HEP Summer School SM Problems 2015

(1) Show that under a local gauge transformation the non-abelian $F_{\mu\nu}$ field strength tensor transforms as $F_{\mu\nu} \to F'_{\mu\nu} = UF_{\mu\nu}U^{-1}$. [Hint: Show first that $D_{\mu} \to D'_{\mu} = UD_{\mu}U^{-1}$, and then gauge transform the $[D_{\mu}, D_{\nu}]$ commutator definition for $F_{\mu\nu}$ (Eq.(1.20). Do **not**, unless you are a masochist, gauge transform $A_{\mu} \to A'_{\mu}$ and use the explicit expression for $F_{\mu\nu}$!]

(2) Defining $\gamma_5 = i\gamma^0\gamma^1\gamma^2\gamma^3$ show that $\gamma_5^2 = 1$, $\gamma_5^{\dagger} = \gamma_5$, and $\{\gamma_5, \gamma_{\mu}\} = 0$.

Consider a massless fermion with momentum p along the z direction, $p_{\mu} = (E, 0, 0, E)$. Show that $P_R u(p)$ and $P_L u(p)$ are eigenstates of helicity

$$h = -\frac{\gamma_0 \gamma_5 \vec{\gamma} \cdot p}{E} ,$$

with eigenvalues ± 1 .

(3) Show that, as claimed, $\mathcal{L}(e)$ is $\mathrm{SU}(2)_L \times \mathrm{U}(1)_Y$ invariant, by checking explicitly that the $\chi_L, e_R, \overline{W}_\mu, B_\mu$ infinitessimal transformations given in the lecture leave it invariant.

(4) There is one Feynman diagram in lowest order electroweak theory for μ^- decay,

$$\mu^{-}(p) \rightarrow \nu_{\mu}(k) + e^{-}(p') + \bar{\nu}_{e}(k')$$
.

Draw this diagram and use the electroweak Feynman rules to calculate the spin averaged $|\overline{\mathcal{M}}|^2$ for this decay. To simplify the calculation retain m_{μ} but set $m_e = 0$. Also, evaluate in the effective "Fermi theory" where you leave out the W propagator (set it to $g_{\mu\nu}$) and replace g at the vertices by g/M_W . Why is this a very good approximation for μ^- decay? Does setting $m_{\mu} = 0$ make any difference?

[You are given (I'm very merciful!!)

$$Tr[\gamma^{\mu}(1-\gamma_5)\not p_1\gamma^{\nu}(1-\gamma_5)\not p_2]Tr[\gamma_{\mu}(1-\gamma_5)\not p_3\gamma_{\nu}(1-\gamma_5)\not p_4] = 256(p_1 \cdot p_3)(p_2 \cdot p_4)$$
]

Write out an expression for $d\Gamma$ (the differential decay rate) in terms of $|\overline{\mathcal{M}}|^2$ and phase space. A tedious phase space integration which you need not attempt then leads to the total μ^- decay rate

$$\Gamma(\mu^{-}) = \frac{g^4 m_{\mu}^5}{6144 \pi^3 M_W^4}$$

Given $m_{\mu} = 105.66$ MeV, and the μ^{-} lifetime

$$\tau(\mu^{-})^{exp} = \frac{1}{\Gamma(\mu^{-})} = (2.197138 \pm .000065) \times 10^{-6} \text{ sec}$$

estimate v the Higgs vev in the minimal Standard Model. [In natural units $1 \sec = 1.52 \times 10^{24} \text{ GeV}^{-1}$.]

(5) Use the electroweak Feynman rules to calculate the polarization averaged decay width for Z^0 decay, $\Gamma(Z^0 \to f\bar{f})$, $f = e, \nu, q, \ldots$ Take f massless. [For an external massive spin 1 vector boson with mass M_V you need the Feynman rule $\epsilon_{\mu}^{(\lambda)}$, where the $\epsilon_{\mu}^{(\lambda)}$ is the polarization vector of the vector boson, and the completeness sum over polarizations is

$$\sum_{\lambda} \epsilon_{\mu}^{(\lambda)*} \epsilon_{\nu}^{(\lambda)} = -g_{\mu\nu} + \frac{p_{\mu}p_{\nu}}{M_V^2} \; .$$

Suitable choices are $(\vec{p} \text{ along the } z\text{-axis})$

$$\epsilon^{(\lambda=\pm 1)}=\mp(0,1,\pm i,0)/\sqrt{2}$$

and

$$\epsilon^{(\lambda=0)} = (|\vec{p}|, 0, 0, E)/M_V$$
.

One then has

$$\Gamma(Z^0 \to f\bar{f}) = \frac{1}{64\pi^2 M_Z} \int \left|\overline{\mathcal{M}}\right|^2 d\Omega$$

Estimate the total Z^0 decay width (take $M_Z = 91$ GeV, g = 0.65, $\sin^2(\theta_W) = 0.23$) which should have been observed at LEP. Don't forget three colours for each quark flavour!

(6) Show that given values for the seven SM parameters e, M_W , M_Z , M_H , m_e , m_{μ} , and m_{τ} one can determine the fifteen lepton sector parameters using relations between parameters in the notes. How many of these fifteen parameters could be determined if M_H were unknown?