
Quantum Field Theory

Christoph Englert1

These notes are a write-up of lectures given at the RAL school for High Energy
Physicists, which took place at Warwick in 2014. The aim is to introduce the
canonical quantisation approach to QFT, and derive the Feynman rules for a
scalar field.

1 Introduction

Quantum Field Theory is a highly important cornerstone of modern physics. It underlies, for ex-
ample, the description of elementary particles i.e. the Standard Model of particle physics is a QFT.
There is currently no observational evidence to suggest that QFT is insufficient in describing particle
behaviour, and indeed many theories for beyond the Standard Model physics (e.g. supersymmetry,
extra dimensions) are QFTs. There are some theoretical reasons, however, for believing that QFT
will not work at energies above the Planck scale, at which gravity becomes important. Aside from
particle physics, QFT is also widely used in the description of condensed matter systems, and there
has been a fruitful interplay between the fields of condensed matter and high energy physics.

We will see that the need for QFT arises when one tries to unify special relativity and quan-
tum mechanics, which explains why theories of use in high energy particle physics are quantum
field theories. Historically, Quantum Electrodynamics (QED) emerged as the prototype of modern
QFT’s. It was developed in the late 1940s and early 1950s chiefly by Feynman, Schwinger and
Tomonaga, and has the distinction of being the most accurately verified theory of all time: the
anomalous magnetic dipole moment of the electron predicted by QED agrees with experiment with
a stunning accuracy of one part in 1010! Since then, QED has been understood as forming part of
a larger theory, the Standard Model of particle physics, which also describes the weak and strong
nuclear forces. As you will learn at this school, electromagnetism and the weak interaction can
be unified into a single “electroweak” theory, and the theory of the strong force is described by
Quantum Chromodynamics (QCD). QCD has been verified in a wide range of contexts, albeit not
as accurately as QED (due to the fact that the QED force is much weaker, allowing more accurate
calculations to be carried out).

As is clear from the above discussion, QFT is a type of theory, rather than a particular theory.
In this course, our aim is to introduce what a QFT is, and how to derive scattering amplitudes in
perturbation theory (in the form of Feynman rules). For this purpose, it is sufficient to consider the
simple example of a single, real scalar field. More physically relevant examples will be dealt with
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in the other courses. Throughout, we will follow the so-called canonical quantisation approach to
QFT, rather than the path integral approach. Although the latter approach is more elegant, it is
less easily presented in such a short course.

The structure of these notes is as follows. In the rest of the introduction, we review those aspects
of classical and quantum mechanics which are relevant in discussing QFT. In particular, we go
over the Lagrangian formalism in point particle mechanics, and see how this can also be used to
describe classical fields. We then look at the quantum mechanics of non-relativistic point particles,
and recall the properties of the quantum harmonic oscillator, which will be useful in what follows.
We then briefly show how attempts to construct a relativistic analogue of the Schödinger equation
lead to inconsistencies. Next, we discuss classical field theory, deriving the equations of motion that
a relativistic scalar field theory has to satisfy, and examining the relationship between symmetries
and conservation laws. We then discuss the quantum theory of free fields, and interpret the resulting
theory in terms of particles, before showing how to describe interactions via the S-matrix and its
relation to Green’s functions. Finally, we describe how to obtain explicit results for scattering
amplitudes using perturbation theory, which leads (via Wick’s theorem) to Feynman diagrams.

1.1 Classical Mechanics

Let us begin this little review by considering the simplest possible system in classical mechanics,
a single point particle of mass m in one dimension, whose coordinate and velocity are functions
of time, x(t) and ẋ(t) = dx(t)/dt, respectively. Let the particle be exposed to a time-independent
potential V (x). It’s motion is then governed by Newton’s law

m
d2x

dt2
= −∂V

∂x
= F (x), (1)

where F (x) is the force exerted on the particle. Solving this equation of motion involves two inte-
grations, and hence two arbitrary integration constants to be fixed by initial conditions. Specifying,
e.g., the position x(t0) and velocity ẋ(t0) of the particle at some initial time t0 completely deter-
mines its motion: knowing the initial conditions and the equations of motion, we also know the
evolution of the particle at all times (provided we can solve the equations of motion).

We can also derive the equation of motion using an entirely different approach, via the Lagrangian
formalism. This is perhaps more abstract than Newton’s force-based approach, but in fact is easier
to generalise and technically more simple in complicated systems (such as field theory!), not least
because it avoids us having to think about forces at all.
First, we introduce the Lagrangian

L(x, ẋ) = T − V =
1

2
mẋ2 − V (x), (2)

which is a function of coordinates and velocities, and given by the difference between the kinetic
and potential energies of the particle. Next, we define the action

S =

∫ t1

t0

dtL(x, ẋ). (3)
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Figure 1: Variation of particle trajectory with identified initial and end points.

The equations of motion are then given by the principle of least action, which says that the tra-
jectory x(t) followed by the particle is precisely that such that S is extremised 2. To verify this in
the present case, let us rederive Newton’s Second Law.

First let us suppose that x(t) is indeed the trajectory that extremises the action, and then introduce
a small perturbation

x(t) → x(t) + δx(t), (4)

such that the end points are fixed:

x′(t1) = x(t1)
x′(t2) = x(t2)

}
⇒ δx(t1) = δx(t2) = 0. (5)

This sends S to some S + δS, where δS = 0 if S is extremised. One may Taylor expand to give

S + δS =

∫ t2

t1

L(x+ δx, ẋ+ δẋ) dt, δẋ =
d

dt
δx

=

∫ t2

t1

{
L(x, ẋ) +

∂L

∂x
δx+

∂L

∂ẋ
δẋ+ . . .

}
dt

= S +
∂L

∂ẋ
δx

∣∣∣∣
t2

t1

+

∫ t2

t1

{
∂L

∂x
− d

dt

∂L

∂ẋ

}
δx dt, (6)

where we performed an integration by parts on the last term in the second line. The second and
third term in the last line are the variation of the action, δS, under variations of the trajectory,
δx. The second term vanishes because of the boundary conditions for the variation, and we are left
with the third. Now the Principal of Least Action demands δS = 0. For the remaining integral to
vanish for arbitrary δx is only possible if the integrand vanishes, leaving us with the �Euler-Lagrange
equation:

∂L

∂x
− d

dt

∂L

∂ẋ
= 0. (7)

2The name of the principle comes from the fact that, in most cases, S is indeed minimised.



If we insert the Lagrangian of our point particle, Eq. (2), into the Euler-Lagrange equation we
obtain

∂L

∂x
= −∂V (x)

∂x
= F

d

dt

∂L

∂ẋ
=

d

dt
mẋ = mẍ

⇒ mẍ = F = −∂V
∂x

(Newton’s law). (8)

Hence, we have derived the equation of motion (the Euler-Lagrange equation) using the Principal
of Least Action and found it to be equivalent to Newton’s Second Law. The benefit of the former
is that it can be easily generalised to other systems in any number of dimensions, multi-particle
systems, or systems with an infinite number of degrees of freedom, where the latter are needed for
field theory.

For example, a general system of point particles has a set {qi} of generalised coordinates, which
may not be simple positions but also angles etc. The equations of motion are then given by

d

dt

∂L

∂q̇i
=
∂L

∂qi
,

by analogy with the one-dimensional case. That is, each coordinate has its own Euler-Lagrange
equation (which may nevertheless depend on the other coordinates, so that the equations of motion
are coupled). Another advantage of the Lagrangian formalism is that the relationship between
symmetries and conserved quantities is readily understood - more on this later.
First, let us note that there is yet another way to think about classical mechanics (that we will
see again in quantum mechanics / field theory), namely via the Hamiltonian formalism. Given a
Lagrangian depending on generalised coordinates {qi}, we may define the conjugate momenta

pi =
∂L

∂q̇i

e.g. in the simple one-dimensional example given above, there is a single momentum p = mẋ
conjugate to x. We recognise as the familiar definition of momentum, but it is not always true that
pi = mq̇i.

We may now define the Hamiltonian

H({qi}, {pi}) =
∑

i

q̇ipi − L({qi}, {q̇i}).

As an example, consider again

L =
1

2
mẋ2 − V (x).

It is easy to show from the above definition that

H =
1

2
mẋ2 + V (x),



which we recognise as the total energy of the system. From the definition of the Hamiltonian one
may derive (problem 1.1)

∂H

∂qi
= −ṗi,

∂H

∂pi
= ẋi,

which constitute Hamilton’s equations. These are useful in proving the relation between symme-
tries and conserved quantities. For example, one readily sees from the above equations that the
momentum pi is conserved if H does not depend explicitly on qi. That is, conservation of momen-
tum is related to invariance under spatial translations, if qi can be interpreted as a simple position
coordinate.

1.2 Quantum mechanics

Having set up some basic formalism for classical mechanics, let us now move on to quantum
mechanics. In doing so we shall use canonical quantisation, which is historically what was used
first and what we shall later use to quantise fields as well. We remark, however, that one can also
quantise a theory using path integrals.
Canonical quantisation consists of two steps. Firstly, the dynamical variables of a system are
replaced by operators, which we denote by a hat. Secondly, one imposes commutation relations on
these operators,

[x̂i, p̂j] = i~ δij (9)

[x̂i, x̂j] = [p̂i, p̂j ] = 0. (10)

The physical state of a quantum mechanical system is encoded in state vectors |ψ〉, which are
elements of a Hilbert space H. The hermitian conjugate state is 〈ψ| = (|ψ〉)†, and the modulus
squared of the scalar product between two states gives the probability for the system to go from
state 1 to state 2,

|〈ψ1|ψ2〉|2 = probability for |ψ1〉 → |ψ2〉. (11)

On the other hand physical observables O, i.e. measurable quantities, are given by the expectation
values of hermitian operators, Ô = Ô†,

O = 〈ψ|Ô|ψ〉, O12 = 〈ψ2|Ô|ψ1〉. (12)

Hermiticity ensures that expectation values are real, as required for measurable quantities. Due
to the probabilistic nature of quantum mechanics, expectation values correspond to statistical
averages, or mean values, with a variance

(∆O)2 = 〈ψ|(Ô −O)2|ψ〉 = 〈ψ|Ô2|ψ〉 − 〈ψ|Ô|ψ〉2. (13)

An important concept in quantum mechanics is that of eigenstates of an operator, defined by

Ô|ψ〉 = O|ψ〉. (14)

Evidently, between eigenstates we have ∆O = 0. Examples are coordinate eigenstates, x̂|x〉 = x|x〉,
and momentum eigenstates, p̂|p〉 = p|p〉, describing a particle at position x or with momentum
p, respectively. However, a state vector cannot be simultaneous eigenstate of non-commuting



operators. This leads to the Heisenberg uncertainty relation for any two non-commuting operators
Â, B̂,

∆A∆B ≥ 1

2
|〈ψ|[Â, B̂]|ψ〉|. (15)

Finally, sets of eigenstates can be orthonormalized and we assume completeness, i.e. they span the
entire Hilbert space,

〈p′|p〉 = δ(p− p′), 1 =

∫
d3p |p〉〈p|. (16)

As a consequence, an arbitrary state vector can always be expanded in terms of a set of eigenstates.
We may then define the position space wavefunction

ψ(x) = 〈x|ψ〉,

so that

〈ψ1|ψ2〉 =
∫
d3x〈ψ1|x〉〈x|ψ2〉

=

∫
d3xψ∗1(x)ψ2(x). (17)

Acting on the wavefunction, the explicit form of the position and momentum operators is

x̂ = x, p̂ = −i~∇, (18)

so that the Hamiltonian operator is

Ĥ =
p̂2

2m
+ V (x) = −~2∇2

2m
+ V (x). (19)

Having quantised our system, we now want to describe its time evolution. This can be done in
different “pictures”, depending on whether we consider the state vectors or the operators (or both)
to depend explicitly on t, such that expectation values remain the same. Two extreme cases are
those where the operators do not depend on time (the Schrödinger picture), and when the state
vectors do not depend on time (the Heisenberg picture). We discuss these two choices in the
following sections.

1.3 The Schrödinger picture

In this approach state vectors are functions of time, |ψ(t)〉, while operators are time independent,
∂tÔ = 0. The time evolution of a system is described by the Schrödinger equation3,

i~
∂

∂t
ψ(x, t) = Ĥψ(x, t). (20)

If at some initial time t0 our system is in the state Ψ(x, t0), then the time dependent state vector

Ψ(x, t) = e−
i
~
Ĥ(t−t0)Ψ(x, t0) (21)

3Note that the Hamiltonian could itself have some time dependence in general, even in the Schrödinger picture, if

the potential of a system depends on time. Here we assume that this is not the case.



solves the Schrödinger equation for all later times t.
The expectation value of some hermitian operator Ô at a given time t is then defined as

〈Ô〉t =
∫
d3xΨ∗(x, t)ÔΨ(x, t), (22)

and the normalisation of the wavefunction is given by

∫
d3xΨ∗(x, t)Ψ(x, t) = 〈1〉t. (23)

Since Ψ∗Ψ is positive, it is natural to interpret it as the probability density for finding a particle at
position x. Furthermore one can derive a conserved current j, as well as a continuity equation by
considering

Ψ∗ × (Schr.Eq.)−Ψ × (Schr.Eq.)∗. (24)

The continuity equation reads
∂

∂t
ρ = −∇ · j (25)

where the density ρ and the current j are given by

ρ = Ψ∗Ψ (positive), (26)

j =
~

2im
(Ψ∗∇Ψ− (∇Ψ∗)Ψ) (real). (27)

Now that we have derived the continuity equation let us discuss the probability interpretation of
Quantum Mechanics in more detail. Consider a finite volume V with boundary S. The integrated
continuity equation is

∫

V

∂ρ

∂t
d3x = −

∫

V
∇ · j d3x

= −
∫

S
j · d2o (28)

where in the last line we have used Gauss’s theorem. Using Eq. (23) the left-hand side can be
rewritten and we obtain

∂

∂t
〈1〉t = −

∫

S
j · d2o = 0. (29)

In other words, provided that j = 0 everywhere at the boundary S, we find that the time derivative
of 〈1〉t vanishes. Since 〈1〉t represents the total probability for finding the particle anywhere inside
the volume V , we conclude that this probability must be conserved: particles cannot be created or
destroyed in our theory. Non-relativistic Quantum Mechanics thus provides a consistent formalism
to describe a single particle. The quantity Ψ(x, t) is interpreted as a one-particle wave function.

1.4 The Heisenberg picture

Here the situation is the opposite to that in the Schrödinger picture, with the state vectors regarded
as constant, ∂t|ΨH〉 = 0, and operators which carry the time dependence, ÔH(t). This is the concept



which later generalises most readily to field theory. We make use of the solution Eq. (21) to the
Schrödinger equation in order to define a Heisenberg state vector through

Ψ(x, t) = e−
i
~
Ĥ(t−t0)Ψ(x, t0) ≡ e−

i
~
Ĥ(t−t0)ΨH(x), (30)

i.e. ΨH(x) = Ψ(x, t0). In other words, the Schrödinger vector at some time t0 is defined to be
equivalent to the Heisenberg vector, and the solution to the Schrödinger equation provides the
transformation law between the two for all times. This transformation of course leaves the physics,
i.e. expectation values, invariant,

〈Ψ(t)|Ô|Ψ(t)〉 = 〈Ψ(t0)|e
i
~
Ĥ(t−t0)Ôe−

i
~
Ĥ(t−t0)|Ψ(t0)〉 = 〈ΨH |ÔH(t)|ΨH〉, (31)

with
ÔH(t) = e

i
~
Ĥ(t−t0)Ôe−

i
~
Ĥ(t−t0). (32)

From this last equation it is now easy to derive the equivalent of the Schrödinger equation for the
Heisenberg picture, the Heisenberg equation of motion for operators:

i~
dÔH(t)

dt
= [ÔH , Ĥ ]. (33)

Note that all commutation relations, like Eq. (9), with time dependent operators are now intended
to be valid for all times. Substituting x̂, p̂ for Ô into the Heisenberg equation readily leads to

dx̂i
dt

=
∂Ĥ

∂p̂i
,

dp̂i
dt

= −∂Ĥ
∂x̂i

, (34)

the quantum mechanical equivalent of the Hamilton equations of classical mechanics.

1.5 The quantum harmonic oscillator

Because of similar structures later in quantum field theory, it is instructive to also briefly recall the
harmonic oscillator in one dimension. Its Hamiltonian is given by

Ĥ(x̂, p̂) =
1

2

(
p̂2

m
+mω2x̂2

)
. (35)

Employing the canonical formalism we have just set up, we easily identify the momentum operator
to be p̂(t) = m∂tx̂(t), and from the Hamilton equations we find the equation of motion to be
∂2t x̂ = −ω2x̂, which has the well known plane wave solution x̂ ∼ exp iωt.
An alternative path useful for later field theory applications is to introduce new operators, expressed
in terms of the old ones,

â =
1√
2

(√
mω

~
x̂+ i

√
1

mω~
p̂

)
, â† =

1√
2

(√
mω

~
x̂− i

√
1

mω~
p̂

)
. (36)

Using the commutation relation for x̂, p̂, one readily derives (see the preschool problems)

[â, â†] = 1, [Ĥ, â] = −~ωâ, [Ĥ, â†] = ~ωâ†. (37)



With the help of these the Hamiltonian can be rewritten in terms of the new operators:

Ĥ =
1

2
~ω
(
â†â+ ââ†

)
=

(
â†â+

1

2

)
~ω. (38)

With this form of the Hamiltonian it is easy to construct a complete basis of energy eigenstates
|n〉,

Ĥ|n〉 = En|n〉. (39)

Using the above commutation relations, one finds

â†Ĥ|n〉 = (Ĥâ† − ~ωâ†)|n〉 = Enâ
†|n〉, (40)

and therefore
Ĥâ†|n〉 = (En + ~ω)â†|n〉. (41)

Thus, the state â†|n〉 has energy En + ~ω, so that â† may be regarded as a “creation operator” for
a quantum with energy ~ω. Along the same lines one finds that â|n〉 has energy En − ~ω, and â is
an “annihilation operator”.
Let us introduce a vacuum state |0〉 with no quanta excited, for which â|n〉 = 0, because there
cannot be any negative energy states. Acting with the Hamiltonian on that state we find

Ĥ|0〉 = ~ω/2, (42)

i.e. the quantum mechanical vacuum has a non-zero energy, known as vacuum oscillation or zero
point energy. Acting with a creation operator onto the vacuum state one easily finds the state with
one quantum excited, and this can be repeated n times to get

|1〉 = â†|0〉 , E1 = (1 +
1

2
)~ω, . . .

|n〉 = â†√
n
|n− 1〉 = 1√

n!
(â†)n|0〉 , En = (n+

1

2
)~ω. (43)

The root of the factorial is there to normalise all eigenstates to one. Finally, the number operator
N̂ = â†â returns the number of quanta in a given energy eigenstate,

N̂ |n〉 = n|n〉. (44)

1.6 Relativistic Quantum Mechanics

So far we have only considered non-relativistic particles. In this section, we see what happens when
we try to formulate a relativistic analogue of the Schrödinger equation. First, note that we can
derive the non-relativistic equation starting from the energy relation

E =
p2

2m
+ V (x) (45)

and replacing variables by their appropriate operators acting on a position space wavefunction
ψ(x, t)

E → i~
∂

∂t
, p → −i~∇, x → x (46)



to give [
− ~2

2m
∇2 + V (x)

]
ψ(x, t) = i~

∂ψ(x, t)

∂t
. (47)

As we have already seen, there is a corresponding positive definite probability density

ρ = |ψ(x, t)|2 ≥ 0, (48)

with corresponding current

j =
~

2im
(ψ∗∇ψ − (∇ψ∗)ψ) . (49)

Can we also make a relativistic equation? By analogy with the above, we may start with the
relativistic energy relation

E2 = c2p2 +m2c4, (50)

and making the appropriate operator replacements leads to the equation

(
1

c2
∂2

∂t2
−∇2 +

m2c2

~2

)
φ(x, t) (51)

for some wavefunction φ(x, t). This is the Klein-Gordon equation, and one may try to form a
probability density and current, as in the non-relativistic case. Firstly, one notes that to satisfy
relativistic invariance, the probability density should be the zeroth component of a 4-vector jµ =
(ρ, j) satisfying

∂µj
µ = 0. (52)

In fact, one finds

ρ =
i~

2m

(
φ∗
∂φ

∂t
− φ

∂φ∗

∂t

)
, (53)

with j given as before. This is not positive definite! That is, this may (and will) become negative
in general, so we cannot interpret this as the probability density of a single particle.

There is another problem with the Klein-Gordon equation as it stands, that is perhaps less abstract
to appreciate. The relativistic energy relation gives

E = ±
√
c2p2 +m2c4, (54)

and thus one has positive and negative energy solutions. For a free particle, one could restrict to
having positive energy states only. However, an interacting particle may exchange energy with its
environment, and there is nothing to stop it cascading down to energy states of more and more
negative energy, thus emitting infinite amounts of energy.

We conclude that the Klein-Gordon equation does not make sense as a consistent quantum theory
of a single particle. We thus need a different approach in unifying special relativity and quantum
mechanics. This, as we will see, is QFT, in which we will be able to reinterpret the Klein-Gordon
function as a field φ(x, t) describing many particles.



Figure 2: System of masses m joined by springs (of constant k), whose longitudinal displacements
are {fi}, and whose separation at rest is δx.

From now on, it will be extremely convenient to work in natural units, in which one sets ~ = c = 1.
The correct factors can always be reinstated by dimensional analysis. In these units, the Klein-
Gordon equation becomes

(�+m2)φ(x, t) = 0, (55)

where

� = ∂µ∂µ =
∂

∂t2
−∇2. (56)

2 Classical Field Theory

In the previous section, we have seen how to describe point particles, both classically and quantum
mechanically. In this section, we discuss classical field theory, as a precursor to considering quan-
tum fields. A field associates a mathematical object (e.g. scalar, vector, tensor, spinor...) with
every point in spacetime. Examples are the temperature distribution in a room (a scalar field), or
the E and B fields in electromagnetism (vector fields). Just as point particles can be described by
Lagrangians, so can fields, although it is more natural to think in terms of Lagrangian densities.

2.1 Example: Model of an Elastic Rod

Let us consider a particular example, namely a set of point masses connected together by springs, as
shown in figure 2. Assume the masses m are equal, as also are the force constants of the springs k.
Furthermore, we assume that the masses may move only longitudinally, where the ith displacement
is fi, and that the separation of adjacent masses is δx when all fi are zero. This system is an
approximation to an elastic rod, with a displacement field f(x, t). To see what this field theory
looks like, we may first write the total kinetic and potential energies as

T =
∑

i

1

2
mḟ2i , V =

∑

i

1

2
k(fi+1 − fi)

2 (57)

respectively, where we have used Hooke’s Law for the potential energy. Thus, the Lagrangian is

L = T − V =
∑

i

[
1

2
mḟ2i − 1

2
k(fi+1 − fi)

2

]
. (58)



Clearly this system becomes a better approximation to an elastic rod as the continuum limit is
approached, in which the number of masses N → ∞ and the separation δx → 0. We can then
rewrite the Lagrangian as

L =
∑

i

δx

[
1

2

(m
δx

)
ḟ2i − 1

2
(kδx)

(
fi+1 − fi

δx

)2
]
. (59)

We may recognise
lim
δx→0

m/δx = ρ (60)

as the density of the rod, and also define the tension

κ = lim
δx→0

kδx. (61)

Furthermore, the position index i gets replaced by the continuous variable x, and one has

lim
δx→0

fi+1 − fi
δx

=
∂f(x, t)

∂x
. (62)

Finally, the sum over i becomes an integral so that the continuum Lagrangian is

L =

∫
dx

[
1

2
ρḟ(x, t)2 − 1

2
κ

(
∂f

∂x

)2
]
. (63)

This is the Lagrangian for the displacement field f(x, t). It depends on a function of f and ḟ which
is integrated over all space coordinates (in this case there is only one, the position along the rod).
We may therefore write the Lagrangian manifestly as

L =

∫
dxL[f(x, t), ḟ(x, t)], (64)

where L is the Lagrangian density

L[f(x, t), ḟ(x, t)] = 1

2
ρḟ2(x, t)− 1

2
κ

(
∂f

∂x

)2

. (65)

It is perhaps clear from the above example that for any field, there will always be an integration
over all space dimensions, and thus it is more natural to think about the Lagrangian density rather
than the Lagrangian itself. Indeed, we may construct the following dictionary between quantities
in point particle mechanics, and corresponding field theory quantities (which may or may not be
helpful to you in remembering the differences between particles and fields...!).

Classical Mechanics: Classical Field Theory:

x(t) −→ φ(x, t) (66)

ẋ(t) −→ φ̇(x, t)

Index i −→ Coordinate x (67)

L(x, ẋ) −→ L[φ, φ̇] (68)

Note that the action for the above field theory is given, as usual, by the time integral of the
Lagrangian:

S =

∫
dtL =

∫
dt

∫
dxL[f, ḟ ]. (69)



2.2 Relativistic Fields

In the previous section we saw how fields can be described using Lagrangian densities, and illus-
trated this with a non-relativistic example. Rather than derive the field equations for this case, we
do this explicitly here for relativistic theories, which we will be concerned with for the rest of the
course (and, indeed, the school).
In special relativity, coordinates are combined into four-vectors, xµ = (t, xi) or x = (t,x), whose
length x2 = t2 − x2 is invariant under Lorentz transformations

x′µ = Λµ
ν x

ν . (70)

A general function transforms as f(x) → f ′(x′), i.e. both the function and its argument transform.
A Lorentz scalar is a function φ(x) which at any given point in space-time will have the same
amplitude, regardless of which inertial frame it is observed in. Consider a space-time point given
by x in the unprimed frame, and x′(x) in the primed frame, where the function x′(x) can be derived
from eq. (70). Observers in both the primed and unprimed frames will see the same amplitude
φ(x), although an observer in the primed frame will prefer to express this in terms of his or her
own coordinate system x′, hence will see

φ(x) = φ(x(x′)) = φ′(x′), (71)

where the latter equality defines φ′.
Equation (71) defines the transformation law for a Lorentz scalar. A vector function transforms as

V
′µ(x′) = Λµ

ν V
ν(x). (72)

We will work in particular with ∂µφ(x), where x ≡ xµ denotes the 4-position. Note in particular
that

(∂µφ)(∂
µφ) =

(
∂φ

∂t

)2

−∇φ · ∇φ

∂µ∂
µφ =

∂2φ

∂t2
−∇2φ.

In general, a relativistically invariant scalar field theory has action

S =

∫
d4xL[φ, ∂µφ], (73)

where ∫
d4x ≡

∫
dt d3x, (74)

and L is the appropriate Lagrangian density. We can find the equations of motion satisfied by the
field φ using, as in point particle mechanics, the principle of least action. The field theory form of
this is that the field φ(x) is such that the action of eq. (73) is extremised. Assuming φ(x) is indeed
such a field, we may introduce a small perturbation

φ(x) → φ(x) + δφ(x), (75)



which correspondingly perturbs the action according to

S → S + δS =

∫
d4x

[
L(φ, ∂µφ) +

∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

]
. (76)

Recognising the first term as the unperturbed action, one thus finds

δS =

∫
d4x

[
∂L
∂φ

δφ+
∂L

∂(∂µφ)
δ(∂µφ)

]

=

[
∂L

∂(∂µφ)
δφ

]

boundary

+

∫
d4x

[
∂L
∂φ

− ∂µ

(
∂L

∂(∂µφ)

)]
δφ,

where we have integrated by parts in the second line. Assuming the fields die away at infinity so
that δφ = 0 at the boundary of spacetime, the principle of least action δS = 0 implies

∂µ

(
∂L

∂(∂µφ)

)
=
∂L
∂φ

. (77)

This is the Euler-Lagrange field equation. It tells us, given a particular Lagrangian density (which
defines a particular field theory) the classical equation of motion which must be satisfied by the
field φ. As a specific example, let us consider the Lagrangian density

L =
1

2
(∂µφ)(∂

µφ)− 1

2
m2φ2, (78)

from which one finds
∂L

∂(∂µφ)
= ∂µφ,

∂L
∂φ

= −m2φ, (79)

so that the Euler-Lagrange equation gives

∂µ∂
µφ+m2φ = (�+m2)φ(x) = 0. (80)

This is the Klein-Gordon equation! The above Lagrangian density thus corresponds to the classical
field theory of a Klein-Gordon field. We see in particular that the coefficient of the quadratic term
in the Lagrangian can be interpreted as the mass.

By analogy with point particle mechanics, one can define a canonical momentum field conjugate to
φ:

π(x) =
∂L
∂φ̇

. (81)

Then one can define the Hamiltonian density

H[φ, π] = πφ̇−L, (82)

such that

H =

∫
d3xH(π, φ) (83)

is the Hamiltonian (total energy carried by the field). For example, the Klein-Gordon field has
conjugate momentum π = φ̇, and Hamiltonian density

H =
1

2

[
π2(x) + (∇φ)2 +m2φ2

]
. (84)



2.3 Plane wave solutions to the Klein-Gordon equation

Let us consider real solutions to Eq. (80), characterised by φ∗(x) = φ(x). To find them we try an
ansatz of plane waves

φ(x) ∝ ei(k
0t−k·x). (85)

The Klein-Gordon equation is satisfied if (k0)2 − k2 = m2 so that

k0 = ±
√
k2 +m2. (86)

Defining the energy as

E(k) =
√

k2 +m2 > 0, (87)

we obtain two types of solution which read

φ+(x) ∝ ei(E(k)t−k·x), φ−(x) ∝ e−i(E(k)t−k·x). (88)

We may interpret these as positive and negative energy solutions, such that it does not matter
which branch of the square root we take in eq. (87) (it is conventional, however, to define energy
as a positive quantity). The general solution is a superposition of φ+ and φ−. Using

E(k)t − k · x = kµkµ = kµk
µ = k · x (89)

this solution reads

φ(x) =

∫
d3k

(2π)3 2E(k)

(
eik·xα∗(k) + e−ik·xα(k)

)
, (90)

where α(k) is an arbitrary complex coefficient. Note that the coefficients of the positive and negative
exponentials are related by complex conjugation. This ensures that the field φ(x) is real (as can
be easily verified from eq. (90)), consistent with the Lagrangian we wrote down. Such a field has
applications in e.g. the description of neutral mesons. We can also write down a Klein-Gordon
Lagrangian for a complex field φ. This is really two independent fields (i.e. φ and φ∗), and thus can
be used to describe a system of two particles (e.g. charged meson pairs). To simplify the discussion
in this course, we will explicitly consider the real Klein-Gordon field. Note that the factors of 2
and π in eq. (90) are conventional, and the inverse power of the energy is such that the measure of
integration is Lorentz invariant (problem 2.1), so that the whole solution is written in a manifestly
Lorentz invariant way.

2.4 Symmetries and Conservation Laws

As was the case in point particle mechanics, one may relate symmetries of the Lagrangian density
to conserved quantities in field theory. For example, consider the invariance of L under space-time
translations

xµ → xµ + εµ, (91)

where εµ is constant. Under such a transformation one has

L(xµ + εµ) = L(xµ) + εµ∂µL(xµ) + . . . (92)

φ(xµ + εµ) = φ(xµ) + εµ∂µφ(x
µ) + . . . (93)

∂νφ(x
µ + εµ) = ∂νφ(x

µ) + εµ∂µ∂νφ(x
µ) + . . . , (94)

(95)



where we have used Taylor’s theorem. But if L does not explicitly depend on xµ (i.e. only through
φ and ∂µφ) then one has

L(xµ + εµ) = L[φ(xµ + εµ), ∂νφ(x
µ + εµ)]

= L+
∂L
∂φ

δφ +
∂L

∂(∂νφ)
δ(∂νφ) + . . . (96)

= L+
∂L
∂φ

εµ∂µφ+
∂L

∂(∂νφ)
εµ∂µ∂νφ+ . . . , (97)

where we have used the fact that δφ = εµ∂µφ in the third line, and all functions on the right-hand
side are evaluated at xµ. One may replace ∂L/∂φ by the LHS of the Euler-Lagrange equation to
get

L(xµ + εµ) = L+ ∂ν
∂L

∂(∂νφ)
εµ∂µφ+

∂L
∂(∂νφ)

εµ∂µ∂νφ+ . . .

= L+ ∂ν

[
∂L

∂(∂νφ)
∂µφ

]
εµ, (98)

and equating this with the alternative expression above, one finds

∂ν

[
∂L

∂(∂νφ)
∂µφ

]
εµ = εµ∂µL. (99)

If this is true for all εµ, then one has
∂νΘνµ = 0, (100)

where

Θνµ =
∂L

∂(∂νφ)
∂µφ− gµνL (101)

is the energy-momentum tensor. We can see how this name arises by considering the components
explicitly, for the case of the Klein Gordon field. One then finds

Θ00 =
∂L
∂φ̇

φ̇− g00L = πφ̇−L = H, (102)

Θ0j =
∂L
∂φ̇

∂jφ− g0jL = π∂jφ (j = 1 . . . 3). (103)

One then sees that Θ00 is the energy density carried by the field. Its conservation can then be
shown by considering

∂

∂t

∫

V
d3xΘ00 =

∫

V
d3x ∂0Θ00

=

∫

V
d3x ∂jΘj0 =

∫

S
dSj ·Θ0j = 0, (104)

where we have used Eq. (100) in the second line. The Hamiltonian density is a conserved quantity,
provided that there is no energy flow through the surface S which encloses the volume V . In a



similar manner one can show that the 3-momentum pj, which is related to Θ0j , is conserved as
well. It is then useful to define a conserved energy-momentum four-vector

Pµ =

∫
d3x Θ0µ. (105)

In analogy to point particle mechanics, we thus see that invariances of the Lagrangian density
correspond to conservation laws. An entirely analogous procedure leads to conserved quantities like
angular mometum and spin. Furthermore one can study so-called internal symmetries, i.e. ones
which are not related to coordinate but other transformations. Examples are conservation of all
kinds of charges, isospin, etc.
We have thus established the Lagrange-Hamilton formalism for classical field theory: we derived
the equation of motion (Euler-Lagrange equation) from the Lagrangian and introduced the conju-
gate momentum. We then defined the Hamiltonian (density) and considered conservation laws by
studying the energy-momentum tensor Θµν .

3 Quantum Field Theory: Free Fields

3.1 Canonical Field Quantisation

In the previous sections we have reviewed the classical and quantum mechanics of point parti-
cles, and also classical field theory. We used the canonical quantisation procedure in discussing
quantum mechanics, whereby classical variables are replaced by operators, which have non-trivial
commutation relations. In this section, we see how to apply this procedure to fields, taking the
explicit example of the Klein-Gordon field discussed previously. This is, as yet, a non-interacting
field theory, and we will discuss how to deal with interactions later on in the course.

The Klein-Gordon Lagrangian density has the form

L = 1
2∂

µφ∂µφ− 1
2m

2φ2. (106)

We have seen that in field theory the field φ(x) plays the role of the coordinates in ordinary point
particle mechanics, and we defined a canonically conjugate momentum, π(x) = ∂L/∂ φ̇ = φ̇(x). We
then continue the analogy to point mechanics through the quantisation procedure, i.e. we now take
our canonical variables to be operators,

φ(x) → φ̂(x), π(x) → π̂(x). (107)

Next we impose equal-time commutation relations on them,

[
φ̂(x, t), π̂(y, t)

]
= iδ3(x− y), (108)

[
φ̂(x, t), φ̂(y, t)

]
= [π̂(x, t), π̂(y, t)] = 0. (109)

As in the case of quantum mechanics, the canonical variables commute among themselves, but not
the canonical coordinate and momentum with each other. Note that the commutation relation is
entirely analogous to the quantum mechanical case. There would be an ~, if it hadn’t been set to
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time

(x− y)2 < 0, space-like

(x− y)2 > 0, time-like

(x− y)2 = 0, light-like

Figure 3: The light cone about y. Events occurring at points x and y are said to be time-like
(space-like) if x is inside (outside) the light cone about y.

one earlier, and the delta-function accounts for the fact that we are dealing with fields. It is zero
if the fields are evaluated at different space-time points.
After quantisation, our fields have turned into field operators. Note that within the relativistic
formulation they depend on time, and hence they are Heisenberg operators.
In the previous paragraph we have formulated commutation relations for fields evaluated at equal
time, which is clearly a special case when considering fields at general x, y. The reason has to do
with maintaining causality in a relativistic theory. Let us recall the light cone about an event at y,
as in Fig. 3. One important postulate of special relativity states that no signal and no interaction
can travel faster than the speed of light. This has important consequences about the way in which
different events can affect each other. For instance, two events which are characterised by space-
time points xµ and yµ are said to be causal if the distance (x− y)2 is time-like, i.e. (x − y)2 > 0.
By contrast, two events characterised by a space-like separation, i.e. (x − y)2 < 0, cannot affect
each other, since the point x is not contained inside the light cone about y.
In non-relativistic QuantumMechanics the commutation relations among operators indicate whether
precise and independent measurements of the corresponding observables can be made. If the com-
mutator does not vanish, then a measurement of one observable affects that of the other. From
the above it is then clear that the issue of causality must be incorporated into the commutation
relations of the relativistic version of our quantum theory: whether or not independent and precise
measurements of two observables can be made depends also on the separation of the 4-vectors char-
acterising the points at which these measurements occur. Clearly, events with space-like separations
cannot affect each other, and hence all fields must commute,

[
φ̂(x), φ̂(y)

]
= [π̂(x), π̂(y)] =

[
φ̂(x), π̂(y)

]
= 0 for (x− y)2 < 0. (110)

This condition is sometimes called micro-causality. Writing out the four-components of the time
interval, we see that as long as |t′ − t| < |x− y|, the commutator vanishes in a finite interval |t′ − t|.
It also vanishes for t′ = t, as long as x 6= y. Only if the fields are evaluated at an equal space-time
point can they affect each other, which leads to the equal-time commutation relations above. They
can also affect each other everywhere within the light cone, i.e. for time-like intervals. It is not



hard to show that in this case (e.g. problem 3.1)

[
φ̂(x), φ̂(y)

]
= [π̂(x), π̂(y)] = 0, for (x− y)2 > 0 (111)

[
φ̂(x), π̂(y)

]
=

i

2

∫
d3p

(2π)3

(
eip·(x−y) + e−ip·(x−y)

)
. (112)

n.b. since the 4-vector dot product p · (x − y) depends on p0 =
√
p2 +m2, one cannot trivially

carry out the integrals over d3p here.

3.2 Creation and annihilation operators

After quantisation, the Klein-Gordon equation we derived earlier turns into an equation for oper-
ators. For its solution we simply promote the classical plane wave solution, Eq. (90), to operator
status,

φ̂(x) =

∫
d3k

(2π)3 2E(k)

(
eik·xâ†(k) + e−ik·xâ(k)

)
. (113)

Note that the complex conjugation of the Fourier coefficient turned into hermitian conjugation for
an operator.
Let us now solve for the operator coefficients of the positive and negative energy solutions. In order
to do so, we invert the Fourier integrals for the field and its time derivative,

∫
d3x φ̂(x, t)eikx =

1

2E

[
â(k) + â†(k)e2ik0x0

]
, (114)

∫
d3x

˙̂
φ(x, t)eikx = − i

2

[
â(k)− â†(k)e2ik0x0

]
, (115)

and then build the linear combination iE(k)(114)−(115) to find

∫
d3x

[
iE(k)φ̂(x, t)− ˙̂

φ(x, t)
]
eikx = iâ(k), (116)

Following a similar procedure for â†(k), and using π̂(x) =
˙̂
φ(x) we find

â(k) =

∫
d3x

[
E(k)φ̂(x, t) + iπ̂(x, t)

]
eikx, (117)

â†(k) =

∫
d3x

[
E(k)φ̂(x, t)− iπ̂(x, t)

]
e−ikx. (118)

Note that, as Fourier coefficients, these operators do not depend on time, even though the right
hand side does contain time variables. Having expressions in terms of the canonical field variables
φ̂(x), π̂(x), we can now evaluate the commutators for the Fourier coefficients. Expanding everything
out and using the commutation relations Eq. (109), we find

[
â†(k1), â

†(k2)
]

= 0 (119)

[â(k1), â(k2)] = 0 (120)[
â(k1), â

†(k2)
]

= (2π)3 2E(k1)δ
3(k1 − k2) (121)



We easily recognise these for every k to correspond to the commutation relations for the harmonic
oscillator, Eq. (37). This motivates us to also express the Hamiltonian and the energy momentum
four-vector of our quantum field theory in terms of these operators. To do this, first note that the
Hamiltonian is given by the integral of the Hamiltonian density (eq. (84)) over all space. One may
then substitute eq. (113) to yield (see the problem sheet)

Ĥ =
1

2

∫
d3k

(2π)32E(k)
E(k)

(
â†(k)â(k) + â(k)â†(k)

)
, (122)

P̂ =
1

2

∫
d3k

(2π)32E(k)
k
(
â†(k)â(k) + â(k)â†(k)

)
. (123)

We thus find that the Hamiltonian and the momentum operator are nothing but a continuous
sum of excitation energies/momenta of one-dimensional harmonic oscillators! After a minute of
thought this is not so surprising. We expanded the solution of the Klein-Gordon equation into a
superposition of plane waves with momenta k. But of course a plane wave solution with energy
E(k) is also the solution to a one-dimensional harmonic oscillator with the same energy. Hence,
our free scalar field is simply a collection of infinitely many harmonic oscillators distributed over
the whole energy/momentum range. These energies sum up to that of the entire system. We have
thus reduced the problem of handling our field theory to oscillator algebra. From the harmonic
oscillator we know already how to construct a complete basis of energy eigenstates, and thanks to
the analogy of the previous section we can take this over to our quantum field theory.

3.3 Energy of the vacuum state and renormalisation

In complete analogy we begin again with the postulate of a vacuum state |0〉 with norm one, which
is annihilated by the action of the operator a,

〈0|0〉 = 1, â(k)|0〉 = 0 for all k. (124)

Let us next evaluate the energy of this vacuum state, by taking the expectation value of the
Hamiltonian,

E0 = 〈0|Ĥ |0〉 = 1

2

∫
d3k

(2π)3 2E(k)
E(k)

{
〈0|â†(k)â(k)|0〉 + 〈0|â(k)â†(k)|0〉

}
. (125)

The first term in curly brackets vanishes, since a annihilates the vacuum. The second can be
rewritten as

â(k)â†(k)|0〉 =
{[
â(k), â†(k)

]
+ â†(k)â(k)

}
|0〉. (126)

It is now the second term which vanishes, whereas the first can be replaced by the value of the
commutator. Thus we obtain

E0 = 〈0|Ĥ |0〉 = δ3(0)
1

2

∫
d3k E(k) = δ3(0)

1

2

∫
d3k

√
k2 +m2 = ∞, (127)

which means that the energy of the ground state is infinite! This result seems rather paradoxical,
but it can be understood again in terms of the harmonic oscillator. Recall that the simple quantum
mechanical oscillator has a finite zero-point energy. As we have seen above, our field theory corre-
sponds to an infinite collection of harmonic oscillators, i.e. the vacuum receives an infinite number
of zero point contributions, and its energy thus diverges.



This is the first of frequent occurrences of infinities in quantum field theory. Fortunately, it is not
too hard to work around this particular one. Firstly, we note that nowhere in nature can we observe
absolute values of energy, all we can measure are energy differences relative to some reference scale,
at best the one of the vacuum state, |0〉. In this case it does not really matter what the energy of
the vacuum is. This then allows us to redefine the energy scale, by always subtracting the (infinite)
vacuum energy from any energy we compute. This process is called “renormalisation”.
We then define the renormalised vacuum energy to be zero, and take it to be the expectation value
of a renormalised Hamiltonian,

ER
0 ≡ 〈0|ĤR|0〉 = 0. (128)

According to this recipe, the renormalised Hamiltonian is our original one, minus the (unrenor-
malised) vacuum energy,

ĤR = Ĥ −E0 (129)

=
1

2

∫
d3k

(2π)3 2E(k)
E(k)

{
â†(k)â(k) + â(k)â†(k)− 〈0|â†(k)â(k) + â(k)â†(k)|0〉

}

=
1

2

∫
d3k

(2π)3 2E(k)
E(k)

{
2â†(k)â(k) +

[
â(k), â†(k)

]
− 〈0|

[
â(k), â†(k)

]
|0〉
}
. (130)

Here the subtraction of the vacuum energy is shown explicitly, and we can rewrite is as

ĤR =

∫
d3p

(2π)3 2E(p)
E(p)â†(p)â(p)

+
1

2

∫
d3p

(2π)3 2E(p)
E(p)

{[
â(p), â†(p)

]
− 〈0|

[
â(p), â†(p)

]
|0〉
}
.

=

∫
d3p

(2π)3 2E(p)
E(p) â†(p)â(p) + Ĥvac (131)

The operator Ĥvac ensures that the vacuum energy is properly subtracted: if |ψ〉 and |ψ ′〉 denote
arbitrary N -particle states, then one can convince oneself that 〈ψ ′|Ĥvac|ψ〉 = 0. In particular we
now find that

〈0|ĤR|0〉 = 0, (132)

as we wanted. A simple way to automatise the removal of the vacuum contribution is to introduce
normal ordering. Normal ordering means that all annihilation operators appear to the right of any
creation operator. The notation is

: ââ† : = â†â, (133)

i.e. the normal-ordered operators are enclosed within colons. For instance

: 1
2

(
â†(p)â(p) + â(p)â†(p)

)
: = â†(p)â(p). (134)

It is important to keep in mind that â and â† always commute inside : · · · :. This is true for an
arbitrary string of â and â†. With this definition we can write the normal-ordered Hamiltonian as

: Ĥ : = :
1

2

∫
d3p

(2π)3 2E(p)
E(p)

(
â†(p)â(p) + â(p)â†(p)

)
:

=

∫
d3p

(2π)3 2E(p)
E(p) â†(p)â(p), (135)



and thus have the relation
ĤR =: Ĥ : +Ĥvac. (136)

Hence, we find that
〈ψ′| : Ĥ : |ψ〉 = 〈ψ′|ĤR|ψ〉, (137)

and, in particular, 〈0| : Ĥ : |0〉 = 0. The normal ordered Hamiltonian thus produces a renormalised,
sensible result for the vacuum energy.

3.4 Fock space and Particles

After this lengthy grappling with the vacuum state, we can continue to construct our basis of states
in analogy to the harmonic oscillator, making use of the commutation relations for the operators
â, â†. In particular, we define the state |k〉 to be the one obtained by acting with the operator a†(k)
on the vacuum,

|k〉 = â†(k)|0〉. (138)

Using the commutator, its norm is found to be

〈k|k′〉 = 〈0|â(k)â†(k′)|0〉 = 〈0|[â(k), â†(k′)]|0〉 + 〈0|â†(k′)a(k)|0〉 (139)

= (2π)32E(k)δ3(k− k′), (140)

since the last term in the first line vanishes (â(k) acting on the vacuum). Next we compute the
energy of this state, making use of the normal ordered Hamiltonian,

: Ĥ : |k〉 =

∫
d3k′

(2π)3 2E(k′)
E(k′)â†(k′)â(k′)â†(k)|0〉 (141)

=

∫
d3k′

(2π)3 2E(k′)
E(k′)(2π)32E(k)δ(k − k′)â†(k)|0〉 (142)

= E(k)â†(k)|0〉 = E(k)|k〉, (143)

and similarly one finds
: P̂ : |k〉 = k|k〉. (144)

Observing that the normal ordering did its job and we obtain renormalised, finite results, we may
now interpret the state |k〉. It is a one-particle state for a relativistic particle of mass m and
momentum k, since acting on it with the energy-momentum operator returns the relativistic one
particle energy-momentum dispersion relation, E(k) =

√
k2 +m2. The a†(k), a(k) are creation

and annihilation operators for particles of momentum k.
In analogy to the harmonic oscillator, the procedure can be continued to higher states. One easily
checks that (problem 3.4)

: P̂ µ : â†(k2)â
†(k1)|0〉 = (kµ1 + kµ2 )â

†(k2)â
†(k1)|0〉, (145)

and so the state

|k2,k1〉 =
1√
2!
â†(k2)â

†(k1)|0〉 (146)

is a two-particle state (the factorial is there to have it normalised in the same way as the one-
particle state), and so on for higher states. These are called Fock states in the textbooks (formally



speaking, a Fock space is a tensor product of Hilbert spaces, where the latter occur in ordinary
Quantum Mechanics).
At long last we can now see how the field in our free quantum field theory is related to particles.
A particle of momentum k corresponds to an excited Fourier mode of a field. Since the field is a
superpositon of all possible Fourier modes, one field is enough to describe all possible configurations
representing one or many particles of the same kind in any desired momentum state.
There are some rather profound ideas here about how nature works at fundamental scales. In
classical physics we have matter particles, and forces which act on those particles. These forces
can be represented by fields, such that fields and particles are distinct concepts. In non-relativistic
quantum mechanics, one unifies the concept of waves and particles (particles can have wave-like
characteristics), but fields are still distinct (e.g. one may quantise a particle in an electromagnetic
field in QM, provided the latter is treated classically). Taking into account the effects of relativity
for both particles and fields, one finds in QFT that all particles are excitation quanta of fields. That
is, the concepts of field and particle are no longer distinct, but actually manifestations of the same
thing, namely quantum fields. In this sense, QFT is more fundamental than either of its preceding
theories. Each force field and each matter field have particles associated with it.
Returning to our theory for the free Klein-Gordon field, let us investigate what happens under
interchange of the two particles. Since [â†(k1), â

†(k2)] = 0 for all k1,k2, we see that

|k2,k1〉 = |k1,k2〉, (147)

and hence the state is symmetric under interchange of the two particles. Thus, the particles
described by the scalar field are bosons.
Finally we complete the analogy to the harmonic oscillator by introducing a number operator

N̂(k) = â†(k)â(k), N̂ =

∫
d3k

(2π)32E(k)
â†(k)â(k), (148)

which gives us the number of bosons described by a particular Fock state,

N̂ |0〉 = 0, N̂ |k〉 = |k〉, N̂ |k1 . . .kn〉 = n|k1 . . . kn〉. (149)

Of course the normal-ordered Hamiltonian can now simply be given in terms of this operator,

: Ĥ :=

∫
d3k

(2π)3 2E(k)
E(k)N̂ (k), (150)

i.e. when acting on a Fock state it simply sums up the energies of the individual particles to give

: Ĥ : |k1 . . .kn〉 = (E(k1) + . . . E(kn)) |k1 . . .kn〉. (151)

This concludes the quantisation of our free scalar field theory. We have followed the canonical
quantisation procedure familiar from quantum mechanics. Due to the infinite number of degrees
of freedom, we encountered a divergent vacuum energy, which we had to renormalise. The renor-
malised Hamiltonian and the Fock states that we constructed describe free relativistic, uncharged
spin zero particles of mass m, such as neutral pions, for example.

If we want to describe charged pions as well, we need to introduce complex scalar fields, the real
and imaginary parts being necessary to describe opposite charges. For particles with spin we need



still more degrees of freedom and use vector or spinor fields, which have the appropriate rotation
and Lorentz transformation properties. For fermion fields (which satisfy the Dirac equation rather
than the Klein-Gordon equation), one finds that the condition of a positive-definite energy density
requires that one impose anti-commutation relations rather than commutation relations. This in
turn implies that multiparticle states are antisymmetric under interchange of identical fermions,
which we recognise as the Pauli exclusion principle. Thus, not only does QFT provide a consistent
theory of relativistic multiparticle systems; it also allows us to “derive” the Pauli principle, which
is put in by hand in non-relativistic quantum mechanics.

More details on vector and spinor fields can be found in the other courses at this school. Here,
we continue to restrict our attention to scalar fields, so as to more clearly illustrate what happens
when interactions are present.

4 Quantum Field Theory: Interacting Fields

So far we have seen how to quantise the Klein-Gordon Lagrangian, and seen that this describes free
scalar particles. For interesting physics, however, we need to know how to describe interactions,
which lead to nontrivial scattering processes. This is the subject of this section.

From now on we shall always discuss quantised real scalar fields. It is then convenient to drop
the “hats” on the operators that we have considered up to now. Interactions can be described by
adding a term Lint to the Lagrangian density, so that the full result L is given by

L = L0 + Lint (152)

where
L0 =

1
2∂µφ∂

µφ− 1
2m

2φ2 (153)

is the free Lagrangian density discussed before. The Hamiltonian density of the interaction is
related to Lint simply by

Hint = H−H0, (154)

where H0 is the free Hamiltonian. If the interaction Lagrangian only depends on φ (we will consider
such a case later in the course), one has

Hint = −Lint, (155)

as can be easily shown from the definition above. We shall leave the details of Lint unspecified for
the moment. What we will be concerned with mostly are scattering processes, in which two initial
particles with momenta p1 and p2 scatter, thereby producing a number of particles in the final
state, characterised by momenta k1, . . . ,kn. This is schematically shown in Fig. 4. Our task is to
find a description of such a scattering process in terms of the underlying quantum field theory.

4.1 The S-matrix

The timescales over which interactions happen are extremely short. The scattering (interaction)
process takes place during a short interval around some particular time t with −∞ � t � ∞.



p1

p2

k1

k2

kn

Figure 4: Scattering of two initial particles with momenta p1 and p2 into n particles with momenta
k1, . . . ,kn in the final state.

Long before t, the incoming particles evolve independently and freely. They are described by a field
operator φin defined through

lim
t→−∞

φ(x) = φin(x), (156)

which acts on a corresponding basis of |in〉 states. Long after the collision the particles in the final
state evolve again like in the free theory, and the corresponding operator is

lim
t→+∞

φ(x) = φout(x), (157)

acting on states |out〉. The fields φin, φout are the asymptotic limits of the Heisenberg operator φ.
They both satisfy the free Klein-Gordon equation, i.e.

(�+m2)φin(x) = 0, (�+m2)φout(x) = 0. (158)

Operators describing free fields can be expressed as a superposition of plane waves (see Eq. (113)).
Thus, for φin we have

φin(x) =

∫
d3k

(2π)3 2E(k)

(
eik·xa†in(k) + e−ik·xain(k)

)
, (159)

with an entirely analogous expression for φout(x). Note that the operators a† and a also carry
subscripts “in” and “out”.

The above discussion assumes that the interaction is such that we can talk about free particles at
asymptotic times t → ±∞ i.e. that the interaction is only present at intermediate times. This is
not always a reasonable assumption e.g. it does not encompass the phenomenon of bound states,
in which incident particles form a composite object at late times, which no longer consists of free
particles. Nevertheless, the assumption will indeed allow us to discuss scattering processes, which
is the aim of this course. Note that we can only talk about well-defined particle states at t→ ±∞
(the states labelled by “in” and “out” above), as only at these times do we have a free theory, and
thus know what the spectrum of states is (using the methods of section 3). At general times t, the
interaction is present, and it is not possible in general to solve for the states of the quantum field
theory. Remarkably, we will end up seeing that we can ignore all the complicated stuff at interme-
diate times, and solve for scattering probabilities purely using the properties of the asymptotic fields.



At the asymptotic times t = ±∞, we can use the creation operators a†in and a†out to build up Fock
states from the vacuum. For instance

a†in(p1) a
†
in(p2)|0〉 = |p1,p2; in〉, (160)

a†out(k1) · · · a†out(kn)|0〉 = |k1, . . . ,kn; out〉. (161)

We must now distinguish between Fock states generated by a†in and a†out, and therefore we have
labelled the Fock states accordingly. In eqs. (160) and (161) we have assumed that there is a stable
and unique vacuum state of the free theory (the vacuum at general times t will be that of the full
interacting theory, and thus differ from this in general):

|0〉 = |0; in〉 = |0; out〉. (162)

Mathematically speaking, the a†in’s and a
†
out’s generate two different bases of the Fock space. Since

the physics that we want to describe must be independent of the choice of basis, expectation values
expressed in terms of “in” and “out” operators and states must satisfy

〈in|φin(x) |in〉 = 〈out|φout(x) |out〉 . (163)

Here |in〉 and |out〉 denote generic “in” and “out” states. We can relate the two bases by introducing
a unitary operator S such that

φin(x) = S φout(x)S
† (164)

|in〉 = S |out〉 , |out〉 = S† |in〉 , S†S = 1. (165)

S is called the S-matrix or S-operator. Note that the plane wave solutions of φin and φout also
imply that

a†in = S a†out S
†, âin = S âout S

†. (166)

By comparing “in” with “out” states one can extract information about the interaction – this is
the very essence of detector experiments, where one tries to infer the nature of the interaction by
studying the products of the scattering of particles that have been collided with known energies.
As we will see below, this information is contained in the elements of the S-matrix.
By contrast, in the absence of any interaction, i.e. for Lint = 0 the distinction between φin and φout
is not necessary. They can thus be identified, and then the relation between different bases of the
Fock space becomes trivial, S = 1, as one would expect.
What we are ultimately interested in are transition amplitudes between an initial state i of, say,
two particles of momenta p1,p2, and a final state f , for instance n particles of unequal momenta.
The transition amplitude is then given by

〈f, out| i, in〉 = 〈f, out|S |i, out〉 = 〈f, in|S |i, in〉 ≡ Sfi. (167)

The S-matrix element Sfi therefore describes the transition amplitude for the scattering process
in question. The scattering cross section, which is a measurable quantity, is then proportional to
|Sfi|2. All information about the scattering is thus encoded in the S-matrix, which must therefore
be closely related to the interaction Hamiltonian density Hint. However, before we try to derive
the relation between S and Hint we have to take a slight detour.



4.2 More on time evolution: Dirac picture

The operators φ(x, t) and π(x, t) which we have encountered are Heisenberg fields and thus time-
dependent. The state vectors are time-independent in the sense that they do not satisfy a non-trivial
equation of motion. Nevertheless, state vectors in the Heisenberg picture can carry a time label.
For instance, the “in”-states of the previous subsection are defined at t = −∞. The relation of the
Heisenberg operator φH(x) with its counterpart φS in the Schrödinger picture is given by

φH(x, t) = eiHt φS e−iHt, H = H0 +Hint, (168)

Note that this relation involves the full Hamiltonian H = H0 +Hint in the interacting theory. We
have so far found solutions to the Klein-Gordon equation in the free theory, and so we know how
to handle time evolution in this case. However, in the interacting case the Klein-Gordon equation
has an extra term,

(�+m2)φ(x) +
∂Vint(φ)

∂φ
= 0, (169)

due to the potential of the interactions. Apart from very special cases of this potential, the equation
cannot be solved anymore in closed form, and thus we no longer know the time evolution. It is
therefore useful to introduce a new quantum picture for the interacting theory, in which the time
dependence is governed by H0 only. This is the so-called Dirac or Interaction picture. The relation
between fields in the Interaction picture, φI , and in the Schrödinger picture, φS , is given by

φI(x, t) = eiH0t φS e−iH0t. (170)

At t = −∞ the interaction vanishes, i.e. Hint = 0, and hence the fields in the Interaction and
Heisenberg pictures are identical, i.e. φH(x, t) = φI(x, t) for t → −∞. The relation between φH

and φI can be worked out easily:

φH(x, t) = eiHt φS e−iHt

= eiHt e−iH0t eiH0tφS e−iH0t

︸ ︷︷ ︸
φI(x,t)

eiH0t e−iHt

= U−1(t)φI(x, t)U(t), (171)

where we have introduced the unitary operator U(t)

U(t) = eiH0t e−iHt, U †U = 1. (172)

The field φH(x, t) contains the information about the interaction, since it evolves over time with
the full Hamiltonian. In order to describe the “in” and “out” field operators, we can now make the
following identifications:

t→ −∞ : φin(x, t) = φI(x, t) = φH(x, t), (173)

t→ +∞ : φout(x, t) = φH(x, t). (174)

Furthermore, since the fields φI evolve over time with the free Hamiltonian H0, they always act in
the basis of “in” vectors, such that

φin(x, t) = φI(x, t), −∞ < t <∞. (175)



The relation between φI and φH at any time t is given by

φI(x, t) = U(t)φH (x, t)U−1(t). (176)

As t→ ∞ the identifications of eqs. (174) and (175) yield

φin = U(∞)φout U
†(∞). (177)

From the definition of the S-matrix, Eq. (164) we then read off that

lim
t→∞

U(t) = S. (178)

We have thus derived a formal expression for the S-matrix in terms of the operator U(t), which
tells us how operators and state vectors deviate from the free theory at time t, measured relative
to t0 = −∞, i.e. long before the interaction process.
An important boundary condition for U(t) is

lim
t→−∞

U(t) = 1. (179)

What we mean here is the following: the operator U actually describes the evolution relative to
some initial time t0, which we will normally suppress, i.e. we write U(t) instead of U(t, t0). We
regard t0 merely as a time label and fix it at −∞, where the interaction vanishes. Equation (179)
then simply states that U becomes unity as t → t0, which means that in this limit there is no
distinction between Heisenberg and Dirac fields.
Using the definition of U(t), Eq. (172), it is an easy exercise to derive the equation of motion for
U(t):

i
d

dt
U(t) = Hint(t)U(t), Hint(t) = eiH0tHint e

−iH0t. (180)

The time-dependent operator Hint(t) is defined in the interaction picture, and depends on the fields
φin, πin in the “in” basis. Let us now solve the equation of motion for U(t) with the boundary
condition lim

t→−∞
U(t) = 1. Integrating Eq. (180) gives

∫ t

−∞

d

dt1
U(t1) dt1 = −i

∫ t

−∞

Hint(t1)U(t1) dt1

U(t)− U(−∞) = −i
∫ t

−∞

Hint(t1)U(t1) dt1

⇒ U(t) = 1− i

∫ t

−∞

Hint(t1)U(t1) dt1. (181)

The right-hand side still depends on U , but we can substitute our new expression for U(t) into the
integrand, which gives

U(t) = 1− i

∫ t

−∞

Hint(t1)

{
1− i

∫ t1

−∞

Hint(t2)U(t2) dt2

}
dt1

= 1− i

∫ t

−∞

Hint(t1)dt1 −
∫ t

−∞

dt1Hint(t1)

∫ t1

−∞

dt2Hint(t2)U(t2), (182)



where t2 < t1 < t. This procedure can be iterated further, so that the nth term in the sum is

(−i)n
∫ t

−∞

dt1

∫ t1

−∞

dt2 · · ·
∫ tn−1

−∞

dtnHint(t1)Hint(t2) · · ·Hint(tn). (183)

This iterative solution could be written in much more compact form, were it not for the fact that
the upper integration bounds were all different, and that the ordering tn < tn−1 < . . . < t1 < t had
to be obeyed. Time ordering is an important issue, since one has to ensure that the interaction
Hamiltonians act at the proper time, thereby ensuring the causality of the theory. By introducing
the time-ordered product of operators, one can use a compact notation, such that the resulting
expressions still obey causality. The time-ordered product of two fields φ(t1) and φ(t2) is defined
as

T {φ(t1)φ(t2)} =

{
φ(t1)φ(t2) t1 > t2
φ(t2)φ(t1) t1 < t2

≡ θ(t1 − t2)φ(t1)φ(t2) + θ(t2 − t1)φ(t2)φ(t1), (184)

where θ denotes the step function. The generalisation to products of n operators is obvious. Using
time ordering for the nth term of Eq. (183) we obtain

(−i)n
n!

n∏

i=1

∫ t

−∞

dti T {Hint(t1)Hint(t2) · · ·Hint(tn)} . (185)

Here we have replaced each upper limit of integration with t. Each specific ordering in the time-
ordered product gives a term identical to eq. (183), where applying the T operator corresponds
to setting the upper limit of integration to the relevant ti in each integral. However, we have
overcounted by a factor n!, corresponding to the number of ways of ordering the fields in the time
ordered product. Thus one must divide by n! as shown. We may recognise eq. (185) as the nth
term in the series expansion of an exponential, and thus can finally rewrite the solution for U(t) in
compact form as

U(t) = T exp

{
−i
∫ t

−∞

Hint(t
′) dt′

}
, (186)

where the “T” in front ensures the correct time ordering.

4.3 S-matrix and Green’s functions

The S-matrix, which relates the “in” and “out” fields before and after the scattering process, can
be written as

S = 1 + iT, (187)

where T is commonly called the T -matrix. The fact that S contains the unit operator means that
also the case where none of the particles scatter is encoded in S. On the other hand, the non-trivial
case is described by the T -matrix, and this is what we are interested in. So far we have derived
an expression for the S-matrix in terms of the interaction Hamiltonian, and we could use this in
principle to calculate scattering processes. However, there is a slight complication owing to the
fact that the vacuum of the free theory is not the same as the true vacuum of the full, interacting



theory. Instead, we will follow the approach of Lehmann, Symanzik and Zimmerman, which relates
the S-matrix to n-point Green’s functions

Gn(x1, . . . xn) = 〈0|T (φ(x1) . . . φ(xn))|0〉 (188)

i.e. vacuum expectation values of Heisenberg fields. We will see later how to calculate these in
terms of vacuum expectation values of “in” fields (i.e. in the free theory).
In order to relate S-matrix elements to Green’s functions, we have to express the “in/out”-states

in terms of creation operators a†in/out and the vacuum, then express the creation operators by the
fields φin/out, and finally use the time evolution to connect those with the fields φ in our Lagrangian.
Let us consider again the scattering process depicted in Fig. 4. The S-matrix element in this case
is

Sfi =
〈
k1,k2, . . . ,kn; out

∣∣∣p1,p2; in
〉

=
〈
k1,k2, . . . ,kn; out

∣∣∣a†in(p1)
∣∣∣p2; in

〉
, (189)

where a†in is the creation operator pertaining to the “in” field φin. Our task is now to express a†in
in terms of φin, and repeat this procedure for all other momenta labelling our Fock states.
The following identities will prove useful

a†(p) = i

∫
d3x

{(
∂0 e

−iq·x
)
φ(x)− e−iq·x (∂0φ(x))

}

≡ −i
∫
d3x e−iq·x

←→

∂0 φ(x), (190)

â(p) = −i
∫
d3x

{(
∂0 e

iq·x
)
φ(x)− eiq·x (∂0φ(x))

}

≡ i

∫
d3x eiq·x

←→

∂0 φ(x). (191)

The S-matrix element can then be rewritten as

Sfi = −i
∫
d3x1 e

−ip1·x1

←→

∂0

〈
k1, . . . ,kn; out

∣∣∣φin(x1)
∣∣∣p2; in

〉

= −i lim
t1→−∞

∫
d3x1 e

−ip1·x1

←→

∂0

〈
k1, . . . ,kn; out

∣∣∣φ(x1)
∣∣∣p2; in

〉
, (192)

where in the last line we have used Eq. (156) to replace φin by φ. We can now rewrite limt1→−∞

using the following identity, which holds for an arbitrary, differentiable function f(t), whose limit
t→ ±∞ exists:

lim
t→−∞

f(t) = lim
t→+∞

f(t)−
∫ +∞

−∞

df

dt
dt. (193)

The S-matrix element then reads

Sfi = −i lim
t1→+∞

∫
d3x1 e

−ip1·x1

←→

∂0

〈
k1, . . . ,kn; out

∣∣∣φ(x1)
∣∣∣p2; in

〉

+i

∫ +∞

−∞

dt1
∂

∂t1

{∫
d3x1 e

−ip1·x1

←→

∂0

〈
k1, . . . ,kn; out

∣∣∣φ(x1)
∣∣∣p2; in

〉}
. (194)



The first term in this expression involves limt1→+∞ φ = φout, which gives rise to a contribution

∝
〈
k1, . . . ,kn; out

∣∣∣a†out(p1)
∣∣∣p2; in

〉
. (195)

This is non-zero only if p1 is equal to one of k1, . . . ,kn. This, however, means that the particle
with momentum p1 does not scatter, and hence the first term does not contribute to the T -matrix
of Eq. (187). We are then left with the following expression for Sfi:

Sfi = −i
∫
d4x1

〈
k1, . . . ,kn; out

∣∣∣∂0
{(
∂0e
−ip1·x1

)
φ(x1)− e−ip1·x1 (∂0φ(x1))

} ∣∣∣p2; in
〉
. (196)

The time derivatives in the integrand can be worked out:

∂0
{(
∂0e
−ip1·x1

)
φ(x1)− e−ip1·x1 (∂0φ(x1))

}

= − [E(p1)]
2 e−ip1·x1 φ(x1)− e−ip1·x1 ∂20φ(x1)

= −
{((

−∇2 +m2
)
e−ip1·x1

)
φ(x1) + e−ip1·x1 ∂20 φ(x1)

}
, (197)

where we have used that −∇2e−ip1·x1 = p2
1 e
−ip1·x1 . For the S-matrix element one obtains

Sfi = i

∫
d4x1 e

−ip1·x1

〈
k1, . . . ,kn; out

∣∣∣
(
∂20 −∇2 +m2

)
φ(x1)

∣∣∣p2; in
〉

= i

∫
d4x1 e

−ip1·x1

(
�x1

+m2
) 〈

k1, . . . ,kn; out
∣∣∣φ(x1)

∣∣∣p2; in
〉
, (198)

where we have used integration by parts twice so that ∇2 acts on φ(x1) rather than on e−ip1·x1 .
What we have obtained after this rather lengthy step of algebra is an expression in which the
(Heisenberg) field operator is sandwiched between Fock states, one of which has been reduced to
a one-particle state. We can now successively eliminate all momentum variables from the Fock
states, by repeating the procedure for the momentum p2, as well as the n momenta of the “out”
state. The final expression for Sfi is

Sfi = (i)n+2

∫
d4x1

∫
d4x2

∫
d4y1 · · ·

∫
d4yn e(−ip1·x1−ip2·x2+ik1·y1+···+ikn·yn)

×
(
�x1

+m2
) (

�x2
+m2

) (
�y1 +m2

)
· · ·
(
�yn +m2

)

×
〈
0; out

∣∣∣T{φ(y1) · · · φ(yn)φ(x1)φ(x2)}
∣∣∣0; in

〉
, (199)

where the time-ordering inside the vacuum expectation value (VEV) ensures that causality is
obeyed. The above expression is known as the Lehmann-Symanzik-Zimmermann (LSZ) reduc-
tion formula. It relates the formal definition of the scattering amplitude to a vacuum expectation
value of time-ordered fields. Since the vacuum is uniquely the same for “in/out”, the VEV in the
LSZ formula for the scattering of two initial particles into n particles in the final state is recognised
as the (n+ 2)-point Green’s function:

Gn+2(y1, y2, . . . , yn, x1, x2) =
〈
0
∣∣∣T{φ(y1) · · ·φ(yn)φ(x1)φ(x2)}

∣∣∣0
〉
. (200)

You will note that we still have not calculated or evaluated anything, but merely rewritten the
expression for the scattering matrix elements. Nevertheless, the LSZ formula is of tremendous



importance and a central piece of QFT. It provides the link between fields in the Lagrangian and
the scattering amplitude S2

fi, which yields the cross section, measurable in an experiment. Up to
here no assumptions or approximations have been made, so this connection between physics and
formalism is rather tight. It also illustrates a profound phenomenon of QFT and particle physics:
the scattering properties of particles, in other words their interactions, are encoded in the vacuum
structure, i.e. the vacuum is non-trivial!

4.4 How to compute Green’s functions

Of course, in order to calculate cross sections, we need to compute the Green’s functions. Alas,
for any physically interesting and interacting theory this cannot be done exactly, contrary to the
free theory discussed earlier. Instead, approximation methods have to be used in order to simplify
the calculation, while hopefully still giving reliable results. Or one reformulates the entire QFT
as a lattice field theory, which in principle allows to compute Green’s functions without any ap-
proximations (in practice this still turns out to be a difficult task for physically relevant systems).
This is what many theorists do for a living. But the formalism stands, and if there are discrep-
ancies between theory and experiments, one “only” needs to check the accuracy with which the
Green’s functions have been calculated or measured, before approving or discarding a particular
Lagrangian.
In the next section we shall discuss how to compute the Green’s function of scalar field theory in
perturbation theory. Before we can tackle the actual computation, we must take a further step.
Let us consider the n-point Green’s function

Gn(x1, . . . , xn) = 〈0 |T{φ(x1) · · ·φ(xn)}| 0〉 . (201)

The fields φ which appear in this expression are Heisenberg fields, whose time evolution is governed
by the full Hamiltonian H0 + Hint. In particular, the φ’s are not the φin’s. We know how to
handle the latter, because they correspond to a free field theory, but not the former, whose time
evolution is governed by the interacting theory, whose solutions we do not know. Let us thus start
to isolate the dependence of the fields on the interaction Hamiltonian. Recall the relation between
the Heisenberg fields φ(t) and the “in”-fields4

φ(t) = U−1(t)φin(t)U(t). (202)

We now assume that the fields are properly time-ordered, i.e. t1 > t2 > . . . > tn, so that we can
forget about writing T (· · · ) everywhere. After inserting Eq. (202) into the definition of Gn one
obtains

Gn =
〈
0
∣∣U−1(t1)φin(t1)U(t1)U

−1(t2)φin(t2)U(t2) · · ·
× U−1(tn)φin(tn)U(tn)

∣∣0
〉
. (203)

Now we introduce another time label t such that t� t1 and −t� t1. For the n-point function we
now obtain

Gn =
〈
0
∣∣∣U−1(t)

{
U(t)U−1(t1)φin(t1)U(t1)U

−1(t2)φin(t2)U(t2) · · ·

× U−1(tn)φin(tn)U(tn)U
−1(−t)

}
U(−t)

∣∣∣0
〉
. (204)

4Here and in the following we suppress the spatial argument of the fields for the sake of brevity.



The expression in curly braces is now time-ordered by construction. An important observation at
this point is that it involves pairs of U and its inverse, for instance

U(t)U−1(t1) ≡ U(t, t1). (205)

One can easily convince oneself that U(t, t1) provides the net time evolution from t1 to t. We can
now write Gn as

Gn =
〈
0
∣∣∣U−1(t)T

{
φin(t1) · · ·φin(tn)U(t, t1)U(t1, t2) · · ·U(tn,−t)︸ ︷︷ ︸

U(t,−t)

}
U(−t)

∣∣∣0
〉
, (206)

where we have used the fact that we may commute the U operators within the time-ordered product.
Let us now take t → ∞. The relation between U(t) and the S-matrix Eq. (178), as well as the
boundary condition Eq. (179) tell us that

lim
t→∞

U(−t) = 1, lim
t→∞

U(t,−t) = S, (207)

which can be inserted into the above expression. We still have to work out the meaning of 〈0|U −1(∞)
in the expression for Gn. In a paper by Gell-Mann and Low it was argued that the time evolution
operator must leave the vacuum invariant (up to a phase), which justifies the ansatz

〈0|U−1(∞) = K〈0|, (208)

with K being the phase5. Multiplying this relation with |0〉 from the right gives

〈0|U−1(∞)|0〉 = K〈0|0〉 = K. (209)

Furthermore, Gell-Mann and Low showed that

〈0|U−1(∞)|0〉 = 1

〈0|U(∞)|0〉 , (210)

which implies

K =
1

〈0|S|0〉 . (211)

After inserting all these relations into the expression for Gn we obtain

Gn(x1, . . . , xn) =
〈0|T {φin(x1) · · · φin(xn)S} |0〉

〈0|S|0〉 . (212)

The S-matrix is given by

S = T exp

{
−i
∫ +∞

−∞

Hint(t) dt

}
, Hint = Hint(φin, πin), (213)

and thus we have finally succeeded in expressing the n-point Green’s function exclusively in terms
of the “in”-fields. This completes the derivation of a relation between the general definition of
the scattering amplitude Sfi and the VEV of time-ordered “in”-fields. This has been a long and

5As hinted at earlier, K relates the vacuum of the free theory to the true vacuum of the interacting theory.



technical discussion, but the main points are the following:

Scattering probabilities are related to S-matrix elements. To calculate S-matrix elements for an
n particle scattering process, one must first calculate the n particle Green’s function (eq. (212)).
Then one plugs this into the LSZ formula (eq. (199)).

In fact, the Green’s functions cannot be calculated exactly using eq. (212). Instead, one can only
obtain answers in the limit in which the interaction strength λ is small. This is the subject of the
following sections.

5 Perturbation Theory

In this section we are going to calculate the Green’s functions of scalar quantum field theory
explicitly. We will specify the interaction Lagrangian in detail and use an approximation known
as perturbation theory. At the end we will derive a set of rules, which represent a systematic
prescription for the calculation of Green’s functions, and can be easily generalised to apply to
other, more complicated field theories. These are the famous Feynman rules.
We start by making a definite choice for the interaction Lagrangian Lint. Although one may think
of many different expressions for Lint, one has to obey some basic principles: firstly, Lint must
be chosen such that the potential it generates is bounded from below – otherwise the system
has no ground state. Secondly, our interacting theory should be renormalisable. Despite being
of great importance, the second issue will not be addressed in these lectures. The requirement
of renormalisability arises because the non-trivial vacuum, much like a medium, interacts with
particles to modify their properties. Moreover, if one computes quantities like the energy or charge
of a particle, one typically obtains a divergent result6. There are classes of quantum field theories,
called renormalisable, in which these divergences can be removed by suitable redefinitions of the
fields and the parameters (masses and coupling constants).
For our theory of a real scalar field in four space-time dimensions, it turns out that the only
interaction term which leads to a renormalisable theory must be quartic in the fields. Thus we
choose

Lint = − λ

4!
φ4(x), (214)

where the coupling constant λ describes the strength of the interaction between the scalar fields,
much like, say, the electric charge describing the strength of the interaction between photons and
electrons. The factor 4! is for later convenience. The full Lagrangian of the theory then reads

L = L0 + Lint =
1

2
(∂µφ)

2 − 1

2
m2φ2 − λ

4!
φ4, (215)

and the explicit expressions for the interaction Hamiltonian and the S-matrix are

Hint = −Lint, Hint =
λ

4!

∫
d3xφ4in(x, t)

S = T exp

{
−i λ

4!

∫
d4xφ4in(x)

}
. (216)

6This is despite the subtraction of the vacuum energy discussed earlier.



The n-point Green’s function is

Gn(x1, . . . , xn)

=

∞∑

r=0

(
− iλ
4!

)r 1

r!

〈
0

∣∣∣∣T
{
φin(x1) · · · φin(xn)

(∫
d4y φ4in(y)

)r}∣∣∣∣ 0
〉

∞∑

r=0

(
− iλ
4!

)r 1

r!

〈
0

∣∣∣∣T
(∫

d4y φ4in(y)

)r∣∣∣∣ 0
〉 . (217)

This expression cannot be dealt with as it stands. In order to evaluate it we must expand Gn in
powers of the coupling λ and truncate the series after a finite number of terms. This only makes
sense if λ is sufficiently small. In other words, the interaction Lagrangian must act as a small
perturbation on the system. As a consequence, the procedure of expanding Green’s functions in
powers of the coupling is referred to as perturbation theory. We will see that there is a natural
diagrammatic representation of this expansion (Feynman diagrams). First, we need to know how
to calculate the vacuum expectation values of time ordered products. This is the subject of the
next section.

5.1 Wick’s Theorem

The n-point Green’s function in Eq. (217) involves the time-ordered product over at least n fields.
There is a method to express VEV’s of n fields, i.e. 〈0|T {φin(x1) · · · φin(xn)} |0〉 in terms of VEV’s
involving two fields only. This is known as Wick’s theorem.
Let us for the moment ignore the subscript “in” and return to the definition of normal-ordered fields.
The normal-ordered product : φ(x1)φ(x2) : differs from φ(x1)φ(x2) by the vacuum expectation
value, i.e.

φ(x1)φ(x2) = : φ(x1)φ(x2) : +〈0|φ(x1)φ(x2)|0〉. (218)

We are now going to combine normal-ordered products with time ordering. The time-ordered
product T{φ(x1)φ(x2)} is given by

T{φ(x1)φ(x2)} = φ(x1)φ(x2)θ(t1 − t2) + φ(x2)φ(x1)θ(t2 − t1)

= : φ(x1)φ(x2) :
(
θ(t1 − t2) + θ(t2 − t1)

)

+〈0|φ(x1)φ(x2)θ(t1 − t2) + φ(x2)φ(x1)θ(t2 − t1)|0〉. (219)

Here we have used the important observation that

: φ(x1)φ(x2) : = : φ(x2)φ(x1) :, (220)

which means that normal-ordered products of fields are automatically time-ordered.7 Equation (219)
is Wick’s theorem for the case of two fields:

T{φ(x1)φ(x2)} = : φ(x1)φ(x2) : +〈0|T {φ(x1)φ(x2)} |0〉. (221)

For the case of three fields, Wick’s theorem yields

T{φ(x1)φ(x2)φ(x3)} = : φ(x1)φ(x2)φ(x3) : + : φ(x1) : 〈0|T{φ(x2)φ(x3)}|0〉
+ : φ(x2) : 〈0|T{φ(x1)φ(x3)}|0〉+ : φ(x3) : 〈0|T{φ(x1)φ(x2)}|0〉 (222)

7The reverse is, however, not true!



At this point the general pattern becomes clear: any time-ordered product of fields is equal to its
normal-ordered version plus terms in which pairs of fields are removed from the normal-ordered
product and sandwiched between the vacuum to form 2-point functions. Then one sums over all
permutations. Without proof we give the expression for the general case of n fields (n even):

T{φ(x1) · · ·φ(xn)} =

: φ(x1) · · · φ(xn) :
+ : φ(x1) · · · φ̂(xi) · · · φ̂(xj) · · ·φ(xn) : 〈0|T{φ(xi)φ(xj)}|0〉 + perms.

+ : φ(x1) · · · φ̂(xi) · · · φ̂(xj) · · · φ̂(xk) · · · φ̂(xl) · · ·φ(xn) :
× 〈0|T{φ(xi)φ(xj)}|0〉〈0|T{φ(xk)φ(xl)}|0〉 + perms.

+ . . .+

+〈0|T{φ(x1)φ(x2)}|0〉〈0|T{φ(x3)φ(x4)}|0〉 · · · 〈0|T{φ(xn−1)φ(xn)}|0〉
+ perms.. (223)

The symbol φ̂(xi) indicates that φ(xi) has been removed from the normal-ordered product.
Let us now go back to 〈0|T{φ(x1) · · · φ(xn)}|0〉. If we insert Wick’s theorem, then we find that only
the contribution in the last line of Eq. (223) survives: by definition the VEV of a normal-ordered
product of fields vanishes, and it is precisely the last line of Wick’s theorem in which no normal-
ordered products are left. The only surviving contribution is that in which all fields have been
paired or “contracted”. Sometimes a contraction is represented by the notation:

φ (xi)φ︸ ︷︷ ︸(xj) ≡ 〈0|T{φ(xi)φ(xj)}|0〉, (224)

i.e. the pair of fields which is contracted is joined by the braces. Wick’s theorem can now be
rephrased as

〈0|T{φ(x1) · · · φ(xn)}|0〉 = sum of all possible contractions of n fields. (225)

An example of this result is the 4-point function

〈0|T{φ(x1)φ(x2)φ(x3)φ(x4)}|0〉 = φ (x1)φ︸ ︷︷ ︸(x2)φ (x3)φ︸ ︷︷ ︸(x4)

+φ (x1)φ
︷ ︸︸ ︷
(x2)φ(x3)φ︸ ︷︷ ︸(x4) + φ(x1)φ

︷ ︸︸ ︷
(x2)φ(x3)φ(x4)︸ ︷︷ ︸ . (226)

5.2 The Feynman propagator

Using Wick’s Theorem one can relate any n-point Green’s functions to an expression involving only
2-point functions. Let us have a closer look at

G2(x, y) = 〈0|T{φin(x)φin(y)}|0〉. (227)



We can now insert the solution for φ in terms of â and â†. If we assume tx > ty then G2(x, y) can
be written as

G2(x, y) =

∫
d3p d3q

(2π)6 4E(p)E(q)

×
〈
0
∣∣∣
(
â†(p) eip·x + â(p) e−ip·x

)(
â†(q) eiq·y + â(q) e−iq·y

)∣∣∣ 0
〉

=

∫
d3p d3q

(2π)6 4E(p)E(q)
e−ip·x+iq·y

〈
0
∣∣∣â(p)â†(q)

∣∣∣ 0
〉
. (228)

This shows that G2 can be interpreted as the amplitude for a meson which is created at y and
destroyed again at point x. We can now replace â(p)â†(q) by its commutator:

G2(x, y) =

∫
d3p d3q

(2π)6 4E(p)E(q)
e−ip·x+iq·y

〈
0
∣∣∣
[
â(p), â†(q)

]∣∣∣ 0
〉

=

∫
d3p

(2π)3 2E(p)
e−ip·(x−y), (229)

and the general result, after restoring time-ordering, reads

G2(x, y) =

∫
d3p

(2π)3 2E(p)

(
e−ip·(x−y)θ(tx − ty) + eip·(x−y)θ(ty − tx)

)
. (230)

Furthermore, using contour integration one can show that this expression can be rewritten as a
4-dimensional integral

G2(x, y) = i

∫
d4p

(2π)4
e−ip·(x−y)

p2 −m2 + iε
, (231)

where ε is a small parameter which ensures that G2 does not develop a pole. This calculation has
established that G2(x, y) actually depends only on the difference (x− y). Equation (231) is called
the Feynman propagator GF (x− y):

GF (x− y) ≡ 〈0|T{φ(x)φ(y)}|0〉 = i

∫
d4p

(2π)4
e−ip·(x−y)

p2 −m2 + iε
. (232)

The Feynman propagator is a Green’s function of the Klein-Gordon equation, i.e. it satisfies

(
�x +m2

)
GF (x− y) = −iδ4(x− y), (233)

and describes the propagation of a meson between the space-time points x and y.

5.3 Two-particle scattering to O(λ)

Let us now consider a scattering process in which two incoming particles with momenta p1 and p2

scatter into two outgoing ones with momenta k1 and k2, as shown in Fig. 5. The S-matrix element
in this case is

Sfi = 〈k1,k2; out|p1,p2; in〉
= 〈k1,k2; in|S|p1,p2; in〉, (234)



p1

p2

k1

k2

Figure 5: Scattering of two initial particles with momenta p1 and p2 into 2 particles with momenta
k1 and k2.

and S = 1 + iT . The LSZ formula Eq. (199) tells us that we must compute G4 in order to obtain
Sfi. Let us work out G4 in powers of λ using Wick’s theorem.

Suppressing the subscripts “in” from now on, the expression we have to evaluate order by order in
λ is

G4(x1, . . . , x4) (235)

=

∞∑

r=0

(
− iλ
4!

)r 1

r!

〈
0

∣∣∣∣T
{
φ(x1)φ(x2)φ(x3)φ(x4)

(∫
d4y φ4(y)

)r}∣∣∣∣ 0
〉

∞∑

r=0

(
− iλ
4!

)r 1

r!

〈
0

∣∣∣∣T
(∫

d4y φ4(y)

)r∣∣∣∣ 0
〉 .

At O(λ0), the denominator is 1, and the numerator gives

〈0|T{φ(x1)φ(x2)φ(x3)φ(x4)}|0〉 = GF (x1 − x2)GF (x3 − x4) +GF (x1 − x3)GF (x2 − x4)

+GF (x1 − x4)GF (x2 − x3), (236)

where we have used Wick’s theorem. We may represent this graphically as follows:

x3

x4

x1

x2

+

x3

x4

x1

x2

+

x3

x4

x1

x2

But this is the same answer as if we had set λ = 0, so O(λ0) does not describe scattering and hence
is not a contribution to the T -matrix.

The first non-trivial scattering happens at O(λ). For example, the expansion of the above formula
includes the contribution (from the numerator)

− iλ
4!
〈0|T [φ(x1) . . . φ(x4)

∫
d4yφ4(y)|0〉 = − iλ

4!

∫
d4y 4!GF (x1 − y)GF (x2 − y)GF (x3 − y)

×GF (x4 − y), (237)



where the 4! inside the integral arises from all possible contractions in Wick’s theorem. This has
the graphical representation

x3

x4

x1

x2

y
−iλ

∫
d4y

where each line corresponds to a propagator, and we have assinged a vertex to each space-time
point. Also at this order, we have the graphs

x3

x4

x1

x2

+

x3

x4

x1

x2

+ . . .

We will see later on that neither of these graphs contributes to the S-matrix element (after sub-
stituting the Green’s function into the LSZ formula of eq. (199)), as they are not fully connected.
By this we mean that not all external particle vertices are connected to the same graph. At yet
higher orders, we may have graphs wich involve fully connected pieces, dressed by additional “vac-
uum bubbles” (such as that which is sitting in the middle of the right-most figure above). These
vacuum bubbles are cancelled by the denominator in eq. (212) which, given that it contains no ex-
ternal fields, generates all possible vacuum graphs. The presence of these vacuum graphs explains
why the vacuum of the interacting theory is different to that of the free theory, as mentioned earlier.

To summarise, the final answer for the scattering amplitude to O(λ) is given by Eq. (237).

5.4 Graphical representation of the Wick expansion: Feynman rules

We have already encountered the graphical representation of the expansion of Green’s functions in
perturbation theory after applying Wick’s theorem. It is possible to formulate a simple set of rules
which allow us to draw the graphs directly without using Wick’s theorem and to write down the
corresponding algebraic expressions.
We again consider a neutral scalar field whose Lagrangian is

L =
1

2
∂µ φ∂

µφ− 1

2
m2φ2 − λ

4!
φ4. (238)

Suppose now that we want to compute the O(λm) contribution to the n-point Green’s function
Gn(x1, . . . , xn). This is achieved by going through the following steps:

(1) Draw all distinct diagrams with n external lines and m 4-fold vertices:

• Draw n dots and label them x1, . . . , xn (external points)

• Draw m dots and label them y1, . . . , ym (vertices)



• Join the dots according to the following rules:

– only one line emanates from each xi

– exactly four lines run into each yj

– the resulting diagram must be connected, i.e. there must be a continuous path
between any two points.

(2) Assign a factor − iλ
4!

∫
d4yi to the vertex at yi

(3) Assign a factor GF (xi − yj) to the line joining xi and yj

(4) Multiply by the number of contractions C from the Wick expansion which lead to the same
diagram.

These are the Feynman rules for scalar field theory in position space.
Let us look at an example, namely the 2-point function. According to the Feynman rules the
contributions up to order λ2 are as follows:

O(1): x1 x2 = GF (x1 − x2)

O(λ):

x1 x2y

= −iλ
2

∫
d4yGF (x1 − y)GF (x2 − y)GF (0)

O(λ2):

x1 x2y1

y2
= −λ2

4

∫
d4y

∫
d4zGF (x1 − y)GF (x2 − y)

×G2
F (y − z)GF (0)

O(λ2): x1 x2y1 y2

= C
(
− iλ
4!

)2 ∫
d4y1d

4y2 GF (x1 − y1) [GF (y1 − y2)]
3GF (y2 − x2)

The combinatorial factor for this contribution is worked out as C = 4 · 4!. Note that the same
graph, but with the positions of y1 and y2 interchanged is topologically distinct. Numerically it
has the same value as the above graph, and so the corresponding expression has to be multiplied
by a factor 2.
Another contribution at order λ2 is



O(λ2):

x1 x2

y1 y2 vacuum contribution;

not connected

This contribution must be discarded, since not all of the points are connected via a continuous line.

5.5 Feynman rules in momentum space

It is often simpler to work in momentum space, and hence we will discuss the derivation of Feynman
rules in this case. This also reflects what is typically done in scattering experiments (i.e. incoming
and outgoing particles have definite momentum). If one works in momentum space, the Green’s
functions are related to those in position space by a Fourier transform

G̃n(p1, . . . , pn) =

∫
d4x1 · · ·

∫
d4xn e

ip1·x1+...+ipn·xn Gn(x1, . . . , xn). (239)

The Feynman rules then serve to compute the Green’s function G̃n(p1, . . . , pn) order by order in
the coupling.

Let us see how this works for the 2 → 2 scattering example we considered above. At O(λ) this was
given in eq. (237), which we may simplify slightly to

−iλ
∫
d4y GF (x1 − y)GF (x2 − y)GF (x3 − y)GF (x4 − y). (240)

We may now substitute in the momentum space form of each propagator (eq. (232)) to give

− iλ

∫
d4y

(
4∏

i=1

∫
d4pi
(2π)4

i

p2i −m2 + iε

)
e−i

∑
i pi·(xi−y)

= −iλ(2π)4δ4(p1 + p2 + p3 + p4)

(
4∏

i=1

∫
d4pi
(2π)4

i

p2i −m2 + iε

)
e−i

∑
i pi·xi ,

where we have carried out the y integration in the second line. Substituting this into eq. (239) and
carrying out the integrals over each xi, one finds

G̃4(p1, . . . , pn) = −iλ(2π)4δ4(p1 + p2 + p3 + p4)

(
4∏

i

∫
d4pi
(2π)4

i

p2i −m2 + iε
(2π)4δ(pi)

)

= −iλ(2π)4δ4(p1 + p2 + p3 + p4)
∏

i

i

p2i −m2 + iε

We will not repeat the above derivation for a general Green’s function. Rather, we now state the
Feynman rules in momentum space, and the reader may easily verify that the above example is a
special case.

Feynman rules (momentum space)



(1) Draw all distinct diagrams with n external lines and m 4-fold vertices:

• Assign momenta p1, . . . , pn to the external lines

• Assign momenta kj to the internal lines

(2) Assign to each external line a factor

i

p2k −m2 + iε

(3) Assign to each internal line a factor
∫

d4kj
(2π)4

i

k2j −m2 + iε

(4) Each vertex contributes a factor

− iλ
4!
(2π)4δ4

(∑
momenta

)
,

(the delta function ensures that momentum is conserved at each vertex).

(5) Multiply by the combinatorial factor C, which is the number of contractions leading to the
same momentum space diagram (note that C may be different from the combinatorial factor
for the same diagram considered in position space!)

Alternatively, one may rephrase (4) and (5) as follows:

(4*) Each vertex carries a factor

−iλ(2π)4δ4
(∑

momenta
)
,

(5*) Divide by the symmetry factor i.e. the dimension of the group of symmetry transformations
that leaves the diagram invariant.

5.6 S-matrix and truncated Green’s functions

The final topic in these lectures is the derivation of a simple relation between the S-matrix element
and a particular momentum space Green’s function, which has its external legs amputated: the so-
called truncated Green’s function. This further simplifies the calculation of scattering amplitudes
using Feynman rules.
Let us return to the LSZ formalism and consider the scattering of m initial particles (momenta
p1, . . . ,pm) into n final particles with momenta k1, . . . ,kn. The LSZ formula (eq. (199)) tells us
that the S-matrix element is given by

〈
k1, . . . ,kn; out

∣∣∣p1, . . . ,pm; in
〉

= (i)n+m

∫ m∏

i=1

d4xi

∫ n∏

j=1

d4yj exp



−i

m∑

i=1

pi · xi + i

n∑

j=1

kj · yj





×
m∏

i=1

(
�xi

+m2
) n∏

j=1

(
�yj +m2

)
Gn+m(x1, . . . , xm, y1, . . . , yn). (241)
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Figure 6: The construction of the truncated Green’s function in position space.

Let us have a closer look at Gn+m(x1, . . . , xm, y1, . . . , yn). As shown in Fig. 6 it can be split into
Feynman propagators, which connect the external points to the vertices at z1, . . . , zn+m, and a
remaining Green’s function Gn+m, according to

Gn+m =

∫
d4z1 · · · d4zn+mGF (x1 − z1) · · ·GF (yn − zn+m)Gn+m(z1, . . . , zn+m), (242)

where, perhaps for obvious reasons, Gn+m is called the truncated Green’s function.
Putting Eq. (242) back into the LSZ expression for the S-matrix element, and using that

(
�xi

+m2
)
GF (xi − zi) = −iδ4(xi − zi) (243)

one obtains
〈
k1, . . . ,kn; out

∣∣∣p1, . . . ,pm; in
〉

= (i)n+m

∫ m∏

i=1

d4xi

∫ n∏

j=1

d4yj exp



−i

m∑

i=1

pi · xi + i
n∑

j=1

kj · yj



 (244)

×(−i)n+m

∫
d4z1 · · · d4zn+m δ4(x1 − z1) · · · δ4(yn − zn+m)Gn+m(z1, . . . , zn+m).

After performing all the integrations over the zk’s, the final relation becomes
〈
k1, . . . ,kn; out

∣∣∣p1, . . . ,pm; in
〉

=

∫ m∏

i=1

d4xi

n∏

j=1

d4yj exp



−i

m∑

i=1

pi · xi + i

n∑

j=1

kj · yj





× Gn+m(x1, . . . , xm, y1, . . . , yn)

≡ Gn+m(p1, . . . , pm, k1, . . . , kn), (245)

where Gn+m is the truncated n+m-point function in momentum space. This result shows that the
scattering matrix element is directly given by the truncated Green’s function in momentum space.
In other words, calculating the S-matrix is much the same as calculating the Green’s function, but
without the free propagators associated with the external legs. Note that this renders zero any
graph which is not fully connected - any diagram in which not all external points are connected to
the same graph vanishes upon multiplication by the (p2i +m2) factors. This is what allowed us to
neglect such graphs in the previous section.



6 Summary

That completes this introductory look at quantum field theory. Although we did not get as far as
some of the more relevant physical applications of QFT, we have looked in detail at what a QFT
is, and how the description of scattering amplitudes leads to Feynman diagrams. To recap how we
did this:

1. We reviewed the Lagrangian formalism for classical field theory, and also the canonical quan-
tisation approach to quantum mechanics.

2. We constructed the Lagrangian for a relativistic field theory (the free Klein-Gordon field),
and applied the techniques of canonical quantisation to this field theory.

3. States in this theory were found to represent particle excitations, such that a particle of
momentum p was found to be a quantum of excitation in the relevant Fourier mode of the
field.

4. We then studied the interacting theory, arguing that at initial and final times (when the
interaction dies away) we can work with free fields. These were related by an operator S,
whose matrix elements represented the transition probability to go from a given initial to a
given final state.

5. Using the interaction picture for time evolution, we found an expression for the S matrix in
terms of an evolution operator U , describing how the fields at general time t deviate from the
initial free fields.

6. We also found a formula which related S matrix elements to n-particle Green’s functions
(vacuum expectation values of time-ordered fields). This was the LSZ formula of eq. (199).

7. We related the Green’s functions involving Heisenberg fields to those involving the “in” fields
at time t→ −∞ (eq. (212)).

8. We then found how to compute these Green’s functions in perturbation theory, valid when
the strength of the interaction is weak. This involved having to calculate vacuum expectation
values of time-ordered products, for which we could use Wick’s theorem.

9. We developed a graphical representation of Wick’s theorem, which led to simple rules (Feyn-
man rules) for the calculation of Green’s functions in position or momentum space.

10. These can easily be converted to S matrix elements by truncating the free propagators asso-
ciated with the external lines.

Needless to say, there are many things we did not have time to talk about. Some of these will be
explored by the other courses at this school:

• Here we calculated S-matrix elements without explaining how to turn these into decay rates
or cross-sections, which are the measurable quantities. This is dealt with in the QED / QCD
course.



• The Klein-Gordon field involves particles of spin zero, which are bosons. One may also
construct field theories for fermions of spin 1

2 , and vector bosons (spin 1). Physical examples
include QED and QCD.

• Fields may have internal symmetries (e.g. local gauge invariance). Again, see the QED /
QCD and Standard Model courses.

• Diagrams involving loops are divergent, ultimately leading to infinite renormalisation of the
couplings and masses. The renormalisation procedure can only be carried out in certain
theories. The Standard Model is one example, but other well-known physical theories (e.g.
general relativity) fail this criterion.

• There is an alternative formulation of QFT in terms of path integrals (i.e sums over all
possible configurations of fields). This alternative formulation involves some extra conceptual
overhead, but allows a much more straightforward derivation of the Feynman rules. More
than this, the path integral approach makes many aspects of field theory manifest i.e. is
central to our understanding of what a quantum field theory is. This will not be covered at
all in this school, but the interested student will find many excellent textbooks on the subject.

There are other areas which are not covered at this school, but nonetheless are indicative of the fact
that field theory is still very much an active research area, with many exciting new developments:

• Calculating Feynman diagrams at higher orders is itself a highly complicated subject, and
there are a variety of interesting mathematical ideas (e.g. from number theory and complex
analysis) involved in current research.

• Sometimes perturbation theory is not well-behaved, in that there are large coefficients at each
order of the expansion in the coupling constant. Often the physics of these large contribu-
tions can be understood, and summed up to all orders in the coupling. This is known as
resummation, and is crucial to obtaining sensible results for many cross-sections, especially
in QCD.

• Here we have “solved” for scattering probabilities using a perturbation expansion. It is
sometimes possible to numerically solve the theory fully non-perturbatively. Such approaches
are known as lattice field theory, due to the fact that one discretizes space and time into a
lattice of points. It is then possible (with enough supercomputing power!) to calculate things
like hadron masses, which are completely incalculable in perturbation theory.

• Here we set up QFT in Minkowski (flat space). If one attempts to do the same thing in curved
space (i.e. a strong gravitational field), many weird things happen that give us tantalising
hints of what a quantum field of gravity should look like.

• There are some very interesting recent correspondences between certain limits of certain string
theories, and a particular quantum field theory in the strong coupling limit. This has allowed
us to gain new insights into nonperturbative field theory from an analytic point of view, and
there have been applications in heavy ion physics and even condensed matter systems.

I could go on of course, and many of the more formal developments of current QFT research are
perhaps not so interesting to a student in experimental particle physics. However, at the present



time some of the more remarkable and novel extensions to the Standard Model (SUSY, extra
dimensions) are not only testable, but are actively being looked for. Thus QFT, despite its age, is
very much at the forefront of current research efforts and may yet surprise us!
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A Books on QFT

There are numerous textbooks already and a surprisingly high number of new books are appearing
all the time. As with anything in theoretical physics, exploring a multitude of approaches to a
certain field is encouraged.
In the following list, [1] is said to be a good introductory text and a lot of my colleagues use this
one for their introduction to QFT classes. Mark has also put a “try-before-buy” version on his
webpage, which is an early version of the entire textbook. You can judge yourself if it’s worth the
investment.
My first encounter with QFT was [2]. It’s a very good book that heavily makes use of the Path
Integral Formalism (not discussed in these lectures), it also includes topics which are normally
not featured in general purpose QFT books (e.g. SUSY, topological aspects). A modern classic
is [3], which many use as a standard text. It covers a lot of ground and develops an intuitive
approach to QFT (but you aren’t spared the hard bits!). It also touches other areas where QFT
finds application (e.g. Statistical Physics). In my opinion, it isn’t very good to look things up
because Peskin’s pedagogical approach forces logically-connected topics to be scattered across the
text. Unless you are very familar with the book, it can take ages to find certain things again. My
personal favorite by far is [4], mostly owing to the authors’ focus on particle theory applications of
QFT. But you’ll probably need a bit of exposure to one of the introductory texts to fully appreciate
the depth and technical details that the authors have put into it. Yes, it’s expensive (like most of
the Graduate-level textbooks), but having an advanced QFT book by a bunch of German authors
on your shelf will not go unnoticed by your colleagues. Another good text is [5]. Finally, those who
are not faint of heart and who like their field theory from the horse’s mouth may like to consult
Weinberg’s monumental three volume set [6].
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B Notation and conventions

4-vectors:

xµ = (x0,x) = (t,x)

xµ = gµν x
ν = (x0,−x) = (t,−x)

Metric tensor: gµν = gµν =




1 0 0 0
0 −1 0 0
0 0 −1 0
0 0 0 −1




Scalar product:

xµxµ = x0x0 + x1x1 + x2x2 + x3x3

= t2 − x2

Gradient operators:

∂µ ≡ ∂

∂xµ
=

(
∂

∂t
,−∇

)

∂µ ≡ ∂

∂xµ
=

(
∂

∂t
,∇
)

d’Alembertian: ∂µ∂µ =
∂2

∂t2
−∇2 ≡ �

Momentum operator:

p̂µ = i~∂µ =

(
i~
∂

∂t
, −i~∇

)
=
(
Ê, p̂

)
(as it should be)

δ-functions:
∫
d3p f(p) δ3(p− q) = f(q)

∫
d3x e−ip·x = (2π)3δ3(p)

∫
d3p

(2π)3
e−ip·x = δ3(x)

(similarly in four dimensions)

Note:

δ(x2 − x20) = δ{(x − x0)(x+ x0)}
=

1

2x
{δ(x − x0) + δ(x + x0)}


