θt

achieved for a given vc/Tc in the Z2-symmetric case (a
tiny explicit breaking is assumed, see Section V). The
black lines (dotted, dot-dashed, dashed, solid, double dashed-
dotted) correspond to explicit examples with fixed λm =
0.25, 0.5, 0.75, 1, 1.5, respectively. Points on the red lines
match the observed baryon asymmetry (solid) or 1.5 (dot-
ted), 0.75 (dashed) times that value. The vertical line marks
vc/Tc = 1, below which the asymmetry would be erased by
active sphalerons.

fulfilled for natural values of the parameters.
We close this Section with a comparison of our

EWBG scenario with previous studies of EWBG in non-
supersymmetric models, such as the two-Higgs doublet
model [48, 53] or the SM with a low cut-off [29–32]. In
the former, CP violation arises already at the level of
renormalizable operators in the Higgs potential, through
a complex phase between the two Higgs VEVs. Very
strong phase transitions (induced by tree-level barriers)
are not possible in that context since, contrary to the
case with a singlet, the second Higgs doublet cannot ac-
quire a VEV prior to the EWPhT by definition. (To
circumvent this problem, ref. [54] studies a 2HDM with
an additional singlet: the two Higgs doublets violate CP ;
the singlet strengthens the EWPhT.) Although the non-
supersymmetric 2HDM does not address the hierarchy
problem, it is worth noting that it can also arise as the

low-energy limit of composite Higgs models [34].
The behaviour at finite temperature of other scenar-

ios that address the hierarchy problem but lead only
to a light single Higgs, such as the Minimal Composite
Higgs [22] or Little Higgs models, have been also ana-
lyzed. Refs. [31] studied the temperature behaviour of a
Higgs that arises as the PNGB of a broken global symme-
try,3 parametrizing the deviations from the SM through
effective operators. A strong EWPhT can result in this
setting from the dimension-six operator h6, which stabi-
lizes a Higgs potential with negative quartic coupling, as
discussed in [29, 30]. This creates a large tree-level bar-
rier but the reliability of the effective-theory description
is not then obvious. Different dimension-six operators are
responsible for sourcing CP violation [31, 32], in a man-
ner similar to our eq. (7), and for generating a complex
mass for the top quark: mt ∼ yt(vh+iv3h/Λ

2). Compared
to the model proposed here, these operators (which would
arise also in our model, in the limit of a heavy singlet)
are dimension-six and hence generally smaller than the
ones involving the singlet.

IV. ELECTRIC DIPOLE MOMENTS AND
OTHER CONSTRAINTS

The presence of a scalar that mixes with the Higgs and
has pseudoscalar couplings to fermions induces an elec-
tric dipole moment (EDM) for the electron and for the
neutron. The electron EDM receives the largest contribu-
tion from the two-loop Feynman diagram [56] of Figure 3,
where the electron flips its chirality by coupling to the

s

h

t t
t

e e e
FIG. 3: Diagram illustrating the largest contribution to the
electron EDM: the dashed line indicates a Higgs that mixes
with the singlet, which then couples with the top.

3 At even higher temperatures, the same mechanism that cuts off
quadratic divergences in the Higgs potential also affects its finite
temperature corrections and could lead to non-restoration of the
EW symmetry [55].

3

SU(2)L ×U(1)Y gauge symmetry forbids such a term in
the Lagrangian and s can interact with the SM fermions
only at the non-renormalizable level, beginning at dimen-
sion five with the operator

s

f
HQ̄3(a+ ibγ5)t+ h.c. , (6)

where f is the analogue of the pion decay constant and
is related to the mass mρ (of order the confinement scale
Λ) and coupling gρ of the strong sector resonances via
mρ = gρf , where gSM ! gρ ! 4π and gSM is a typical SM
coupling [36]. In eq. (6) we have written only the coupling
between the singlet s and the third generation SU(2)L
doublet, Q3, and singlet, t. Indeed, naturalness implies
that the Higgs and top sectors be mostly composite, so
that the strong dynamics is expected to influence mostly
the interactions within and between these two sectors.
Even in this case, interactions with the lighter fermions
will be present in the mass eigenstate basis, but are ex-
pected to be of the order of the corresponding (small)
Yukawa couplings.
Finally, it is useful for what follows to consider how

one may implement CP in this context: If V odd vanishes,
a = 0 and b ̸= 0, the singlet behaves as a pseudoscalar
and CP is conserved; similarly for b = 0 and a ̸= 0
the singlet is scalar-like and CP is also conserved in the
Lagrangian. Other non-trivial choices inevitably violate
CP .

III. ELECTROWEAK BARYOGENESIS

Two conditions need to be fulfilled during the EW-
PhT in order to create enough baryon/antibaryon asym-
metry [37]. First of all, CP violation must be present
within the wall separating the broken from the unbro-
ken phase. This sources an excess of left-handed versus
right-handed fermions2 in front of the wall which is con-
verted into a baryon versus antibaryon excess by non-
perturbative electroweak (sphaleron) processes. For this
excess to be conserved, these sphaleron processes must be
quickly suppressed within the broken phase. This brings
us to the second condition: that the EWPhT be strongly
first-order (if vc ≡ ⟨h⟩ |Tc

is the value of the Higgs VEV
in the broken phase at the critical temperature Tc, then
this condition reads vc/Tc " 1 [38]). Neither of these
conditions is fulfilled in the SM, as the CP violation en-
coded in the CKM matrix is too small and, anyway, the
phase transition is really a crossover [39], given the lower
bound on the Higgs mass from LEP.
The strength of the EWPhT in the SM plus a singlet

has been thoroughly studied [14, 35, 40–44]. Many anal-
yses concentrated on loop effects involving the singlet,

2 With left-handed (right-handed) we mean qL + q̄R (q̄L + qR),
where the subscript L denotes the SU(2)L doublet and R the
singlet.

which enhance the cubic term ETh3 in the Higgs po-
tential at finite temperature, while reducing the quartic
λhh4 (at a given Higgs mass) that enters the above condi-
tion 1 ! vc/Tc ≈ E/λh. LEP bounds on the Higgs mass,
however, suggest that one singlet scalar is not enough,
if it contributes only via loop effects [45]. Furthermore,
it was recently pointed out [8] that magnetic fields gen-
erated during the EWPhT might increase the sphaleron
rate within the broken phase, calling for even stronger
phase transitions in order to have successful baryogenesis.
The strongest phase transitions are achieved when the
singlet contributes through tree-level effects, i.e. when
the tree-level potential for H and s is such that a bar-
rier separates the EW broken and unbroken phases (not
necessarily with vanishing VEV ⟨s⟩ along the singlet di-
rection) [35]. Indeed, in the case of a barrier generated
only at loop-level, the jump in the Higgs VEV is propor-
tional to the critical temperature Tc (times a loop factor),
and is hence constrained to be small at small tempera-
ture. In the case of a tree-level barrier, on the other hand,
the Higgs VEV at the critical temperature depends on a
combination of dimensionful parameters in the potential
and its effect can be present even at small Tc (and is
enhanced by a small Tc appearing in the denominator of
vc/Tc). In what follows we will concentrate on this possi-
bility, assuming that the transition is strongly first-order
and relying on the analysis of [35], which studies strong
phase transitions induced by tree-level effects in the SM
plus a singlet. One important implication of scenarios
with a tree-level barrier is that a strong transition is nec-
essarily accompanied by a variation of the singlet VEV
during the EWPhT. This can be understood by noticing
that, were the singlet VEV constant, the potential would
have the same shape as the SM potential at tree-level
and would have, therefore, no tree-level barrier.
When the EWPhT is strongly first-order, bubbles of

the broken phase nucleate within a universe in the un-
broken phase and expand. CP -violating interactions
can then source EWBG within the wall separating the
two phases. In the composite version of the SM plus
a singlet outlined in the previous section, with non-
vanishing, pseudoscalar couplings between singlet and
fermions [b ̸= 0 in eq. (6)], the source is provided by
a variation in the VEV of s. Indeed, from eq. (6), we can
write the top quark mass, which receives contributions
from both h and s, as

mt =
1√
2
v

[

yt + (a+ ib)
w

f

]

≡ |mt| eiΘt , (7)

where yt is the top Yukawa and we defined the VEVs

v ≡ ⟨h⟩ , w ≡ ⟨s⟩ , (8)

with v = 246 GeV. At vanishing temperature, the phase
Θt can be absorbed in a redefinition of the top quark
field and is thus unphysical; the only effect of a non-
zero w is a shift between the top-mass and the Yukawa
coupling compared to the relation that holds in the SM.

1- EW baryogenesis from extra singlet .

Well-motivated CP source 
for EW baryogenesis : 
modified Top-yukawa 
(“Top-transport” EW 

baryogenesis)
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2- EW baryogenesis in Two-Higgs-Doublet .
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Figure 2. EDM constraints for benchmarks described in text. The dash-dotted line corresponds
to the eEDM bound before the ACME experiment. The black dashed lines correspond to the
minimum CPV phase necessary for successful baryogenesis for M = mH0 = 200 GeV and varying
mA0 = mH± .

Figure 2 shows the minimum value of the complex phase �
1

� �
2

for which ⌘B/⌘
obs

= 1

as a function of tan�, for M = mH0 = 200 GeV and several values of mA0 = mH± within

the range [450, 490] GeV, corresponding to the hierarchical 2HDM benchmark scenario

presented in section 3. As expected, large values of tan� suppress the generation of the

BAU due to eq. (3.4), whose e↵ect has to be compensated by a larger value of �
1

� �
2

to keep ⌘B/⌘
obs

= 1. The impact of the recent order-of-magnitude improvement on the

electron EDM bound from the ACME experiment is highlighted in figure 2 by showing

also the exclusion curve (dotted-dashed blue) from the previous eEDM limit. We note that

while the neutron-EDM was a competing bound before, the improvement from the ACME

experiment now makes the eEDM to provide the dominant constraint by far. Also shown

in figure 2 are the excluded regions from Bd � Bd mixing, corresponding to tan� . 1.16,

and from CMS searches for A0 ! ZH0 with LHC 8 TeV data [79], corresponding (for

mA0 = 480 GeV) to tan� . 1.8. For mA0 ⇡ 480 GeV there remains then an allowed

window 1.8 . tan� . 2.5 for which the correct BAU could still be obtained in this

scenario. In figure 2 we also present for illustration the results for mA0 < 480 GeV,

potentially excluded by the B ! Xs� flavour bound6. The values of the wall thickness

in this case are somewhat larger, LwTn ⇠ 2 � 3, and we can be more confident about the

validity of the gradient expansion (nevertheless the curves shown in figure 2 all take into

6This is the case for mA0 = mH± . We however note that a small positive mass splitting mH± � mA0

is allowed by electroweak precision observables, such as to make the scenario mA0 . 480 GeV potentially

compatible with both constraints.
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Summary on minimally extended renormalizable 
scalar sectors*** .

11<-1- Faded  motivation for EW baryogenesis with top-transport 
after ACME18 

11<22-2- Still, 1st-order EW phase transition possible 
-> LHC & gravitational waves tests. 

*** (Both S and 2HDM well-motivated in non-minimal Composite Higgs models)
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Ways out to evade EDM bounds: Hide CP in leptons, or dark sector
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EW  Phase transition in 
Composite Higgs Models .
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EW phase transition 
in Composite Higgs models .

> Higgs potential emerges at E≲f .

For PNGB:
 f~O(TeV): confinement scale of new strongly interacting sector, 
described by VEV of dilaton field <𝛘>, Pseudo-Nambu-Goldstone 

Boson of spontaneously broken conformal symmetry of the strong 
sector
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EW phase transition in CH
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Strongly 1st order TeV scale 
confinement phase transition .

Large number of  massless 
dof in deconfined phase 

Shallow (nearly conformal) 
potential at T=0 with TeV minimum+
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Free energy - 4D

In a thermal system a phase transition will connect the two stable 
phases of the system.

Quarks/gluons that 
are confined in the 
broken phase induce 
a difference in free 
energy between the 
two phases 

tunnel?

Creminelli, Nicolis, Rattazzi’01 
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Very strongly 1st order TeV scale 
confinement phase transition .
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Free energy - 4D

In a thermal system a phase transition will connect the two stable 
phases of the system.
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Figure 6: Left: Potential as a function of �
1

and �
2

for a meson-like dilaton with mass

m
�

= 600GeV and N = 4 and evaluated at the nucleation temperature T
n

' 95.8GeV.

The other parameters are as in Table 2. The solid blue line shows the tunnelling path

to the release point, while the red dotted line indicates the subsequent rolling trajectory

towards the minimum of the potential. Right: Potential at, from bottom to top, the

nucleation temperature T
n

' 95.8GeV, the critical temperature T
c

' 169.3GeV and T =

210GeV. The potential is plotted along the straight line parametrized by � connecting

the minimum at the origin with the second minimum at {�
1

,�
2

} ' {224GeV, 768GeV},
{3⇥ 10�1GeV, 804GeV} and {1⇥ 10�7GeV, 804GeV}, respectively.

5 CP violation from varying Yukawa interactions

In electroweak baryogenesis, the baryon asymmetry is produced during charge transport

in the vicinity of the Higgs bubble walls that form during a first-order electroweak phase

transition. In Ref. [14], it was shown that a new CP-violating source arises if the Yukawa

couplings vary across the Higgs bubble wall and that this new source can allow for enough CP-

violation to generate the observed baryon asymmetry. The kinetic equations incorporating

the variation of the Yukawa couplings across the Higgs bubble wall were derived and the

induced CP-violating force was extracted. The resulting produced baryon asymmetry was

predicted for a large set of parametrizations of the Yukawa variation. It was in particular

shown that successful electroweak baryogenesis can be realised from the variation of SM

Yukawa couplings using only the top and charm. In the present work, we will apply these

results using the precise Yukawa variation obtained in composite Higgs models.

The CP-violating source due to varying Yukawa couplings across the Higgs bubble wall

which can enable electroweak baryogenesis reads [14]

S
CPV

⇠ Im[V †m†00mV ]
ii

, (5.1)

where m is the mass matrix of up- or down-type quarks (the leptons will not be important in

the following), V is the unitary matrix which diagonalizes m†m, i.e. V †m†mV = diagonal,

25

Which tunneling trajectory ?
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to the release point, while the red dotted line indicates the subsequent rolling trajectory

towards the minimum of the potential. Right: Potential at, from bottom to top, the

nucleation temperature T
n

' 95.8GeV, the critical temperature T
c

' 169.3GeV and T =

210GeV. The potential is plotted along the straight line parametrized by � connecting

the minimum at the origin with the second minimum at {�
1
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2

} ' {224GeV, 768GeV},
{3⇥ 10�1GeV, 804GeV} and {1⇥ 10�7GeV, 804GeV}, respectively.

5 CP violation from varying Yukawa interactions

In electroweak baryogenesis, the baryon asymmetry is produced during charge transport

in the vicinity of the Higgs bubble walls that form during a first-order electroweak phase

transition. In Ref. [14], it was shown that a new CP-violating source arises if the Yukawa

couplings vary across the Higgs bubble wall and that this new source can allow for enough CP-

violation to generate the observed baryon asymmetry. The kinetic equations incorporating

the variation of the Yukawa couplings across the Higgs bubble wall were derived and the

induced CP-violating force was extracted. The resulting produced baryon asymmetry was

predicted for a large set of parametrizations of the Yukawa variation. It was in particular

shown that successful electroweak baryogenesis can be realised from the variation of SM

Yukawa couplings using only the top and charm. In the present work, we will apply these

results using the precise Yukawa variation obtained in composite Higgs models.

The CP-violating source due to varying Yukawa couplings across the Higgs bubble wall

which can enable electroweak baryogenesis reads [14]
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where m is the mass matrix of up- or down-type quarks (the leptons will not be important in

the following), V is the unitary matrix which diagonalizes m†m, i.e. V †m†mV = diagonal,
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in the vicinity of the Higgs bubble walls that form during a first-order electroweak phase

transition. In Ref. [14], it was shown that a new CP-violating source arises if the Yukawa

couplings vary across the Higgs bubble wall and that this new source can allow for enough CP-

violation to generate the observed baryon asymmetry. The kinetic equations incorporating

the variation of the Yukawa couplings across the Higgs bubble wall were derived and the

induced CP-violating force was extracted. The resulting produced baryon asymmetry was

predicted for a large set of parametrizations of the Yukawa variation. It was in particular

shown that successful electroweak baryogenesis can be realised from the variation of SM

Yukawa couplings using only the top and charm. In the present work, we will apply these

results using the precise Yukawa variation obtained in composite Higgs models.

The CP-violating source due to varying Yukawa couplings across the Higgs bubble wall

which can enable electroweak baryogenesis reads [14]
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couplings vary across the Higgs bubble wall and that this new source can allow for enough CP-

violation to generate the observed baryon asymmetry. The kinetic equations incorporating

the variation of the Yukawa couplings across the Higgs bubble wall were derived and the

induced CP-violating force was extracted. The resulting produced baryon asymmetry was

predicted for a large set of parametrizations of the Yukawa variation. It was in particular

shown that successful electroweak baryogenesis can be realised from the variation of SM

Yukawa couplings using only the top and charm. In the present work, we will apply these

results using the precise Yukawa variation obtained in composite Higgs models.

The CP-violating source due to varying Yukawa couplings across the Higgs bubble wall
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In electroweak baryogenesis, the baryon asymmetry is produced during charge transport

in the vicinity of the Higgs bubble walls that form during a first-order electroweak phase

transition. In Ref. [14], it was shown that a new CP-violating source arises if the Yukawa

couplings vary across the Higgs bubble wall and that this new source can allow for enough CP-

violation to generate the observed baryon asymmetry. The kinetic equations incorporating

the variation of the Yukawa couplings across the Higgs bubble wall were derived and the

induced CP-violating force was extracted. The resulting produced baryon asymmetry was

predicted for a large set of parametrizations of the Yukawa variation. It was in particular

shown that successful electroweak baryogenesis can be realised from the variation of SM

Yukawa couplings using only the top and charm. In the present work, we will apply these

results using the precise Yukawa variation obtained in composite Higgs models.
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5 CP violation from varying Yukawa interactions

In electroweak baryogenesis, the baryon asymmetry is produced during charge transport

in the vicinity of the Higgs bubble walls that form during a first-order electroweak phase

transition. In Ref. [14], it was shown that a new CP-violating source arises if the Yukawa

couplings vary across the Higgs bubble wall and that this new source can allow for enough CP-

violation to generate the observed baryon asymmetry. The kinetic equations incorporating

the variation of the Yukawa couplings across the Higgs bubble wall were derived and the

induced CP-violating force was extracted. The resulting produced baryon asymmetry was

predicted for a large set of parametrizations of the Yukawa variation. It was in particular

shown that successful electroweak baryogenesis can be realised from the variation of SM

Yukawa couplings using only the top and charm. In the present work, we will apply these

results using the precise Yukawa variation obtained in composite Higgs models.

The CP-violating source due to varying Yukawa couplings across the Higgs bubble wall

which can enable electroweak baryogenesis reads [14]
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, (5.1)

where m is the mass matrix of up- or down-type quarks (the leptons will not be important in

the following), V is the unitary matrix which diagonalizes m†m, i.e. V †m†mV = diagonal,
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To preserve baryon asymmetry from washout:

LIGHT DILATON  
WINDOW<~ 700 GeV 

Constraints from reheating .

 h(Treheat)/Treheat >~1 

Unavoidable? (see next…) 

After confining phase transition: universe may be reheated 
above the sphaleron freese out temperature 
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Figure 14: Real (left panel) and imaginary (right panel) parts of the top Yukawa modification in the

benchmark model with a varying top mixing for a meson-like dilaton (red dashed) and a glueball-like

dilaton (black solid). The real part can be tested by CLIC at the 4% level at 1� [66], and a pure

composite Higgs contribution to it (with no Higgs-dilaton mixing) is -0.05. For the tests of the

imaginary part see text.

obtained with the full 7 TeV and 8 TeV data sets does not show a dramatic improvement. We

therefore start our plots at m
�

= 50 GeV, leaving a more thorough study of the experimental

bounds for future work.

7.2 Flavour violation

There is another important type of experimental constraints that our scenario has to face –

the bounds on flavour-changing four-fermion operators. It is well known that these bounds

bring severe constraints on composite Higgs models. A set of solutions has been proposed in

the literature, with additional symmetries which can suppress these unwanted e↵ects. We

have discussed one such solution, which makes use of U(1) flavour symmetries, in Sec. 6.4.

One may also investigate whether U(2) symmetric constructions [48, 63, 64] can be incorpo-

rated into our scenario, or a proposal [65] to impose a CP symmetry on the strong sector

and most of the elementary-composite mixings, with the exception of those of the third gen-

eration. This and a more rigorous study of flavour constraints in general deserve a separate

analysis, which we leave for future work. Additionally, we should mention that the scenario

with a varying top mixing (see [1]) can accommodate any of the flavour or CP symmetries

mentioned above.

7.3 Higgs couplings and CP violation

Last but not least, information about the dilaton sector can come from Higgs physics. As was

discussed in Sec. 3.4, the deviations of the Higgs couplings depend explicitly, and potentially

sizeably, on the dilaton-Higgs mixing. In particular, one of the smoking guns of our scenario

44
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Figure 15: Relative deviation of the Higgs couplings to electroweak gauge bosons (left panel) and

of the triple Higgs coupling (right panel) for a meson-like dilaton (red dashed) and a glueball-like

dilaton (black solid). Future (1�) sensitivity to the former is expected to be 0.8% at CLIC [73] and

0.15% at FCC [74], while the expected precision for the latter is order-one at the high-luminosity

LHC [75] and 10� 40% at future leptonic colliders [66,76].

current experimental sensitivity for the lowest dilaton masses, while future experiments are

expected to have a good sensitivity to a large fraction of the parameter space. Notice that

in the case where only the charm mixings vary, the imaginary part of the charm Yukawa is

suppressed by both the small charm Yukawa itself and by the small Higgs-dilaton mixing,

therefore we do not expect that the resulting CP violation [72] can be testable in the near

future.

Furthermore, the CP-violating Higgs-top interactions can be measured directly at the

LHC. These are, however, expected to give much weaker sensitivity by at least one order

of magnitude. This situation will not improve significantly even at the high-luminosity

LHC [77, 78]. Therefore the first signs of CP-violation in Higgs-top interactions arising in

a scenario with varying top mixings are expected to come from EDM experiments. For

completeness, in Fig. 15 we also show the predicted deviations of the Higgs couplings to the

electroweak gauge bosons, and in the triple Higgs couplings.

7.4 Gravitational waves

Cosmological first-order phase transitions can lead to a stochastic background of gravita-

tional waves (GWs) [79–82]. Towards the end of the phase transition, the bubbles take up

a large fraction of space and start to collide. During this collision, some of the free energy

released during the phase transition is converted into GWs. The GWs hence created are then

present today as a stochastic background characterized by its energy-frequency spectrum. It

turns out that a strong first-order phase transition happening around the electroweak scale

generates a spectrum of GWs that lie in the observable frequency bands of the Laser Inter-
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2 Toy Example

High temperature symmetry non-restoration was studied some time ago [21–32], mainly in
the context of GUT theories or in the context of SUSY flat directions [34]. The phenomenon
has been confirmed by lattice simulations [35, 36] and non-perturbative methods [37]. For
the electroweak symmetry, it was considered only a few times. The possible existence of a
broken phase of electroweak symmetry at high temperature in Little Higgs extensions of the
Standard Model was investigated in [38, 39]. The theory, however, exhibits a restoration of
electroweak symmetry as long as temperatures are not pushed beyond the range of validity
of the EFT for a finite temperature calculation [40]. This conclusion is generalised to Twin
Higgs models in [41] and confirms earlier findings in [32]. The case of composite Higgs models
with partial fermion compositeness in which the Higgs is a PNGB has been studied recently
in and these models also lead to EW symmetry restoration [18, 19].

Here we will implement the ideas illustrated in Fig. 1, and show how a phase transition
or crossover can occur at a high scale, i.e. above the zero-temperature minimum of the
scalar potential, using an extension of the symmetry non-restoration e↵ect. Unlike in earlier
realisations of the symmetry non-restoration e↵ect, the symmetry is actually restored at a
su�ciently large temperature, i.e. above some mass threshold. Here, by symmetry non-
restoration, we mean that at temperatures below the phase transition one of the scalar fields
obtains a VEV proportional to the temperature.

The main idea is to induce a negative thermal mass for the Higgs through a negative cross-
quartic coupling between the Higgs and a large number of additional scalar fields. Consider
a toy model of scalar fields, �, S, and �i, where i = 1, ..., NGen is a generational index (the
reason for considering multiple generations will be made clear below). We denote the degrees
of freedom with N�, NS, and N�i (the � sector therefore has in total N� = NGenN�i degrees
of freedom). In this section � is acting as a placeholder for the EW Higgs, though we switch
o↵ the usual SM Yukawa and gauge interactions for the discussion in this section. For the
purposes of our example, the relevant terms in the tree level potential are given by

V (�,�) =
µ2
S

2
S2+

µ2
�

2

X

i

�2
i+

µ2
�

2
�2+

��

4
�4+

��

4

X

i

�4
i+

�S

4
S4+

���

4
�2

X

i

�2
i+

��S

4
�2S2, (1)

where for simplicity we assume degenerate masses and couplings for the �i generations and
that the cross quartic ��S is negligible. As we shall be choosing ��� < 0, stability of the tree
level potential requires

��� > �2

r
����

NGen
. (2)

At high temperatures, T � µ�, µ�, the thermal masses of the fields are [42]
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Figure 1: Sketch of the e↵ect illustrated in the toy model. At high temperature the thermal
mass of �, c�T 2, is positive and the VEV is zero. The temperature drops below a mass threshold
of a field S, removing a positive contribution to the thermal mass of �. The thermal mass of �
is then negative due to the contributions from some additional scalars �i and the VEV becomes
proportional to the temperature. Finally, at su�ciently low temperatures, the VEV is set by the
usual minimization conditions of the zero temperature potential.

makes model building in this framework challenging. It would therefore be helpful to raise
the scale of EWBG, so we can in turn also raise the flavour scale and hence more easily
satisfy the flavour constraints.

More broadly, raising the scale of EW symmetry breaking is anyway an exciting theoret-
ical possibility, not limited to the context of the flavour model considered below. The aim
of this paper therefore is to study the possibility of high scale EWBG, in which the Higgs �
first obtains a large vacuum expectation value (VEV), which is later gradually decreased to
v� = 246 GeV while in the broken electroweak phase. The VEV can be gradually decreased
using a symmetry non-restoration e↵ect, in which the Higgs — through the coupling to
other scalar fields — gains a negative thermal mass squared and hence a VEV proportional
to the temperature [21–32].1 In the models of symmetry non-restoration considered so far,
the broken symmetry is not restored at any temperature. For electroweak baryogenesis,
however, we want the Higgs to start in the symmetric phase and undergo a phase transition
into the broken phase. Here, we will first show the two conditions can be realised together
generically, through a simple toy model example, sketched in Fig. 1.

Motivated by our findings, we then return to flavour considerations in a more complete
model, in which the Yukawa couplings are field-dependent and large at early times. The
flavor sector contains extra fermions whose mass is controlled by the VEV of a scalar field �
that sets the flavour scale, & O(10) TeV, today. The broken EW phase minimum develops at
large Higgs values once the temperature drops to the flavour scale. The Higgs then undergoes
a strong first order phase transition from a point in field space in which the Yukawa couplings

1For brevity, we omit “squared” when discussing the thermal masses of scalar fields from now on.
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High-scale (T>TeV) EW phase transition .

> Prediction: Large number of new weak-scale 

(m<~300 GeV) scalars !

> Motivation: EW baryogenesis using high-scale 

sources of CP violation, allowed by data !

Testable?…

Figure 3: Left: The evolution of the e↵ective potential with the temperature in the toy model
showing a crossover at Tc ⇡ 8 TeV. Right: The e↵ective potential in the toy model at Tc ⇡ 8 TeV.
The positive thermal contributions from the daisy resummation and S, and the negative thermal
contribution from the �i are also shown.

Now consider a judicious choice of parameters so that: (i) �i and S always have positive
thermal masses, (ii) c� is positive at high temperature, (iii) c� becomes negative when the
contribution of S to its thermal mass becomes negligible, i.e. once T . µS. The e↵ective
potential in the � direction, when T � µ� can be approximated as c�T 2�2/2 + ���4/4.
Positive c� returns a minimum at � = 0, but for negative c� we will find a minimum at
� =

p
c�/��T . The latter solution is the usual symmetry non-restoration e↵ect [21–29, 32].

What is new here is the presence of the additional field S which can switch the sign of c�
when T reaches a mass threshold, leading to a phase transition or crossover. (Similarly, the
symmetry non-restoration e↵ect disappears if T falls su�ciently below µ�.) Eventually, for
T ⌧ |µ�|, the VEV is set by the usual zero-temperature minimization conditions.

We numerically evaluate the e↵ective potential including the tree-level terms, zero and
finite-temperature one-loop terms, and the daisy resummation.2 The latter is crucial and
weakens the phase transition. To give a concrete example, consider the choice of parameters3

N� = 1, NGen = 12, N�i = 4, NS = 12,

�� = 0.1, �� = 0.5, �S = 1, ��� = �0.1, ��S = 1, (6)

µ� = i⇥ 0.1 TeV, µ� = 0.1 TeV, µS = 20 TeV.

In Fig. 3 we show the resulting cross over, together with the thermal contributions from the
S and �i scalars and the daisy resummation. In Fig. 4 we plot the evolution of the VEV

2We use the Arnold-Espinosa method of implementing the daisy resummation [43]. We cut o↵ the
contribution of S to the thermal masses with an exponential factor, e�mS/T , in order to avoid spurious
contributions to the daisy resummation. We checked that the thermal mass estimated using the high-
temperature expansion is consistent with the second derivative of the one loop thermal terms. In fact, the
phase transition is stronger when using the numerical value rather than the high-temperature expansion
value.

3Motivated by flavour bounds, we take a characteristic scale µS ⇠ O(10) TeV for illustration. The scale
of the transition, however, can be taken much larger. The main limit for baryogenesis is around T ⇠ 1012

GeV when the sphalerons become out-of-equilibrium in the symmetric phase.
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2 Toy Example

High temperature symmetry non-restoration was studied some time ago [21–32], mainly in
the context of GUT theories or in the context of SUSY flat directions [34]. The phenomenon
has been confirmed by lattice simulations [35, 36] and non-perturbative methods [37]. For
the electroweak symmetry, it was considered only a few times. The possible existence of a
broken phase of electroweak symmetry at high temperature in Little Higgs extensions of the
Standard Model was investigated in [38, 39]. The theory, however, exhibits a restoration of
electroweak symmetry as long as temperatures are not pushed beyond the range of validity
of the EFT for a finite temperature calculation [40]. This conclusion is generalised to Twin
Higgs models in [41] and confirms earlier findings in [32]. The case of composite Higgs models
with partial fermion compositeness in which the Higgs is a PNGB has been studied recently
in and these models also lead to EW symmetry restoration [18, 19].

Here we will implement the ideas illustrated in Fig. 1, and show how a phase transition
or crossover can occur at a high scale, i.e. above the zero-temperature minimum of the
scalar potential, using an extension of the symmetry non-restoration e↵ect. Unlike in earlier
realisations of the symmetry non-restoration e↵ect, the symmetry is actually restored at a
su�ciently large temperature, i.e. above some mass threshold. Here, by symmetry non-
restoration, we mean that at temperatures below the phase transition one of the scalar fields
obtains a VEV proportional to the temperature.

The main idea is to induce a negative thermal mass for the Higgs through a negative cross-
quartic coupling between the Higgs and a large number of additional scalar fields. Consider
a toy model of scalar fields, �, S, and �i, where i = 1, ..., NGen is a generational index (the
reason for considering multiple generations will be made clear below). We denote the degrees
of freedom with N�, NS, and N�i (the � sector therefore has in total N� = NGenN�i degrees
of freedom). In this section � is acting as a placeholder for the EW Higgs, though we switch
o↵ the usual SM Yukawa and gauge interactions for the discussion in this section. For the
purposes of our example, the relevant terms in the tree level potential are given by
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where for simplicity we assume degenerate masses and couplings for the �i generations and
that the cross quartic ��S is negligible. As we shall be choosing ��� < 0, stability of the tree
level potential requires

��� > �2

r
����

NGen
. (2)

At high temperatures, T � µ�, µ�, the thermal masses of the fields are [42]
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Figure 1: Sketch of the e↵ect illustrated in the toy model. At high temperature the thermal
mass of �, c�T 2, is positive and the VEV is zero. The temperature drops below a mass threshold
of a field S, removing a positive contribution to the thermal mass of �. The thermal mass of �
is then negative due to the contributions from some additional scalars �i and the VEV becomes
proportional to the temperature. Finally, at su�ciently low temperatures, the VEV is set by the
usual minimization conditions of the zero temperature potential.

makes model building in this framework challenging. It would therefore be helpful to raise
the scale of EWBG, so we can in turn also raise the flavour scale and hence more easily
satisfy the flavour constraints.

More broadly, raising the scale of EW symmetry breaking is anyway an exciting theoret-
ical possibility, not limited to the context of the flavour model considered below. The aim
of this paper therefore is to study the possibility of high scale EWBG, in which the Higgs �
first obtains a large vacuum expectation value (VEV), which is later gradually decreased to
v� = 246 GeV while in the broken electroweak phase. The VEV can be gradually decreased
using a symmetry non-restoration e↵ect, in which the Higgs — through the coupling to
other scalar fields — gains a negative thermal mass squared and hence a VEV proportional
to the temperature [21–32].1 In the models of symmetry non-restoration considered so far,
the broken symmetry is not restored at any temperature. For electroweak baryogenesis,
however, we want the Higgs to start in the symmetric phase and undergo a phase transition
into the broken phase. Here, we will first show the two conditions can be realised together
generically, through a simple toy model example, sketched in Fig. 1.

Motivated by our findings, we then return to flavour considerations in a more complete
model, in which the Yukawa couplings are field-dependent and large at early times. The
flavor sector contains extra fermions whose mass is controlled by the VEV of a scalar field �
that sets the flavour scale, & O(10) TeV, today. The broken EW phase minimum develops at
large Higgs values once the temperature drops to the flavour scale. The Higgs then undergoes
a strong first order phase transition from a point in field space in which the Yukawa couplings

1For brevity, we omit “squared” when discussing the thermal masses of scalar fields from now on.
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2 Toy Example

High temperature symmetry non-restoration was studied some time ago [21–32], mainly in
the context of GUT theories or in the context of SUSY flat directions [34]. The phenomenon
has been confirmed by lattice simulations [35, 36] and non-perturbative methods [37]. For
the electroweak symmetry, it was considered only a few times. The possible existence of a
broken phase of electroweak symmetry at high temperature in Little Higgs extensions of the
Standard Model was investigated in [38, 39]. The theory, however, exhibits a restoration of
electroweak symmetry as long as temperatures are not pushed beyond the range of validity
of the EFT for a finite temperature calculation [40]. This conclusion is generalised to Twin
Higgs models in [41] and confirms earlier findings in [32]. The case of composite Higgs models
with partial fermion compositeness in which the Higgs is a PNGB has been studied recently
in and these models also lead to EW symmetry restoration [18, 19].

Here we will implement the ideas illustrated in Fig. 1, and show how a phase transition
or crossover can occur at a high scale, i.e. above the zero-temperature minimum of the
scalar potential, using an extension of the symmetry non-restoration e↵ect. Unlike in earlier
realisations of the symmetry non-restoration e↵ect, the symmetry is actually restored at a
su�ciently large temperature, i.e. above some mass threshold. Here, by symmetry non-
restoration, we mean that at temperatures below the phase transition one of the scalar fields
obtains a VEV proportional to the temperature.

The main idea is to induce a negative thermal mass for the Higgs through a negative cross-
quartic coupling between the Higgs and a large number of additional scalar fields. Consider
a toy model of scalar fields, �, S, and �i, where i = 1, ..., NGen is a generational index (the
reason for considering multiple generations will be made clear below). We denote the degrees
of freedom with N�, NS, and N�i (the � sector therefore has in total N� = NGenN�i degrees
of freedom). In this section � is acting as a placeholder for the EW Higgs, though we switch
o↵ the usual SM Yukawa and gauge interactions for the discussion in this section. For the
purposes of our example, the relevant terms in the tree level potential are given by
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where for simplicity we assume degenerate masses and couplings for the �i generations and
that the cross quartic ��S is negligible. As we shall be choosing ��� < 0, stability of the tree
level potential requires
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. (2)

At high temperatures, T � µ�, µ�, the thermal masses of the fields are [42]
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Here we will implement the ideas illustrated in Fig. 1, and show how a phase transition
or crossover can occur at a high scale, i.e. above the zero-temperature minimum of the
scalar potential, using an extension of the symmetry non-restoration e↵ect. Unlike in earlier
realisations of the symmetry non-restoration e↵ect, the symmetry is actually restored at a
su�ciently large temperature, i.e. above some mass threshold. Here, by symmetry non-
restoration, we mean that at temperatures below the phase transition one of the scalar fields
obtains a VEV proportional to the temperature.

The main idea is to induce a negative thermal mass for the Higgs through a negative cross-
quartic coupling between the Higgs and a large number of additional scalar fields. Consider
a toy model of scalar fields, �, S, and �i, where i = 1, ..., NGen is a generational index (the
reason for considering multiple generations will be made clear below). We denote the degrees
of freedom with N�, NS, and N�i (the � sector therefore has in total N� = NGenN�i degrees
of freedom). In this section � is acting as a placeholder for the EW Higgs, though we switch
o↵ the usual SM Yukawa and gauge interactions for the discussion in this section. For the
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where for simplicity we assume degenerate masses and couplings for the �i generations and
that the cross quartic ��S is negligible. As we shall be choosing ��� < 0, stability of the tree
level potential requires
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Figure 4: Left: The VEV of � as a function of T in the toy model. Right: The e↵ective mass
squared of the �, i.e. the second derivative of the potential, at the origin in field space.

and e↵ective mass of � as a function of T , showing the various stages discussed above. As
mentioned previously, the mass threshold is naively at T ⇠ µS, however, additional factors
which enter the full expressions lead to the non-zero VEV only developing at T ⇡ µS/2 in
our example. We have checked the �i VEVs remain zero throughout due to positive thermal
contributions in the �i field directions.

The reason for requiring multiple generations of �i is revealed by considering the thermal
mass of the �i, Eq. (3). A large thermal mass spoils the symmetry non-restoration e↵ect
once it enters the e↵ective potential through the daisy resummation [23]. This is because
a large thermal mass can make the vacuum contribution, �����2/2, which leads to the
symmetry non-restoration e↵ect, negligible in the e↵ective potential. (This is not captured
in the naive Eq. (5) which is simply based on a high-T expansion.) Assuming, as we do,
that �� > ��, the use of multiple generations means the thermal mass of the �i can be
reduced, assuming the inter-generational interactions are negligible. Thus allowing for the
symmetry non-restoration phase to proceed even once the daisy resummation is included.
Furthermore, the use of multiple generations allows us entertain the possibility that the �i

are singlet fields, i.e. N�i = 1, in our full model below, which leads to simpler low energy
phenomenology.

It is interesting that the stability constraint implies

����N�
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24
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p
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, (7)

which reveals that a negative thermal mass can be achieved for a su�ciently large NGen,
while keeping c�i small enough, and the potential stable.

In our example here, we do not have a first order phase transition required for EWBG.
Nevertheless, we shall see below that in our full model a strong enough phase transition can
be achieved. What is important here is that we can start in the symmetric phase at high tem-
perature and make a transition to a period in which � obtains a large temperature-dependent
VEV. We can then use the additional freedom gained, e.g. by introducing additional field
directions, to arrange for a strong first order electroweak phase transition at a high scale
followed by the use of the symmetry non-restoration e↵ect to avoid washout.
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Figure 1: Sketch of the e↵ect illustrated in the toy model. At high temperature the thermal
mass of �, c�T 2, is positive and the VEV is zero. The temperature drops below a mass threshold
of a field S, removing a positive contribution to the thermal mass of �. The thermal mass of �
is then negative due to the contributions from some additional scalars �i and the VEV becomes
proportional to the temperature. Finally, at su�ciently low temperatures, the VEV is set by the
usual minimization conditions of the zero temperature potential.

makes model building in this framework challenging. It would therefore be helpful to raise
the scale of EWBG, so we can in turn also raise the flavour scale and hence more easily
satisfy the flavour constraints.

More broadly, raising the scale of EW symmetry breaking is anyway an exciting theoret-
ical possibility, not limited to the context of the flavour model considered below. The aim
of this paper therefore is to study the possibility of high scale EWBG, in which the Higgs �
first obtains a large vacuum expectation value (VEV), which is later gradually decreased to
v� = 246 GeV while in the broken electroweak phase. The VEV can be gradually decreased
using a symmetry non-restoration e↵ect, in which the Higgs — through the coupling to
other scalar fields — gains a negative thermal mass squared and hence a VEV proportional
to the temperature [21–32].1 In the models of symmetry non-restoration considered so far,
the broken symmetry is not restored at any temperature. For electroweak baryogenesis,
however, we want the Higgs to start in the symmetric phase and undergo a phase transition
into the broken phase. Here, we will first show the two conditions can be realised together
generically, through a simple toy model example, sketched in Fig. 1.

Motivated by our findings, we then return to flavour considerations in a more complete
model, in which the Yukawa couplings are field-dependent and large at early times. The
flavor sector contains extra fermions whose mass is controlled by the VEV of a scalar field �
that sets the flavour scale, & O(10) TeV, today. The broken EW phase minimum develops at
large Higgs values once the temperature drops to the flavour scale. The Higgs then undergoes
a strong first order phase transition from a point in field space in which the Yukawa couplings

1For brevity, we omit “squared” when discussing the thermal masses of scalar fields from now on.
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Figure 3: Left: The evolution of the e↵ective potential with the temperature in the toy model
showing a crossover at Tc ⇡ 8 TeV. Right: The e↵ective potential in the toy model at Tc ⇡ 8 TeV.
The positive thermal contributions from the daisy resummation and S, and the negative thermal
contribution from the �i are also shown.

Now consider a judicious choice of parameters so that: (i) �i and S always have positive
thermal masses, (ii) c� is positive at high temperature, (iii) c� becomes negative when the
contribution of S to its thermal mass becomes negligible, i.e. once T . µS. The e↵ective
potential in the � direction, when T � µ� can be approximated as c�T 2�2/2 + ���4/4.
Positive c� returns a minimum at � = 0, but for negative c� we will find a minimum at
� =

p
c�/��T . The latter solution is the usual symmetry non-restoration e↵ect [21–29, 32].

What is new here is the presence of the additional field S which can switch the sign of c�
when T reaches a mass threshold, leading to a phase transition or crossover. (Similarly, the
symmetry non-restoration e↵ect disappears if T falls su�ciently below µ�.) Eventually, for
T ⌧ |µ�|, the VEV is set by the usual zero-temperature minimization conditions.

We numerically evaluate the e↵ective potential including the tree-level terms, zero and
finite-temperature one-loop terms, and the daisy resummation.2 The latter is crucial and
weakens the phase transition. To give a concrete example, consider the choice of parameters3

N� = 1, NGen = 12, N�i = 4, NS = 12,

�� = 0.1, �� = 0.5, �S = 1, ��� = �0.1, ��S = 1, (6)

µ� = �0.1 TeV, µ� = 0.1 TeV, µS = 20 TeV.

In Fig. 3 we show the resulting cross over, together with the thermal contributions from the
S and �i scalars and the daisy resummation. In Fig. 4 we plot the evolution of the VEV

2We use the Arnold-Espinosa method of implementing the daisy resummation [43]. We cut o↵ the
contribution of S to the thermal masses with an exponential factor, e�mS/T , in order to avoid spurious
contributions to the daisy resummation. We checked that the thermal mass estimated using the high-
temperature expansion is consistent with the second derivative of the one loop thermal terms. In fact, the
phase transition is stronger when using the numerical value rather than the high-temperature expansion
value.

3Motivated by flavour bounds, we take a characteristic scale µS ⇠ O(10) TeV for illustration. The scale
of the transition, however, can be taken much larger. The main limit for baryogenesis is around T ⇠ 1012

GeV when the sphalerons become out-of-equilibrium in the symmetric phase.
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Figure 11: The evolution of �/T for di↵erent values of µ�. To retain �/T & 1 we require µ� . 300
GeV.

feature at a characteristic frequency in the spectrum of gravitational waves emitted in the
radiation dominated era [53]. A similar feature can be expected in suitable gravitational
wave backgrounds coming from inflation. We leave this study for future investigation.

6.2 Scalar sector in the IR

The scenario relies on the scalar degrees-of-freedom �i to guide the electroweak minimum
to its present value. Hence, it is necessary for the mass µ� to be at or below the EW
scale otherwise, once T . µ�, the symmetry non-restoration e↵ect disappears and �/T will
become small. This is shown in Fig. 11. The experimental constraint on such a scenario
comes from searches for these light scalars. Note while we have considered universal mass
and coupling terms for the �i, we can imagine that in a more realistic scenario the masses
are split in a spectrum of states with masses m2

�i
⇠ O(µ2

� + ���v2�/2). The partial width of
the SM Higgs to the �i is given by

X

i

�(� ! �i�i) =
X

i

�2
��v

2
�

32⇡m�
Re

"s

1� 4
m2

�i

m2
�

#
⇠ N 0

Gen

�2
��v

2
�

32⇡m�
, (25)

where N 0
Gen denotes the number of generations with mass below the threshold 2m�i < m�.

Demanding at most an O(0.1) modification to the SM Higgs signal strength requires N 0
Gen .

O(1) for ��� ⇠ 10�2. Hence the states must lie above this threshold. In summary, we obtain

63 GeV . m�i . 300 GeV, (26)

by combining the EW Higgs decay constraint with the washout avoidance condition shown
in Fig. 11.

The �i states will become thermally populated and should not over-produce DM. The
cross quartic is too small for annihilation solely through the Higgs portal and anyway, at
these masses, is ruled out by direct detection [54–58]. Hence we need to arrange for the �i

to decay.7 This can be achieved if the �i obtain VEVs and can mix with the Higgs. Here

7Alternatively, provided the additional interaction does not lead to a too large thermal mass, the �i could
annihilate into dark radiation [59], or a dark mediator which subsequently decays [60].

17

𝛘’s should be lighter than 300 GeV to avoid 
sphaleron washout of baryon asymmetry!
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High-scale EW phase transition from 
new EW-scale singlet fermions .
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FIG. 4: Left: contours of maximal continuous SNR temperature (in color) for ⇤ = 1 TeV and n = 10, in terms of the
coupling �N and the N zero-temperature mass at h = 246 GeV. Grey dotted contours show the value of

↵ = n�Nm
(0)
N /⇤. Grey areas feature zero-temperature barriers. Center: temperature dependence of h/T in the

minimum of the Higgs potential, for three combinations of mN and �N (corresponding to the three colored points on
the left plot). The h/T lines are limited by the perturbativity from above. Right: for the mN = 0.4 TeV, �N = 0.6

point, Higgs potential at T = 0.1, 0.3, 0.5 TeV.

Eq. (II.12). However, after m
N

becomes too large, the corresponding thermal corrections become ine↵ective at
low h. While at high h, where the minimum of the thermal potential is located, it is not capable of competing
with the zero-temperature Higgs quartic when T ⇠ v

SM

. T
SNR

also initially grows with �
N

, however after a
certain point the perturbativity requirement (III.12) starts being a limiting factor and T

SNR

drops.
The typical example of the Higgs field evolution with temperature in this region is shown in blue in the

central panel of Fig. 4. We also demonstrate the corresponding evolution of the Higgs potential on the right
panel. In the left side of the T

SNR

plot the m
N

mass is too hight for N to be e↵ective at low temperatures,
so the EW symmetry is restored above ⇠ 100 GeV but gets broken at higher temperatures. Corresponding
Higgs field value evolution is shown in red in central panel of Fig. 4.

The gray area in the upper left and central part of the T
SNR

plot shows where the one-loop zero-temperature
Higgs potential features a barrier at v < h < min[h(m

N

= 0), ⇤]. This area only covers the regions of a not
very e�cient SNR. First of all, this means that the zero-T barrier does not a↵ect our SNR analysis. Secondly,
the new physics which may be needed to cure the Higgs instability after the barrier, is not expected to a↵ect
our results either. Finally, the gray regions in the upper right corner show where the zero-temperature Higgs
potential features a barrier at h < v

SM

and a new minimum at h = 0. As was previously discussed in [2], such
a barrier can lead to a peculiar pattern of EW phase transitions. This region also does not overlap with the
region of the most e�cient SNR.

In Fig. 5 we present the dependence of maximal T
SNR

of n and ⇤, marginalized over �
N

and m
N

. The
shape of the contours is mostly defined by two factors. First, our theory is not applicable at temperatures
above ⇤. This defines the horizontal contours in the lower right part of the plot. Second, the condition to
have a negative thermal mass around the origin (see Eq. (II.13)) together with having h & T in the minimum

of the thermal correction (defined by h2 ' m(0)

N

⇤/�
N

), gives

T
SNR

.
p

nm
N

. (III.22)

This condition defines the vertical contour lines on the plot. Importantly, the perturbativity bound (III.12)
together with the requirement to have a negative thermal mass gives the same expression for the maximal
allowed temperature, T . p

nm
N

. This means that the non-perturbativity is not a limiting factor for the
maximal SNR in our simple model. On the other hand, more involved constructions, such as the one presented
in Sec. V allowing for a higher h in the minimum, can not improve on maximal T

SNR

, as the perturbativity
bound remains the same. A small distortion of the vertical contours at low n and high ⇤ is a consequence

Matsedonskyi-Servant, 
to appear
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FIG. 2: Example of the Higgs e↵ective potential at high temperature demonstrating SNR (left panel) and its
decomposition (right panel) into non-thermal part (blue), finite temperature correction from the SM interactions

(orange) and from the interactions with the N fermions (green).

where �
q

is the Yukawa coupling and f is some mass scale suppressing the dimension-six operator. In such
a case the contribution of the q quark to the Higgs thermal potential would have two minima: one at h = 0
and another at h = f , suggesting a possibility of symmetry non-restoration. The first subtlety here is that
for h ⇠ f the e↵ective field theory expansion in the powers of h/f breaks down. To make any predictions in
this regime one needs to invoke some type of UV completion for Eq. (II.7). One simple example would be the
models with a Higgs being a pseudo Nambu-Goldstone boson (PNGB), arising e.g. as a pion-like state of some
new strongly interacting sector. We discuss this option in detail in Sec. IV A. PNGBs can be conveniently
parametrized as phases of trigonometric functions and the term responsible for the top mass can for instance
take the form

m
q

⇠ �
q

f sin(h/f) cos(h/f). (II.8)

The absolute value of the mass (we are not interested in the phase of the fermionic mass terms, as it can be
rotated away) has two minima, at h = 0 and h = ⇡f/2. One should however keep in mind that both minima
are of the same depth

�V T

f

' �7⇡2T 4

180
, (II.9)

see Eq. (II.4). Other thermal corrections (e.g. from the SM gauge bosons) and the zero-temperature potential
typically make the h = 0 minimum deeper. We conclude that modified SM interactions can facilitate SNR,
by reducing the SM contribution (e.g. the large correction from the top quark) to the thermal potential
at large h. Such modifications however are not able to make this large-h minimum deeper than the EW
symmetry-preserving one.

C. Symmetry Non-Restoration with New Fermions

We have seen that the standard model fermions can not produce a global EW symmetry breaking minimum
even after we modified their interactions. Let us then add new fermions. The simplest case is a singlet Dirac
fermion N coming in n copies. The Lagrangian leading to SNR is

L
N

= �m(0)

N

N̄N + �
N

N̄Nh2/⇤ (II.10)

where ⇤ is the scale at which our EFT is completed by some heavier states, �
N

is a positive coupling and m
N

is a positive mass parameter. The dip in the thermal correction to the Higgs potential appears at the point
of vanishing N mass (see Fig. 2)

m
N

(h) = m(0)

N

� �
N

h2/⇤ = 0 �! h2 = m(0)

N

⇤/�
N

, (II.11)5

and the negative correction to the Higgs mass in m
N

⌧ T limit is approximately given by

�m2

h

[T ] ' n
T 2

12
(m2

N

(h))00 = �n�
N

m(0)

N

3⇤
T 2. (II.12)

Again, reliability of our predictions in the regime of large Higgs vev values h ⇠ ⇤ is not obvious if we do not
make any assumptions about the high-energy completion of our model. We will present two types of such
completions in Sec. IV.

The negative correction to the Higgs mass, if large enough, can cancel the SM thermal corrections and
eventually make the Higgs field origin unstable leading to SNR. Comparing Eqs.(II.6) and (II.12), we find the
necessary condition for this to happen

n�
N

& 5

✓
v
SM

m
N

◆ ✓
⇤

TeV

◆
. (II.13)

This condition is only valid when the new fermions contribute significantly to the plasma density, i.e. m
N

(h '
0) . T . Otherwise the N -correction is significantly suppressed. For this reason, having SNR not only at some
high temperature, but also around the EW scale, requires N to be relatively light.

III. ANALYSIS OF PARAMETER SPACE

Our analysis of the SNR so far was limited to the discussion of the leading, one loop, thermal corrections
to the Higgs mass. However the loop expansion in finite-temperature field theory is known for its poor
convergence in some cases. In this section we analyse higher loop correction and derive the conditions needed
to ensure reliability of the one-loop approximation. After deriving the limits of the EFT applicability we test
numerically the allowed parameter space.

A. Finite T Higher Order Corrections

First, we remind that the one-loop correction to the Higgs potential (diagram (1) in Fig. 3) is approximately
given by

�m(1-loop)2

h

T 2

⇠ n�
N

m
N

⇤
⌘ ↵. (III.1)

In order to have a strong SNR with h/T & 1 at the minimum, one then needs

↵ & 1. (III.2)

This means that for n � 1 the SNR condition (III.2) can be fulfilled even for small values of coupling
�

N

/ 1/n. It is exactly this fact that allows to suppress the higher-order loop corrections as we will discuss
in a moment. Before that, let us make a small technical remark on the numerical loop suppression factors
in finite-temperature field theory. Here and in the following we leave them implicit, but they should be
understood accompanying every power of �

N

. A naive estimate for the phase space suppression from the
three-dimensional loop integral is

Z
d⌦

(2⇡)3
=

1

2⇡2

(III.3)

which we additionally multiply by 4 for the loops of Dirac fermions N .
The two-loop corrections to the Higgs mass are given by the diagrams (2a) and (2b) in Fig. 3. Both can

be estimated as

�m(2-loop)2

h

T 2

⇠ n�2

N

T 2

⇤2

(III.4)

47

Add n new fermions N with Higgs-
dependent mass contribution. 

Mass vanishes at <h>≠0

Negative 
thermal mass

Enables to push Tc to ~ 500 GeV 
while keeping <h>/T>1 for T<Tc.



Why pushing up the temperature of the 
EW phase transition ?
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> Major implications even if pushed by only a few 

hundreds of GeV !

> opens large new windows of theory space for 

successful EW baryogenesis !

> Early baryon asymmetry safe from sphaleron wash-out 

even in models with B-L=0 !
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FIG. 3: Schematic plots of h/T dependence on the temperature. Left: Behaviour found in SM, or in a model with
new fermions with the SNR condition (II.13) not met. Center: Model with new fermions where the SNR condition

is satisfied, but the fermions are too heavy to a↵ect the Higgs potential at temperatures around the EW scale.
Right: Model with new fermions satisfying the SNR condition and light enough to contribute to the Higgs potential
at temperatures around the EW scale. For both center and right plots we have assumed that the minimum of the

thermal potential induced by the new fermions, h2 = m
(0)
N ⇤/�N , is always grater than T 2 within the plotted

temperature range. This explains why h/T exceeds 1 at high T .

of the Higgs vev, depending on whether the SNR condition (II.13) is met or not and whether the new fermions
are su�ciently light compared to the EW scale.

In Fig. 2 we show an example of the Higgs potential showing SNR behaviour at high T . The components
of the plotted potential

V
total

= V
T=0

+ �V T

SM

+ �V T

N

(II.15)

are discussed along the paper. The zero-temperature potential V
T=0

consists of the tree-level potential (II.1)
and one loop corrections induced by the SM states (III.8) and by the new fermions (III.10). The SM thermal
correction �V T

SM

is given in Eq. (A.1). The thermal correction from the N fermions �V T

N

is given in Eq. (II.2).

III. A MORE REFINED ANALYSIS

Our analysis of the SNR so far was limited to the discussion of the leading, one loop, thermal corrections
to the Higgs mass. However the loop expansion in finite-temperature field theory is known for its poor
convergence in some cases. In this section we analyse higher loop corrections and derive the conditions
needed to ensure reliability of the one-loop approximation. After deriving the limits of the EFT applicability
we test numerically the allowed parameter space.

A. Finite-T Higher Order Corrections

First, we remind that the one-loop correction to the Higgs potential (diagram (1) in Fig. 4) is approximately
given by

�m(1-loop)2

h

T 2

⇠ n�
N

m
N

⇤
⌘ ↵. (III.1)

and the SNR condition (II.13) then reads

↵ & 1. (III.2)

This means that for n � 1 the SNR condition (III.2) can be fulfilled even for small values of coupling
�

N

/ 1/n. It is exactly this fact that allows to suppress the higher-order loop corrections as we will discuss
in the follwing.

SM SM + new 
heavy fermions, 

m>>v

SM + new 
light fermions, 

m~v

> Baryon asymmetry produced during higher T 

phase transition is never washed out !



EW symmetry: never-restored . 
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Cosmological relaxation of the EW scale 
through Higgs-axion interplay.

> Standard EWPT after relaxation (which is followed by reheating)

> Prediction: Very light relaxion ! Testable?…
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Cosmological relaxation of the EW scale 
a la Hook-Marques-Tavares .
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Figure 5. Left : Higgs field h(t) (blue) and its value at the minimum of the potential
v(t) (red) as a function of time t in units of ⇤�1. The black curve indicates when the
tracking stops from the approximation in (2.21) Right : Higgs potential where the blue points
represent the field value and the red ones the value at the minimum. ⇤ = 104 GeV, f 0 =
106 GeV and ⇤b = 7 ⇥ 103 GeV. Top: g0 = 10�4, the Higgs is not efficiently tracking the
minimum of its potential (the tracking stops when the value at the minimum is still too
large, v ⇠ 0.1⇤). Bottom: g0 = 3 ⇥ 10�9, the Higgs is efficiently following its minimum
(the tracking stops when the value at the minimum is already below the electroweak scale,
v ⇠ 0.003⇤).

scale ⇤. As we shall see in Sec. 5, this is an important constraint in our parameter
space. One can obtain the same result given in Eq. (2.21) by studying how efficiently
the field tracks the minimum using the expansion of the Higgs around the tracking
solution as in Ref. [10]. In Fig. 5, we compare the actual evolution of h and v with
the approximation given by Eq. (2.21). These solutions were obtained by solving
numerically the classical equations of motion for the fields. In the plots on the top,
the Higgs does not track the minimum close enough to the critical point. In the plots
on the bottom, the Higgs is efficiently following its minimum.

2.4 Baryogenesis

While we are interested to decouple the relaxion mechanism from inflation, it is im-
portant to note at this point that according to Fig. 2, while relaxation will happen
after the reheating stage in which the inflaton energy density is transferred to an
invisible sector, the relaxion energy density eventually takes over and a second re-
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> Start in EW-broken phase at early times 
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> Prediction: Very light relaxion !
Testable?…

> Restore EW symmetry due to reheating after relaxation 
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F Cosmological histories

In this appendix, we illustrate and comment on the possible cosmological scenarios
that could arise in the various cases we have discussed.

First, in the case of relaxation with Higgs-dependent barriers which happens dur-
ing inflation (Section 3.1), we assume the energy density of the universe is dominated
by the inflaton, and the relaxion is a subdominant component (see Fig. 34). The
universe is eventually reheated from the inflaton energy density and cosmological
perturbations are inherited from the inflaton. Generally, the energy density stored
in relaxion oscillations is subdominant, see e.g. [2]. One has nevertheless to make
sure that the relaxion vacuum energy density does not eventually take over, so it
should decay (for instance by introducing a new coupling to gauge bosons) or the
corresponding cosmological constant should be cancelled. In the new scenario that
we have discussed where the relaxion stops because of fragmentation (section 3.1.3),
most of the relaxion kinetic energy goes into relaxion particles which behave as hid-
den radiation that gets diluted away by inflation. Note also that in this case, the
number of efolds and the inflation scale can be small (see Fig. 4 and Fig. 3), this
means even a short late stage of inflation is enough for relaxation of the EW scale,
and we do not have to impose necessarily that this stage of inflation is responsible
for cosmological perturbations.

In the case of relaxation before inflation with axion fragmentation (section 3.2),
there is no concern and standard big bang cosmology can proceed. This case is shown
in Fig. 35.

We now discuss the case where relaxation takes place after inflation, while the
universe has been reheated into some hidden radiation, and ends because of axion
fragmentation (Sec. 3.2). Fig. 36 shows the situation where the relaxion is a subdom-
inant component of the energy density during relaxation, for which there is no need
to worry about overclosure of the universe by the relaxion. The underlying assump-
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Figure 34. Sketch of the energy density of the universe as a function of the scale factor
in the scenario discussed in Sec. 3.1 where relaxation happens when the energy universe is
dominated by the inflaton potential.
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Figure 35. Sketch of the energy density of the universe as a function of the scale factor
when relaxation happens before inflation and ends because of axion fragmentation.

tion is that the relaxion potential emerges from a sector independent from the one
dominating the energy density. In contrast, Fig. 37 corresponds to the case where
the relaxion potential emerges due to coupling to the hidden radiation and therefore
relaxation starts when the relaxion energy density dominates. In this case, we need
to introduce a coupling to photons as discussed in Sec. 3.2.1 to avoid that the relax-
ion energy density takes over eventually and overclose the universe. The evolution of
the equation of state of the universe until fragmentation starts is shown in Fig. 38.
In the cases (a-b-c) of Fig. 37, we need to assume that the relaxion eventually decays
into photons to recover a standard radiation era. In case (d), we assume a stage of
kination domination may enable hidden radiation to dominate after relaxation.

Finally, there is the case where the relaxion drives a stage of inflation as discussed
in Sec. 3.3. This is illustrated in Fig. 39. At the end of relaxation, the energy
density of the universe is in relaxion radiation. This should be followed by a stage
of standard inflation and then by reheating (we know that the relaxion cannot lead
to the correct size of perturbations [27]). Alternatively, this period can follow the
standard inflationary epoch in which curvature perturbations are generated, provided
that it lasts for less than O(10) efolds.
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Figure 36. Sketch of the energy density of the universe as a function of the scale factor
in the case where relaxation takes place after inflation and when the energy density of the
universe is dominated by a hidden sector that later decays into the SM.
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Figure 37. Sketch of the energy density of the universe as a function of the scale factor
for cases where relaxation happens after inflation when the energy density is dominated
by the relaxion field, i.e. H ⇠ ⇤

2/(
p
3M

Pl

). (a): Hidden sector red-shifts as radiation,
which makes this scenario very constrained by dark radiation bounds; (b): Hidden sector
red-shifts faster than radiation !

h

> 1/3 (as a kination-like period); (c): There is a period
of matter domination after relaxation. (d): Hidden sector red-shifts as radiation and at the
end of relaxation !

�

> 1/3 (kination-like). At late times the hidden sector decays into the
Standard Model particles.
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relaxation 
after inflation  

relaxation 
driving inflation

Figure 38. Equation of state of the universe in model with self-stopping relaxion, for
⇤

b

= 800 GeV, ⇤ = 8 TeV, g = 2 ⇥ 10

�14, and f is determined by the stopping condition.
This corresponds to the cases in Fig. 37 where the relaxion dominates the energy density.
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Figure 39. Sketch of the energy density of the universe as a function of the scale factor
in the scenario where the relaxion drives an inflationary period.
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Conclusion .
 It remains very open how EW symmetry got broken in early universe

 ▪︎ First-order EW phase transition: well alive and still likely

 ▪︎ EW baryogenesis: under threat by EDM bounds

Remaining 
options:

 Top transport may remain open only in composite Higgs.
 CP in hidden sector, e.g. new leptons
EW phase transition occurring at high temperatures >> 

100 GeV, via large number of new O(few100 GeV) singlet 
scalars or singlet fermions.

▪︎ Broken EW sym. at early times may happen in models of 
EW scale cosmological relaxation (not a temperature effect) 

although followed by SM-like EW phase transition
preAAssociated predictions: light weakly coupled relaxion. 

    Testable signatures: not yet clear, work in progress.

 supercooled EW phase transition: generic in Composite 
Higgs with light dilaton, rich pheno and cosmo. 

Testable through light dilaton signatures
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Conclusion .

 It remains very open how EW symmetry got broken in early universe

 Probing the EW phase transition will keep us busy for 
the next 2 decades through complementarity of studies 

in theory, lattice, experiments in Colliders, EDMs, 
gravitational waves, cosmology, axions.
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Strength of EW phase transitionEWPT Strength

glueball
meson

 large range of  N with h/T~1

 ~universal upper (lower) bound on mchi (N)

 ~light dilaton generically needed
direct searches+Higgs physics!

 more space for the meson case

9

h/T

N: number of colors of strong sector
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Figure 2: Black solid (red dashed) contours are for a glueball (meson) dilaton. Left: Phase-transition strength h[Tn]/Tn. We also show the
values of the cutoff m⇤ = g⇤f . The chosen mass range satisfies current experimental constraints [? ]. In the red dashed region, there is no
phenomenologically viable EW minimum for the case of the meson dilaton. The baryon asymmetry is ⌘B ⇥ 1010 ⇠ 3.4 (a), 4.5 (b), 3.8 (c),
5.5 (d). Center: Average Higgs vev during the phase transition relative to the condensate scale today, havg/f . Right: Imaginary part of the
top Yukawa as a function of the present value of y/g1/2

⇤ and its anomalous dimension �y for |�y| = �yy, a complex phase arg �y = �/2 and
ytL =

p
g⇤. N is fixed such that h/T � 1. Contours approximately correspond to the current (2 ⇥ 10�2) [? ] and near future (2 ⇥ 10�4)

experimental sensitivities [? ].

To have the minimum of the Higgs potential at h
0

⌧ f
at present times requires that |↵0/�0| ⌧ 1. From Eq. (12),
on the other hand, we see that generically |↵[�]/�[�]| & 1.
This is a manifestation of the required tuning mentioned be-
fore. For � somewhat away from �

0

, the contributions in
Eq. (12) typically dominate over ↵0 and �0 in Eq. (13) and
the Higgs potential instead has a global minimum at h = 0

(for c↵,� > 0) or h = f⇡/2 (for c↵,� < 0). This minimum
leads to a valley in the Higgs-dilaton potential which can at-
tract the tunneling trajectory during a first-order phase transi-
tion. How closely the tunneling trajectory follows this valley
is controlled by its relative depth (in particular determined by
m� and N ) and the value of � for which it becomes deeper
than the valley along h = h

0

that results from the tuned Higgs
potential (1) (influenced by |c↵,� |, �y, y[0], y[�

0

]). We show
some tunneling trajectories as calculated for example points
in the parameter space in Fig. 1. The form of the trajectory
has major implications for EW baryogenesis. In particular,
trajectories which closely follow h = 0 need to be avoided
since the top mass and thus the CP-violating source vanish
along such trajectories. This can also happen for trajectories
which closely follow h = f⇡/2, however, since the fermion
masses are / sin[h/f ]

1+m
cos[h/f ]

n [? ] with m, n being
model-dependent, and therefore vanish at h = f⇡/2 if n 6= 0.

The top mixings are already quite large at � = �
0

to ensure
a large top Yukawa. Provided that the anomalous dimension
�y for the mixing y is negative, it grows for decreasing � until
it reaches a fixed point whose size is controlled by the constant
cy in the �-function. To obtain a sufficient amount of y varia-
tion and CP violation, we choose �y = �0.3 and fix cy so that
y[0] = 0.7g⇤ in the unbroken phase, while y[�

0

] = 0.3
p

�tg⇤
in the broken phase. We also set c↵ = c� = �1 in which case
the detuned valley is along h = f⇡/2. We have calculated the
action of O(3)-symmetric bubbles for tunneling along straight
lines with constant Higgs vev h which well approximates the
exact tunneling paths (cf. Fig. 1). In the central panel of Fig. 2,

we plot the Higgs vev h
avg

which minimizes the action at the
transition temperature for a meson-like dilaton. We see that,
depending on m� and N , trajectories closely following h = 0

or h = f⇡/2 are possible. We do not show a correspond-
ing plot for the glueball-like dilaton since the trajectory in this
case is always strongly attracted to h = f⇡/2 (which means
that the CP-violating source is non-vanishing only in models
with n = 0).

Thus, as follows from the first two panels in Fig. 2, the
EWPT is strong and our CP-violating source is active for a
wide range of m� and N . We have computed the resulting
baryon asymmetry using the formalism presented in Ref. [?
]. The results are indicated for a few benchmark points, as-
suming a bubble wall velocity of 0.01 (the baryon asymmetry
increases by a factor 3-4 if we increase the bubble wall veloc-
ity to 0.1) and with the varying mixing in Eq. (11) having a
complex phase arg y(1)

tR = arg y[�] = 0.1 and the remaining
mixings being fixed as y(2)

tR = 0.7
p

�tg⇤ and ytL =

p
�tg⇤.

Thus a sufficient amount of baryon asymmetry can be created.
Note that even in the region where h[Tn]/Tn & a few, we can
expect subsonic velocities as a sizeable friction comes from
the large number of degrees of freedom becoming massive
when they go through the bubble wall.

EXPERIMENTAL SIGNATURES

Our predictions can be divided into two types - those re-
lated to the phase-transition strength (only weakly sensitive
to the y running), and those related to the transition path and
CP violation (strongly sensitive to the y running). For the
former, our testable prediction is the correlation between the
dilaton mass and the strong-sector coupling, from the require-
ment of a strong enough EWPT, see Fig. 2. As for the latter,
the running mixing y can have a measurable effect on both the
Higgs and the dilaton phenomenology, as well as on observ-

Figure 2: Results for the meson dilaton. In the red dashed region, no viable EW minimum can be found or the Higgs-dilaton mixing leads
to too large deviations in the Higgs couplings. In the blue dashed region, the baryon asymmetry is washed out after reheating. We also show
the cutoff m⇤ = g⇤f . The chosen mass range satisfies current experimental constraints [35]. Left: Phase-transition strength h[Tn]/Tn. The
baryon asymmetry for benchmark point a (b) is |⌘B | ⇥ 1010 ⇠ 5–5.5 (4–4.5). Center: Average Higgs vev during the phase transition relative
to the condensate scale today, havg/f . Right: Imaginary part of the top Yukawa as a function of the present value of y/g1/2

⇤ and its anomalous
dimension �y for |�y| = �yy, arg �y = 0.1 and ytL =

p
g⇤. The current and near future experimental sensitivities correspond respectively

to approximately 2 ⇥ 10�2 [36] and 2 ⇥ 10�4 [37]. The green bullet indicates the values used for the left and centre plots.

The top mixings are already quite large at � = �
0

to ensure
a large top Yukawa. Provided that the anomalous dimension
�y for the mixing y is negative, it grows for decreasing � until
it reaches a fixed point whose size is controlled by the constant
cy in the �-function. To obtain a sufficient amount of y varia-
tion and CP violation, we choose �y = �0.3 and fix cy so that
y[0] = 0.4g⇤ in the unbroken phase, while y[�

0

] = 0.6
p

�tg⇤
in the broken phase. We also set c↵ = �c� = �0.3 in which
case the detuned valley is along h = f⇡/2. We have cal-
culated the action for tunneling along straight lines with con-
stant Higgs vev h which well approximates the exact tunneling
paths (cf. Fig. 1). In the central panel of Fig. 2, we plot the
Higgs vev h

avg

which minimizes the action at the transition
temperature. We see that, depending on m� and N , different
trajectories are possible.

Thus, as follows from the first two panels in Fig. 2, the
EWPT is strong and our CP-violating source is active for a
wide range of m� and N . We have computed the resulting
baryon asymmetry using the formalism presented in Ref. [21].
The results are indicated for two benchmark points, assum-
ing a bubble wall velocity of 0.01 (the baryon asymmetry in-
creases by a factor 3-4 if we increase the bubble wall veloc-
ity to 0.1) and with the varying mixing in Eq. (8) having a
complex phase arg y(1)

tR = arg y[�] = 0.1 and the remaining
mixings being fixed as y(2)

tR ' 0.4
p

�tg⇤ and ytL =

p
�tg⇤.

Note that even for h[Tn]/Tn & O(few), we can expect sub-
sonic velocities (needed for baryogenesis) as a sizeable fric-
tion comes from the large number of degrees of freedom be-
coming massive when they go through the bubble wall. Our
baryon asymmetry values (which should only be taken as in-
dicative given order one uncertainties) are typically close to
the observed value ⌘B ⇠ 8.5 ⇥ 10

�11. In contrast with phase
transitions studied so far, our Higgs vev grows very large
during the EWPT before decreasing, and since ⌘B scales as
the integral of (h/T )

2 over the bubble wall, this leads to a

large baryon asymmetry. Furthermore, we find that the bub-
ble wall width Lw is small, also contributing to a large baryon
asymmetry. However, we actually enter a regime where the
derivative expansion used in the EW baryogenesis formalism
(LwT � 1) [21] starts to break down.

EXPERIMENTAL SIGNATURES

The experimental signatures of our scenario include those
related to the transition path and CP violation, and those re-
lated to the phase-transition strength. The former are strongly
sensitive to the y running. The running mixing y can have
a measurable effect on both the Higgs and the dilaton phe-
nomenology, as well as on observables which are indirectly
sensitive to the couplings of h and �. Many of these effects
arise from the term responsible for the top mass, which in the
meson case with n = 0 reads

�t[�] � sin

h

f
¯tLtR � ¯tLtR h

✓
�0

t
�

f
+ ��t

� � f

f

◆
, (11)

where �0

t is the SM top Yukawa coupling, and for one vary-
ing mixing we have ��t ⇠ �y (see Eq. (7)). � and h in
this expression are linear combinations of the mass eigen-
states. Importantly, ��t is complex, as required by the varying
Yukawa phase. The highest sensitivity to the resulting com-
plex couplings comes from measurements of the electron elec-
tric dipole moment [40]. These restrict the CP-odd coupling
of the –mass eigen state– Higgs to the top (coming from the
CP-odd coupling of the –non-mass eigen state– dilaton) to be
. 2 ⇥ 10

�2 at 95% CL [36], with a prospect of gaining about
two orders of magnitude in sensitivity in the near future [37].
In the right panel of Fig. 2, we show how the CP-odd tth cou-
pling depends on y[�]. Forthcoming experiments are expected
to probe most of our parameter space.

2

the strong sector condensate. The currently preferred value
is around f = 0.8 TeV [25] which we will use in the fol-
lowing. The novel aspect of our work is to promote f to a
dynamical field. Generally, one expects the confined theory to
feature various interconnected condensates, which in particu-
lar break the symmetry G (analogous to the chiral symmetry
in QCD) with strength given by f . Not all of this complex dy-
namics is necessarily relevant. Flavour physics motivates the
strong sector to be nearly conformal above the TeV scale [26].
Confinement is then associated with the spontaneous breaking
of conformal invariance. This gives rise to a pseudo-Nambu-
Goldstone boson, the dilaton, which we denote as �. As moti-
vated in Ref. [27–32], once the explicit breaking of conformal
invariance is sufficiently small, the dilaton can be significantly
lighter than the confinement scale. Its lightness and the fact
that its vev sets all scales in the strong sector then allows to in-
tegrate out other dynamical fields (whose values now become
a function of �) and to describe the confinement phase transi-
tion in terms of � getting a vev. In particular, this links f to �.
We derive the joint potential for the Higgs and the dilaton.The
potential (1) is minimised at h2

0

' �(1/2)(↵0/�0

)f2. This
suggests that the cosmological evolution of the Higgs and the
dilaton are tied to each other, and we show under which con-
ditions both fields obtain a vev simultaneously.

We describe the coupled dynamics of the Higgs and the
dilaton by using a large-N expansion for the underlying
strongly-coupled gauge theory [33], where N represents the
number of colors. Each insertion of � or h is accompanied
by a coupling g� or g⇤, respectively. By large-N counting,
these couplings scale as ⇠ 1/

p
N for mesons and ⇠ 1/N

for glueballs of the gauge theory. The Higgs is expected to
be a meson in analogy with QCD pions while for the dilaton
both meson and glueball cases are possible. Requiring a fully
strongly interacting theory in the limit N ! 1, this gives [1]

g⇤ = g(meson)
� = 4⇡/

p
N, g(glueball)

� = 4⇡/N. (2)

The trigonometric functions in V 0

[h] can be represented as
power series in h/f . Using the large-N scaling together with
dimensional analysis, one finds that this has to correspond to a
power series in g⇤h/(g��

0

), where �
0

is the dilaton vev today.
This fixes the relation between f and �

0

as g⇤f = g��
0

.
To account for the variation of the scale balancing h in

Eq. (1) when � varies, the kinetic terms are fixed by dimen-
sional analysis as

Lkin =

1

2

(�/�
0

)

2

(@µh)

2

+

1

2

(@µ�)

2. (3)

We next turn to the Higgs-independent dilaton potential. In
an exactly conformal theory, only a term �4 can appear which
does not allow for a minimum �

0

6= 0. We therefore break
conformal invariance explicitly in the UV by a term ✏O in the
Lagrangian, where O is an operator with scaling dimension
4 + �✏. If 0 > �✏ � �1, the coefficient ✏ slowly grows when
running from the UV scale down to lower energies until it
triggers conformal-symmetry breaking and confinement. This

is reflected by an additional term in the dilaton potential (see
e.g. [31])

V�[�] = c�g2

��4 � ✏[�]�4 (4)

which allows for a minimum at �
0

6= 0. Here the func-
tion ✏[�] is governed by an RG equation with �-function
� ' �✏✏ + c✏✏2/g2

� and c� and c✏ are order-one coefficients.
We will trade �✏ for the dilaton mass m� and fix the remain-
ing constants as c✏ = 0.1, and c� = 0.5 not far from a naive
order-one estimate.

Temperature corrections provide a potential barrier (which
the potential (4) does not feature) necessary for a first-order
phase transition. Indeed, by dimensional analysis and large-
N counting, the free energy of the deconfined phase is given
by [4–6]

�VT [� = 0] ⇠ �cN2T 4 . (5)

We choose c = ⇡2/8, a value corresponding to N = 4

SU(N) super-Yang-Mills that is representative of a realistic
conformal sector. This is modelled by including the standard
one-loop thermal corrections from 45N2/4 strongly coupled
degrees of freedom with mass m = g�� [5]. As the tempera-
ture drops, � eventually tunnels from 0 to the global minimum
at � ' �

0

corresponding to a confined phase.
Altogether, the potential of our model reads

V
tot

[h, �] = (�/�
0

)

4V 0

h [h] + V�[�] + �V 1-loop
T [h, �] , (6)

where the prefactor �4 indicates that the dilaton vev is the only
source of mass in the theory. Furthermore, �V 1-loop

T includes
the one-loop thermal corrections from SM particles, the Higgs
and dilaton as well as the states reproducing the free energy
(5).

We have calculated the tunnelling trajectory and action for
O(3) and O(4)-symmetric bubbles in the two-dimensional
field space (h, �). The phase transition happens at a tem-
perature Tn for which the bubble euclidean action is SE ⇡
140. In Fig. 1, we show examples of tunneling trajecto-
ries in the meson case. The strength of the phase transition
h[Tn]/Tn, where h[Tn] is at the minimum of the Higgs po-
tential at Tn, needs to be & 1, to ensure that sphalerons
do not wash out the generated baryon asymmetry. After
the phase transition, the system reheats to the temperature
T

rh

= (30�V
tot

/(⇡2gSM

dof

))

1/4 with �V
tot

being the energy
difference between the true and false vacuum. We therefore
also have to impose that h(T

rh

)/T
rh

& 1. This enforces the
light dilaton window. In the left panel of Fig. 2, we show how
the phase transition generally quickly becomes supercooled
with growing N and decreasing dilaton mass, as found in pre-
vious studies of the confinement phase transition focussing
on the glueball, e.g. [12]. This effect is much stronger for
the glueball than for the meson dilaton due to the different
N -scaling of its couplings. This disfavours the glueball case
as the baryon asymmetry is either washed out or diluted by
(T

rh

/Tn)

3 after reheating. We therefore concentrate on the
meson case.
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the strong sector condensate. The currently preferred value
is around f = 0.8 TeV [25] which we will use in the fol-
lowing. The novel aspect of our work is to promote f to a
dynamical field. Generally, one expects the confined theory to
feature various interconnected condensates, which in particu-
lar break the symmetry G (analogous to the chiral symmetry
in QCD) with strength given by f . Not all of this complex dy-
namics is necessarily relevant. Flavour physics motivates the
strong sector to be nearly conformal above the TeV scale [26].
Confinement is then associated with the spontaneous breaking
of conformal invariance. This gives rise to a pseudo-Nambu-
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Eq. (1) when � varies, the kinetic terms are fixed by dimen-
sional analysis as

Lkin =

1

2

(�/�
0

)

2

(@µh)

2

+

1

2

(@µ�)

2. (3)

We next turn to the Higgs-independent dilaton potential. In
an exactly conformal theory, only a term �4 can appear which
does not allow for a minimum �

0

6= 0. We therefore break
conformal invariance explicitly in the UV by a term ✏O in the
Lagrangian, where O is an operator with scaling dimension
4 + �✏. If 0 > �✏ � �1, the coefficient ✏ slowly grows when
running from the UV scale down to lower energies until it
triggers conformal-symmetry breaking and confinement. This

is reflected by an additional term in the dilaton potential (see
e.g. [31])

V�[�] = c�g2

��4 � ✏[�]�4 (4)

which allows for a minimum at �
0

6= 0. Here the func-
tion ✏[�] is governed by an RG equation with �-function
� ' �✏✏ + c✏✏2/g2

� and c� and c✏ are order-one coefficients.
We will trade �✏ for the dilaton mass m� and fix the remain-
ing constants as c✏ = 0.1, and c� = 0.5 not far from a naive
order-one estimate.

Temperature corrections provide a potential barrier (which
the potential (4) does not feature) necessary for a first-order
phase transition. Indeed, by dimensional analysis and large-
N counting, the free energy of the deconfined phase is given
by [4–6]

�VT [� = 0] ⇠ �cN2T 4 . (5)

We choose c = ⇡2/8, a value corresponding to N = 4

SU(N) super-Yang-Mills that is representative of a realistic
conformal sector. This is modelled by including the standard
one-loop thermal corrections from 45N2/4 strongly coupled
degrees of freedom with mass m = g�� [5]. As the tempera-
ture drops, � eventually tunnels from 0 to the global minimum
at � ' �

0

corresponding to a confined phase.
Altogether, the potential of our model reads

V
tot

[h, �] = (�/�
0

)

4V 0

h [h] + V�[�] + �V 1-loop
T [h, �] , (6)

where the prefactor �4 indicates that the dilaton vev is the only
source of mass in the theory. Furthermore, �V 1-loop

T includes
the one-loop thermal corrections from SM particles, the Higgs
and dilaton as well as the states reproducing the free energy
(5).

We have calculated the tunnelling trajectory and action for
O(3) and O(4)-symmetric bubbles in the two-dimensional
field space (h, �). The phase transition happens at a tem-
perature Tn for which the bubble euclidean action is SE ⇡
140. In Fig. 1, we show examples of tunneling trajecto-
ries in the meson case. The strength of the phase transition
h[Tn]/Tn, where h[Tn] is at the minimum of the Higgs po-
tential at Tn, needs to be & 1, to ensure that sphalerons
do not wash out the generated baryon asymmetry. After
the phase transition, the system reheats to the temperature
T

rh

= (30�V
tot

/(⇡2gSM

dof

))

1/4 with �V
tot

being the energy
difference between the true and false vacuum. We therefore
also have to impose that h(T

rh

)/T
rh

& 1. This enforces the
light dilaton window. In the left panel of Fig. 2, we show how
the phase transition generally quickly becomes supercooled
with growing N and decreasing dilaton mass, as found in pre-
vious studies of the confinement phase transition focussing
on the glueball, e.g. [12]. This effect is much stronger for
the glueball than for the meson dilaton due to the different
N -scaling of its couplings. This disfavours the glueball case
as the baryon asymmetry is either washed out or diluted by
(T

rh

/Tn)

3 after reheating. We therefore concentrate on the
meson case.

Case of a varying top quark YukawaFigure 10: Results of our numerical study for a meson-like dilaton (red dashed) and a glueball-like

dilaton (solid black). In the red dashed region, there is no phenomenologically viable electroweak

minimum for the meson-like dilaton. Left: The strength h[T
n

]/T
n

of the phase transition as a

function of m
�

and N . Right: The average direction ĥ
avg

of the tunnelling trajectory as a function

of m
�

and N . We also show the cuto↵ m
?

= g
?

f with g
?

= 4⇡/
p
N , where the other composite

states appear.

and O(4)-symmetric bubbles scales like N to a positive power. To see this, note that the

N -dependence in the pure dilaton part of the Lagrangian, given by the dilaton kinetic term

plus the potential in Eqs. (2.22) and (2.27) (ignoring the additional term in Eq. (3.22) which

typically only gives a small correction), enters via g
�

in the potential. Using this, one can

show the aforementioned scaling of the tunnelling action (cf. e.g. [35]). This then delays

the phase transition for larger values of N . Furthermore, a smaller m
�

corresponds to a

smaller �
✏

which makes the pure dilaton potential flatter. This in turn also increases the

tunnelling action and thereby makes the phase transition more supercooled. Notice also

that the strength h[T
n

]/T
n

of the phase transition increases much faster for the glueball-

like dilaton compared to the meson-like dilaton. This can be understood from the di↵erent

N -scalings of the coupling g
�

in the two cases.

For successful electroweak baryogenesis, h[T
n

]/T
n

& 1 is required. Restricting the number

of colors to reasonable values, say N < 15 as in the plot (or equivalently restricting the cuto↵

to m
?

& 2.6TeV), we conclude from the plot that successful electroweak baryogenesis then

implies a dilaton which is lighter than ⇠ 2.5TeV. On the other hand, the fast increase of the

amount of supercooling with decreasing m
�

for the glueball-like dilaton means that it can in

this case not be too light either. Indeed, as we have discussed in the last section, with too

much supercooling the bubble walls accelerate to wall velocities larger than the sound speed

in the surrounding plasma and electroweak baryogenesis is no longer possible. The precise

amount of supercooling for which this happens and the resulting lower bound on m
�

for the

glueball-like dilaton would require a dedicated analysis which is beyond the scope of this
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Figure 2: Black solid (red dashed) contours are for a glueball (meson) dilaton. Left: Phase-transition strength h[Tn]/Tn. We also show the
values of the cutoff m⇤ = g⇤f . The chosen mass range satisfies current experimental constraints [? ]. In the red dashed region, there is no
phenomenologically viable EW minimum for the case of the meson dilaton. The baryon asymmetry is ⌘B ⇥ 1010 ⇠ 3.4 (a), 4.5 (b), 3.8 (c),
5.5 (d). Center: Average Higgs vev during the phase transition relative to the condensate scale today, havg/f . Right: Imaginary part of the
top Yukawa as a function of the present value of y/g1/2

⇤ and its anomalous dimension �y for |�y| = �yy, a complex phase arg �y = �/2 and
ytL =

p
g⇤. N is fixed such that h/T � 1. Contours approximately correspond to the current (2 ⇥ 10�2) [? ] and near future (2 ⇥ 10�4)

experimental sensitivities [? ].

To have the minimum of the Higgs potential at h
0

⌧ f
at present times requires that |↵0/�0| ⌧ 1. From Eq. (12),
on the other hand, we see that generically |↵[�]/�[�]| & 1.
This is a manifestation of the required tuning mentioned be-
fore. For � somewhat away from �

0

, the contributions in
Eq. (12) typically dominate over ↵0 and �0 in Eq. (13) and
the Higgs potential instead has a global minimum at h = 0

(for c↵,� > 0) or h = f⇡/2 (for c↵,� < 0). This minimum
leads to a valley in the Higgs-dilaton potential which can at-
tract the tunneling trajectory during a first-order phase transi-
tion. How closely the tunneling trajectory follows this valley
is controlled by its relative depth (in particular determined by
m� and N ) and the value of � for which it becomes deeper
than the valley along h = h

0

that results from the tuned Higgs
potential (1) (influenced by |c↵,� |, �y, y[0], y[�

0

]). We show
some tunneling trajectories as calculated for example points
in the parameter space in Fig. 1. The form of the trajectory
has major implications for EW baryogenesis. In particular,
trajectories which closely follow h = 0 need to be avoided
since the top mass and thus the CP-violating source vanish
along such trajectories. This can also happen for trajectories
which closely follow h = f⇡/2, however, since the fermion
masses are / sin[h/f ]

1+m
cos[h/f ]

n [? ] with m, n being
model-dependent, and therefore vanish at h = f⇡/2 if n 6= 0.

The top mixings are already quite large at � = �
0

to ensure
a large top Yukawa. Provided that the anomalous dimension
�y for the mixing y is negative, it grows for decreasing � until
it reaches a fixed point whose size is controlled by the constant
cy in the �-function. To obtain a sufficient amount of y varia-
tion and CP violation, we choose �y = �0.3 and fix cy so that
y[0] = 0.7g⇤ in the unbroken phase, while y[�

0

] = 0.3
p

�tg⇤
in the broken phase. We also set c↵ = c� = �1 in which case
the detuned valley is along h = f⇡/2. We have calculated the
action of O(3)-symmetric bubbles for tunneling along straight
lines with constant Higgs vev h which well approximates the
exact tunneling paths (cf. Fig. 1). In the central panel of Fig. 2,

we plot the Higgs vev h
avg

which minimizes the action at the
transition temperature for a meson-like dilaton. We see that,
depending on m� and N , trajectories closely following h = 0

or h = f⇡/2 are possible. We do not show a correspond-
ing plot for the glueball-like dilaton since the trajectory in this
case is always strongly attracted to h = f⇡/2 (which means
that the CP-violating source is non-vanishing only in models
with n = 0).

Thus, as follows from the first two panels in Fig. 2, the
EWPT is strong and our CP-violating source is active for a
wide range of m� and N . We have computed the resulting
baryon asymmetry using the formalism presented in Ref. [?
]. The results are indicated for a few benchmark points, as-
suming a bubble wall velocity of 0.01 (the baryon asymmetry
increases by a factor 3-4 if we increase the bubble wall veloc-
ity to 0.1) and with the varying mixing in Eq. (11) having a
complex phase arg y(1)

tR = arg y[�] = 0.1 and the remaining
mixings being fixed as y(2)

tR = 0.7
p

�tg⇤ and ytL =

p
�tg⇤.

Thus a sufficient amount of baryon asymmetry can be created.
Note that even in the region where h[Tn]/Tn & a few, we can
expect subsonic velocities as a sizeable friction comes from
the large number of degrees of freedom becoming massive
when they go through the bubble wall.

EXPERIMENTAL SIGNATURES

Our predictions can be divided into two types - those re-
lated to the phase-transition strength (only weakly sensitive
to the y running), and those related to the transition path and
CP violation (strongly sensitive to the y running). For the
former, our testable prediction is the correlation between the
dilaton mass and the strong-sector coupling, from the require-
ment of a strong enough EWPT, see Fig. 2. As for the latter,
the running mixing y can have a measurable effect on both the
Higgs and the dilaton phenomenology, as well as on observ-

Figure 2: Results for the meson dilaton. In the red dashed region, no viable EW minimum can be found or the Higgs-dilaton mixing leads
to too large deviations in the Higgs couplings. In the blue dashed region, the baryon asymmetry is washed out after reheating. We also show
the cutoff m⇤ = g⇤f . The chosen mass range satisfies current experimental constraints [35]. Left: Phase-transition strength h[Tn]/Tn. The
baryon asymmetry for benchmark point a (b) is |⌘B | ⇥ 1010 ⇠ 5–5.5 (4–4.5). Center: Average Higgs vev during the phase transition relative
to the condensate scale today, havg/f . Right: Imaginary part of the top Yukawa as a function of the present value of y/g1/2

⇤ and its anomalous
dimension �y for |�y| = �yy, arg �y = 0.1 and ytL =

p
g⇤. The current and near future experimental sensitivities correspond respectively

to approximately 2 ⇥ 10�2 [36] and 2 ⇥ 10�4 [37]. The green bullet indicates the values used for the left and centre plots.

The top mixings are already quite large at � = �
0

to ensure
a large top Yukawa. Provided that the anomalous dimension
�y for the mixing y is negative, it grows for decreasing � until
it reaches a fixed point whose size is controlled by the constant
cy in the �-function. To obtain a sufficient amount of y varia-
tion and CP violation, we choose �y = �0.3 and fix cy so that
y[0] = 0.4g⇤ in the unbroken phase, while y[�

0

] = 0.6
p

�tg⇤
in the broken phase. We also set c↵ = �c� = �0.3 in which
case the detuned valley is along h = f⇡/2. We have cal-
culated the action for tunneling along straight lines with con-
stant Higgs vev h which well approximates the exact tunneling
paths (cf. Fig. 1). In the central panel of Fig. 2, we plot the
Higgs vev h

avg

which minimizes the action at the transition
temperature. We see that, depending on m� and N , different
trajectories are possible.

Thus, as follows from the first two panels in Fig. 2, the
EWPT is strong and our CP-violating source is active for a
wide range of m� and N . We have computed the resulting
baryon asymmetry using the formalism presented in Ref. [21].
The results are indicated for two benchmark points, assum-
ing a bubble wall velocity of 0.01 (the baryon asymmetry in-
creases by a factor 3-4 if we increase the bubble wall veloc-
ity to 0.1) and with the varying mixing in Eq. (8) having a
complex phase arg y(1)

tR = arg y[�] = 0.1 and the remaining
mixings being fixed as y(2)

tR ' 0.4
p

�tg⇤ and ytL =

p
�tg⇤.

Note that even for h[Tn]/Tn & O(few), we can expect sub-
sonic velocities (needed for baryogenesis) as a sizeable fric-
tion comes from the large number of degrees of freedom be-
coming massive when they go through the bubble wall. Our
baryon asymmetry values (which should only be taken as in-
dicative given order one uncertainties) are typically close to
the observed value ⌘B ⇠ 8.5 ⇥ 10

�11. In contrast with phase
transitions studied so far, our Higgs vev grows very large
during the EWPT before decreasing, and since ⌘B scales as
the integral of (h/T )

2 over the bubble wall, this leads to a

large baryon asymmetry. Furthermore, we find that the bub-
ble wall width Lw is small, also contributing to a large baryon
asymmetry. However, we actually enter a regime where the
derivative expansion used in the EW baryogenesis formalism
(LwT � 1) [21] starts to break down.

EXPERIMENTAL SIGNATURES

The experimental signatures of our scenario include those
related to the transition path and CP violation, and those re-
lated to the phase-transition strength. The former are strongly
sensitive to the y running. The running mixing y can have
a measurable effect on both the Higgs and the dilaton phe-
nomenology, as well as on observables which are indirectly
sensitive to the couplings of h and �. Many of these effects
arise from the term responsible for the top mass, which in the
meson case with n = 0 reads

�t[�] � sin

h

f
¯tLtR � ¯tLtR h

✓
�0

t
�

f
+ ��t

� � f

f

◆
, (11)

where �0

t is the SM top Yukawa coupling, and for one vary-
ing mixing we have ��t ⇠ �y (see Eq. (7)). � and h in
this expression are linear combinations of the mass eigen-
states. Importantly, ��t is complex, as required by the varying
Yukawa phase. The highest sensitivity to the resulting com-
plex couplings comes from measurements of the electron elec-
tric dipole moment [40]. These restrict the CP-odd coupling
of the –mass eigen state– Higgs to the top (coming from the
CP-odd coupling of the –non-mass eigen state– dilaton) to be
. 2 ⇥ 10

�2 at 95% CL [36], with a prospect of gaining about
two orders of magnitude in sensitivity in the near future [37].
In the right panel of Fig. 2, we show how the CP-odd tth cou-
pling depends on y[�]. Forthcoming experiments are expected
to probe most of our parameter space.
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Figure 11: The ratio T
c

/T
n

of the critical to the nucleation temperature which measures

the amount of supercooling of the phase transition for a meson-like dilaton (left panel;

red dashed) and a glueball-like dilaton (right panel; black solid). In the red dashed

region, there is no phenomenologically viable electroweak minimum.

and thereby is in particular important for the amount of CP violation that can be generated

from the varying mixings (cf. Eq. (5.1)). As can be seen from the plot, for the meson-like

dilaton ĥ
avg

increases slowly with decreasing m
�

. For the glueball-like dilaton, on the other

hand, this increase is slightly much more rapidand in most of the parameter space

we find either ĥ
avg

⇡ 0 or ĥ
avg

⇡ 1, with a relatively sharp dividing line in the

range m
�

⇡ 1.8...2TeV. In order to obtain enough CP violation, dilaton masses

m
�

. 1.5...2TeV are then preferred in both cases. Su�cient CP-violation for

baryogenesis could therefore be generated in both cases. Note, however, that as

visible in Fig. 8, the minimum in the tunnelling action which determines ĥ
avg

can be very

shallow. This means that tunnelling in directions with somewhat di↵erent ĥ
avg

may not be

much less likely than in the direction with ĥ
avg

at the minimum. The amount of CP violation

can then be larger than what is naively expected from the right panel of Fig. 10. This is

discussed in more detail in the next section.

All the results so far have been obtained for a Goldstone decay constant

f = 800GeV. This is the currently preferred value close to the experimental

lower bound. Larger values of f would worsen the tuning ⇠ v2/f 2. It is

nevertheless interesting to see if our scenario still works if future experiments

constrain f to larger values. To address this question, we have computed

the strength h[T
n

]/T
n

of the phase transition for a Goldstone decay constant

f = 2TeV and a glueball-like dilaton (and all other parameters as before). The

results are reported in the right panel of Fig. 11. For comparison, we also

show the corresponding results for f = 800GeV. From Eq. (4.4) we see that the

critical temperature scales linearly with f . One would therefore expect that
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>  SUMMARY OF PRINCIPLE: Massless or sufficiently 
light (m<T) particles coupled to the Higgs produce a dip  

in the Higgs potential of the size  ~ -T^4 !3
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FIG. 1: Schematic plot of the thermal correction to Higgs potential (left panel) derived from the plasma with the
particle whose mass depends on the Higgs field as shown on the right panel.

II. THERMAL CORRECTIONS AND SNR

A. One-Loop Thermal Corrections

The standard model Higgs doublet induces spontaneous breaking of the EW symmetry at zero temperature,
provided by a negative mass2 parameter in the scalar potential

V SM

h

= �µ2

2
h2 +

�

4
h4, (II.1)

where h is the Higgs boson, µ ' 90 GeV and � ' 0.13, with h = 246 GeV and m2

h

= 126 GeV at the V SM

h

minimum. The e↵ect of the Higgs field interaction with high-temperature plasma can be accounted for by
modifying the Higgs potential. The leading “one-loop” thermal corrections to the Higgs potential are given
by

�V T

b

=
T 4

2⇡2

J
b

[m2/T 2], �V T

f

= �2T 4

⇡2

J
f

[m2/T 2] (II.2)

respectively for one thermalized bosonic degree of freedom and one Dirac fermion with mass m. Their
interactions with the Higgs field are encoded in the Higgs-dependent masses m. The thermal loop functions
are defined as

J
b

[x] =

Z 1

0

dk k2 log
h
1 � e�

p
k

2
+x

i
, J

f

[x] =

Z 1

0

dk k2 log
h
1 + e�

p
k

2
+x

i
. (II.3)

The corrections (II.2) have minima at m2 = 0 (within m2 � 0 region). In the high-temperature limit
m2/T 2 ⌧ 1 they simplify to

�V T

b

' �⇡2T 4

90
+

T 2m2

24
, �V T

f

' �7⇡2T 4

180
+

T 2m2

12
. (II.4)

The first terms of the expansions (II.4) define the depth of the negative correction to the Higgs potential at
m2 = 0. The second terms set the size of the correction to Higgs mass in the vicinity of the minimum

�m2

h

(T ) / T 2(m2(h))00. (II.5)

On the other hand, for m2/T 2 � 1 the thermal corrections vanish. Corresponding schematic picture of one-
loop thermal potential is shown in Fig. 1. In that figure we assumed the particle mass to gradually decrease

2 Mass squared should be understood whenever we mention negative scalar mass.
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FIG. 1: Schematic plot of the thermal correction to Higgs potential (left panel) derived from the plasma with the
particle whose mass depends on the Higgs field as shown on the right panel.

II. THERMAL CORRECTIONS AND SNR

A. One-Loop Thermal Corrections

The standard model Higgs doublet induces spontaneous breaking of the EW symmetry at zero temperature,
provided by a negative mass2 parameter in the scalar potential
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h2 +
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where h is the Higgs boson, µ ' 90 GeV and � ' 0.13, with h = 246 GeV and m2
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= 126 GeV at the V SM
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minimum. The e↵ect of the Higgs field interaction with high-temperature plasma can be accounted for by
modifying the Higgs potential. The leading “one-loop” thermal corrections to the Higgs potential are given
by
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respectively for one thermalized bosonic degree of freedom and one Dirac fermion with mass m. Their
interactions with the Higgs field are encoded in the Higgs-dependent masses m. The thermal loop functions
are defined as
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The corrections (II.2) have minima at m2 = 0 (within m2 � 0 region). In the high-temperature limit
m2/T 2 ⌧ 1 they simplify to
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The first terms of the expansions (II.4) define the depth of the negative correction to the Higgs potential at
m2 = 0. The second terms set the size of the correction to Higgs mass in the vicinity of the minimum
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(T ) / T 2(m2(h))00. (II.5)

On the other hand, for m2/T 2 � 1 the thermal corrections vanish. Corresponding schematic picture of one-
loop thermal potential is shown in Fig. 1. In that figure we assumed the particle mass to gradually decrease

2 Mass squared should be understood whenever we mention negative scalar mass.

EW symmetry non-restoration at T>MH .


