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1 Motivation for Dark Matter

The existence of a vast amount of dark matter (DM) in the Universe is supported by many astro-
physical and cosmological observations. The latest measurements indicate that approximately a
27% of the Universe energy density is in form of a new type of non-baryonic cold DM. Given that
the Standard Model (SM) of particle physics does not contain any viable candidate to account for
it, DM can be regarded as one of the clearest hints of new physics.

1.1 Evidence for Dark Matter

Astrophysical and Cosmological observations have provided substantial evidence that point towards
the existence of vast amounts of a new type of matter, that does not emit or absorb light. All
astrophysical evidence for DM is solely based on gravitational effects (either trough the observation
of dynamical effects, deflection of light by gravitational lensing or measurements of the gravitational
potential of galaxy clusters), which cannot be accounted for by just the observed luminous matter.
The simplest way to solve these problems is the inclusion of more matter (which does not emit
light - and is therefore dark in the astronomical sense2). Modifications in the Newtonian equation
relating force and accelerations have also been suggested to address the problem at galactic scales,
but this hypothesis is insufficient to account for effects at other scales (e.g., cluster of galaxies) or
reproduce the anisotropies in the CMB.

No known particle can play the role of the DM (we will later argue that neutrinos contribute to
a small part of the DM). Thus, this is one of the clearest hints for Physics Beyond the Standard
Model and provides a window to new particle physics models. In the following I summarise some
of the main pieces of evidence for DM at different scales.

I recommend completing this section with the first chapters of Ref. [1] and the recent article [2].

1 Email: davidg.cerdeno@gmail.com
2Since dark matter does not absorb light, a more adequate name would have been transparent matter.



Figure 1: Left) Vera Rubin. Right) Rotation curve of a spiral galaxy, where the contribution from
the luminous disc and dark matter halo is shown by means of solid lines.

1.1.1 Galactic scale

Rotation curves of spiral galaxies Rotation curves of spiral galaxies are probably the best-
known examples of how the dynamical properties of astrophysical objects are affected by DM.
Applying Gauss Law to a spiral galaxy (one can safely ignore the contribution from the spiral arms
and assume a spherical distribution of matter in the bulge) leads to a simple relation between the
rotation velocity of objects which are gravitationally bound to the galaxy and their distance to the
galactic centre:

v =

√
GM(r)

r
, (1)

where M(r) is the mass contained within the radius r. In the outskirts of the galaxy, where we
expect that M does not increase any more, we would therefore expect a decay vrot ∝ r−1/2.

Vera Rubin’s observations of rotation curves of spiral galaxies [3, 4] showed a very slow decrease
with the galactic radius. The careful work of Bosma [5], van Albada and Sancisi [6] showed that this
flatness could not be accounted for by simply modifying the relative weight of the diverse galactic
components (bulge, disc, gas), a new component was needed with a different spatial distribution
(see Fig. 1).

Notice that the flatness of rotation curves can be obtained if a new mass component is introduced,
whose mass distribution satisfies M(r) ∝ r in eq.(1). This is precisely the relation that one expects
for a self-gravitational gas of non-interacting particles. This halo of DM can extend up to ten times
the size of the galactic disc and contains approximately an 80% of the total mass of the galaxy.

Since then, flat rotation curves have been found in spiral galaxies, further strengthening the DM
hypothesis. Of course, our own galaxy, the Milky Way is no exception. N-body simulations have
proved to be very important tools in determining the properties of DM haloes. These can be
characterised in terms of their density profile ρ(r) and the velocity distribution function f(v).



Figure 2: Left) Coma cluster and F. Zwicky, who carried out measurements of the peculiar velocities
of this object. Right) Modern techniques [7], based on gravitational lensing, allow for a much more
precise determination of the total mass of this object.

Observations of the local dynamics provide a measurement of the DM density at our position
in the Galaxy. Up to substantial uncertainties, the local DM density can vary in a range ρ0 =
0.2 − 1 GeV cm−3. It is customary to describe the DM halo in terms of a Spherical Isothermal
Halo, in which the velocity distribution follows a Maxwell-Boltzmann law, but deviations from this
are also expected. Finally, due to numerical limitations, current N-body simulations cannot predict
the DM distribution at the centre of the galaxy. Whereas some results suggest the existence of a
cusp of DM in the galactic centre, other simulations seem to favour a core. Finally, the effect of
baryons is not easy to simulate, although substantial improvements have been recently made.

1.1.2 Galaxy Clusters

Peculiar motion of clusters. Fritz Zwicky studied the peculiar motions of galaxies in the Coma
cluster [8, 9]. Assuming that the galaxy cluster is an isolated system, the virial theorem can be
used to relate the average velocity of objects with the gravitational potential (or the total mass of
the system).

As in the case of galaxies, this determination of the mass is insensitive to whether objects emit
any light or not. The results can then be contrasted with other determinations that are based on
the luminosity. This results in an extremely large mass-to-light ratio, indicative of the existence of
large amounts of missing mass, which can be attributed to a DM component.

Modern determinations through weak lensing techniques provide a better gravitational determina-
tion of the cluster masses [10, 7] (see Fig. 2). I recommend reading through Ref.[9] for a derivation
of the virial theorem in the context of Galaxy clusters.



Figure 3: Left) Deep Chandra image of the Bullet cluster. Green lines represent mass contours
from weak lensing. Right) Dark filament in the system Abell 222/223, reconstructed using weak
lensing.

Dynamical systems. The Bullet Cluster (1E 0657-558) is a paradigmatic example of the effect
of dark matter in dynamical systems. It consists of two galaxy clusters which underwent a col-
lision. The visible components of the cluster, observed by the Chandra X-ray satellite, display a
characteristic shock wave (which gives name to the whole system). On the other hand, weak-lensing
analyses, which make use of data from the Hubble Space Telescope, have revealed that most of the
mass of the system is displaced from the visible components. The accepted interpretation is that
the dark matter components of the clusters have crossed without interacting significantly (see e.g.,
Ref. [11, 12]).

The Bullet Cluster is considered one of the best arguments against MOND theories (since the
gravitational effects occur where there is no visible matter). It also sets an upper bound on the
self-interaction strength of dark matter particles.

DM filaments. Observations of the distribution of luminous matter at large scales have shown
that it follows a filamentary structure. Numerical simulations of structure formation with cold DM
have been able to reproduce this feature. To date, it is well understood that DM plays a fundamental
role in creating that filamentary network, gravitationally trapping the luminous matter. Recently,
the comparison of the distribution of luminous matter in the Abell 222/223 supercluster with weak-
lensing data has shown the existence of a dark filament joining the two clusters of the system. That
filament, having no visible counterpart, is believed to be made of DM.

1.1.3 Cosmological scale

Finally, DM has also left its footprint in the anisotropies of the Cosmic Microwave Background
(CMB). The analysis of the CMB constitutes a primary tool to determine the cosmological param-
eters of the Universe. The data obtained by dedicated satellites in the past decades has confirmed
that we live in a flat Universe (COBE), dominated by dark matter and dark energy (WMAP),
whose cosmological abundances have been determined with great precision (Planck).



Figure 4: Left) Contribution to the energy density for each of the components of the Universe.
Right) Planck temperature map.

The abundance of DM is normally expressed in terms of the cosmological density parameter, defined
as ΩDMh

2 = ρDM/ρc where ρc is the critical density necessary to recover a flat Universe and
h = 0.7 is the normalised Hubble parameter. The most recent measurements by the Planck satellite,
combined with data obtained from Supernovae (that trace the Universe expansion) yield

ΩCDMh
2 = 0.1196± 0.0031 . (2)

Given that Ω ≈ 1, this means that dark matter is responsible for approximately a 26% of the
Universe energy density nowadays. Even more surprising is the fact that another exotic component
is needed, dark energy, which makes up approximately the 69% of the total energy density (see
Fig. 4).

1.2 Dark Matter properties

1.2.1 Neutral

It is generally argued that DM particles must be electrically neutral. Otherwise they would scatter
light and thus not be dark. Similarly, constrains on charged DM particles can be extracted from
unsuccessful searches for exotic atoms. Constraints on heavy millicharged particles are inferred
from cosmological and astrophysical observations as well as direct laboratory tests [13, 14, 15]. Mil-
licharged DM particles scatter off electrons and protons at the recombination epoch via Rutherford-
like interactions. If millicharged particles couple tightly to the baryonphoton plasma during the
recombination epoch, they behave like baryons thus affecting the CMB power spectrum in several
ways [13, 14]. For particles much heavier than the proton, this results in an upper bound of its
charge ε [14]

ε ≤ 2.24× 10−4 (M/1 TeV)1/2 . (3)

Similarly, direct detection places upper bounds on the charge of the DM particle [16]

ε ≤ 7.6× 10−4 (M/1 TeV)1/2 . (4)



1.2.2 Nonrelativistic

Numerical simulations of structure formation in the Early Universe have become a very useful tool
to understand some of the properties of dark matter. In particular, it was soon found that dark
matter has to be non-relativistic (cold) at the epoch of structure formation. Relativistic (hot) dark
matter has a larger free-streaming length (the average distance traveled by a dark matter particle
before it falls into a potential well). This leads to inconsistencies with observations.

However, at the Galactic scale, cold dark matter simulations lead to the occurrence of too much
substructure in dark matter haloes. Apparently this could lead to a large number of subhaloes
(observable through the luminous matter that falls into their potential wells). It was argued that if
dark matter was warm (having a mass of approximately 2−3 keV) this problem would be alleviated.

Modern simulations, where the effect of baryons is included, are fundamental in order to fully
understand structure formation in our Galaxy and determine whether dark matter is cold or warm.

1.2.3 NonBaryonic

The results of the CMB, together with the predictions from Big Bang nucleosynthesis, suggest
that only 4 − 5% of the total energy budget of the universe is made out of ordinary (baryonic)
matter. Given the mismatch of this with the total matter content, we must conclude that DM is
non-baryonic.

Neutrinos. Neutrinos deserve special mention in this section, being the only viable non-baryonic
DM candidate within the SM. Neutrinos are very abundant particles in the Universe and they are
known to have a (very small) mass. Given that they also interact very feebly with ordinary matter
(only through the electroweak force) they are in fact a component of the DM. There are, however
various arguments that show that they contribute in fact to a very small part.

First, neutrinos are too light. Through the study of the decoupling of neutrinos in the early universe
we can compute their thermal relic abundance. Since neutrinos are relativistic particles at the time
of decoupling, this is in fact a very easy computation (we will come back to this in Section 2.2.1),
and yields

Ωνh
2 ≈

∑
imi

91 eV
. (5)

Using current upper bounds on the neutrino mass, we obtain Ωνh
2 < 0.003, a small fraction of the

total DM abundance.

Second, neutrinos are relativistic (hot) at the epoch of structure formation. As mentioned above, hot
DM leads to a different hierarchy of structure formation at large scales, with large objects forming
first and small ones occurring only after fragmentation. This is inconsistent with observations.



1.2.4 Long-lived

Possibly the most obvious observation is that DM is a long-lived (if not stable) particle. The
footprint of DM can be observed in the CMB anisotropies, its presence is essential for structure
formation and we can feel its gravitational effects in clusters of galaxies and galaxies nowadays.

Stable DM candidates are common in models in which a new discrete symmetry is imposed by
ensuring that the DM particle is the lightest with an exotic charge (and therefore its decay is
forbidden). This is the case, e.g., in Supersymmetry (when R-parity is imposed), Kaluza-Klein
scenarios (K-parity) or little Higgs models.

However, stability is not required by observation. DM particles can decay, as long as their lifetime
is longer than the age of the universe. Long-lived DM particles feature very small couplings.
Characteristic examples are gravitinos (whose decay channels are gravitationally suppressed) or
axinos (which decays through the axion coupling).

2 Freeze Out of Massive Species

In this section we will address the computation of the relic abundance of dark matter particles,
making special emphasis in the case of thermal production in the Early Universe.

2.1 Cosmological Preliminaries

This section does not intend to be a comprehensive review on Cosmology, but only an introduction
to some of the elements that we will need for the calculation of Dark Matter freeze-out.

We can describe our isotropic and homogeneous Universe in terms of the Friedman- Lemâıtre-
Robertson-Walker (FLRW) metric, which is exact solution of Einstein’s field equations of general
relativity

ds2 = dt2 − a2(t)

(
dr2

1− kr2
+ r2(dθ2 + sin θdφ2)

)
= gµνdx

µdxν . (6)

The constant k = {−1, 0,+1} corresponds to the spatial curvature, with k = 0 corresponding to a
flat Universe (the choice we will be making in these notes). Remember that the affine connection,
defined as

Γµνλ =
1

2
gµσ(gσν, λ+ gσλ,ν − gνλ,σ) , (7)

is greatly simplified, since most of the derivatives vanish.

In the following we are going to work with a radiation-dominated Universe. Notice that matter-
radiation equality only occurs very late (when the Universe is approximately 60 kyr) and dark
matter freeze-out occurs before BBN. The Hubble parameter for a radiation-dominated Universe



reads

H = 1.66 g
1/2
∗

T 2

MP
, (8)

where MP = 1.22× 1019 GeV.

It is customary to define the dimensionless parameter x = m/T (where m is a mass parameter that
we will later associate to the DM mass) and extract the explicit x dependence from the Hubble
parameter to define H(m) as follows

H(m) = 1.66 g
1/2
∗

m2

MP
= Hx2 . (9)

In this section we will try to compute the time evolution of the number density of dark matter
particles, in order to be able to compute their relic abundance today and what this implies in the
interaction strength of dark matter particles. The phase space distribution function f describes
the occupancy number in phase space for a given particle in kinetic equilibrium, and distinguishes
between fermions and bosons.

f =
1

e(E−µ)/T ± 1
, (10)

where the (−) sign corresponds to bosons and the (+) sign to fermions. E is the energy and µ the
chemical potential. For species in chemical equilibrium, the chemical potential is conserved in the
interactions. Thus, for processes such as i+ j ↔ c+ d we have µi +µj = µc +µd. Notice then that
all chemical potentials can be expressed in terms of the chemical potentials of conserved quantities,
such as the baryon chemical potential µB. The number of independent chemical potentials corre-
sponds to conserved particle numbers. This implies, for example, that given a particle with µi, the
corresponding antiparticle would have the opposite chemical potential −µi. For the same reason,
since the number of photons is not conserved in interactions, µγ = 0

Using the expression of the phase space distribution function (10), and integrating in phase space, we
can compute a series of observables in the Universe. In particular, the number density of particles,
n, the energy density, ρ, and pressure, p, for a dilute and weakly-interacting gas of particles with
g internal degrees of freedom read

n =
g

(2π)3

∫
f(p) d3p, (11)

ρ =
g

(2π)3

∫
E(p) f(p) d3p, (12)

p =
g

(2π)3

∫
|p|2

3E(p)
f(p) d3p. (13)

It is customary (and very convenient) to define densities normalised by the time dependent volume
a(t)−3. The reason for this is that in the absence of number changing processes, the density
remains constant with time evolution (or redshift). Notice that since the evolution of the Universe is
isoentropic, the entropy density s = S/a3 has precisely that dependence. Applying this prescription



to the number density of particles, we define the yield as a fraction of the number density and the
entropy density as

Y =
n

s
. (14)

Notice that, in the absence of number-changing processes, the yield remains constant. The evolution
of the entropy density as a function of the temperature is given by 3

s =
2π2

45
g∗sT

3 , (15)

where the effective number of relativistic degrees of freedom for entropy is

g∗s =
∑

bosons

g

(
Ti
T

)3

+
7

8

∑
fermions

g

(
Ti
T

)3

. (16)

Remember also that we can express the energy density as

ρ =
π2

30
g∗T

4 , (17)

in terms of the relativistic number of degrees of freedom

g∗ =
∑

bosons

g

(
Ti
T

)4

+
7

8

∑
fermions

g

(
Ti
T

)4

. (18)

In these two equations, T is the temperature of the plasma (in equilibrium) and Ti is the effective
temperature of each species.

Solving the integral in eq. (11) explicitly for relativistic and non-relativistic particles, and expressing
the results in terms of the Yield results in the following expressions.

• relativistic species

n =
geff
π2

ζ(3)T 3 , (19)

where geff = g for bosons and geff = 3
4g for fermions4. Then, using eq. (14), the Yield at

equilibrium reads

Yeq =
45

2π4
ζ(3)

geff
g∗s
≈ 0.278

geff
g∗s

. (20)

• non-relativistic species

n = geff

(
mT

2π

)3/2

e−m/T . (21)

Then the Yield at equilibrium reads

Yeq =
45

2π4

(π
8

)1/2 geff
g∗s

(m
T

)3/2
e−m/T . (22)

3To arrive at this equation, one can calculate s = (p + ρ)/T for fermions and bosons, using the corresponding
expression for the phase space distribution function.

4We are using here the approximation E ≈ |~p| in the relativistic limit, and the integrals
∫∞
0
p2/(ep−1)dp = 2ζ(3),

and
∫∞
0
p2/(ep + 1)dp = 3ζ(3)/2, in terms or Riemann’s Zeta function. Remember also that ζ(3) ≈ 1.202.



Exercise: It is easy to estimate the value of the Yield that we need in order to
reproduce the correct DM relic abundance, Ωh2 ≈ 0.1, since

Ωh2 =
ρχ
ρc
h2 =

mχnχh
2

ρc
=
mχY∞s0h

2

ρc
, (23)

where Y∞ corresponds to the DM Yield today and s0 is todays entropy density. We
can assume that the Yield did not change since DM freeze-out and therefore

Ωh2 =
mχYfs0h

2

ρc
. (24)

Using the measured value s0 = 2970 cm−3, and the value of the critical density
ρc = 1.054×10−5 h2 GeV cm−3, as well as Plancks result on the DM relic abundance,
Ωh2 ≈ 0.1, we arrive at

Yf ≈ 3.55× 10−10

(
1 GeV

mχ

)
. (25)

In Figure 5 represent the yield as a function of x for non-relativistic particles, us-
ing expression (22). As we can observe, the above range of viable values for Yf
correspond to xf ≈ 20.
Notice that this is a crude approximation and we will soon be making a more careful
quantitative treatment.

2.2 Time evolution of the number density

The evolution of the number density operator can be computed by applying the covariant form of
Liuvilles operator to the corresponding phase space distribution function. Formally speaking, we
have

L̂[f ] = C[f ], (26)

where L̂ is the Liouville operator, defined as

L̂ = pµ
∂

∂xµ
− Γµσρp

σpρ
∂

∂pµ
, (27)

and C[f ] is the collisional operator, which takes into account processes which change the number of
particles (e.g., annihilations or decays). In the expression above, gravity enters through the affine
connection, Γµσρ.

One can show that in the case of a FRW Universe, for which f(xµ, pµ) = f(t, E), we have

L̂ = E
∂

∂t
− Γ0

σρp
σpρ

∂

∂E

= E
∂

∂t
−H|p|2 ∂

∂E
. (28)



Figure 5: Equilibrium yield as a function of the dimensionless variable, x, for non-relativistic
particles. The green band represents the freeze-out value, Yf , for which the correct thermal relic
abundance is achieved (for masses of order 1-1000 GeV.

Integrating over the phase space we can relate this to the time evolution of the number density

g

(2π)3

∫
L̂[f ]

E
d3p =

g

(2π)3

∫
C[f ]

E
d3p , (29)

Exercise: We can show that

g

(2π)3

∫
L̂[f ]

E
d3p =

dn

dt
+ 3Hn . (30)

Regarding the collisional operator, it encodes the microphysical description in terms of Particle
Physics, and incorporates all number-changing processes that create or deplete particles in the
thermal bath. For simplicity, let us concentrate in annihilation processes, where SM particles
(A, B) can annihilate to form a pair of DM particles (labelled 1, 2), or vice-versa (A, B ↔ 1, 2).
The phase space corresponding to each particle is defined as

dΠi =
gi

(2π)3

d3pi

2Ei
, (31)



from where

g

(2π)3

∫
C[f ]

E
d3p = −

∫
dΠAdΠBdΠ1dΠ2(2π)4δ(pA + pB − p1 − p2)[

|M12→AB|2f1f2(1± fA)(1± fB)− |MAB→12|2fAfB(1± f1)(a± f2)
]

= −
∫
dΠAdΠBdΠ1dΠ2(2π)4δ(pA + pB − p1 − p2)[

|M12→AB|2f1f2 − |MAB→12|2fAfB
]
. (32)

The terms (1±fi) account for the viable phase space of the produced particles, taking into account
whether they are fermions (−) or bosons (+). Assuming no CP violation in the DM sector (T
invariance) |M12→AB|2 = |MAB→12|2 ≡ |M|2. Also, energy conservation in the annihilation
process allows us to write EA + EB = E1 + E2, thus,

fAfB = feqA f
eq
B = e−

EA+EB
T = e−

E1+E1
T = feq1 feq2 . (33)

In the first equality we have just used the fact that SM particles are in equilibrium. This eventually
leads to

g

(2π)3

∫
C[f ]

E
d3p = −〈σv〉

(
n2 − n2

eq

)
, (34)

where we have defined the thermally-averaged cross-section as

〈σv〉 ≡ 1

n2
eq

∫
dΠAdΠBdΠ1dΠ2(2π)4δ(pA + pB − p1 − p2)|M|2feq1 feq2 . (35)

Collider enthusiasts would realise that this expression is similar to that of a cross-section, but we
have to consider that the “initial conditions” do not correspond to a well-defined energy, but rather
we have to integrate to the possible energies that the particles in the thermal bath may have. This
explains the extra integrals in the phase space of incident particles with a distribution function
given by feq1 feq2 . We are thus left with the familiar form of Boltzmann equation,

dn

dt
+ 3Hn = −〈σv〉

(
n2 − n2

eq

)
. (36)

Notice that this is an equilibrium-restoring equation. If the right-hand-side of the equation dom-
inates, then n traces its equilibrium value n ≈ neq. However, when Hn > 〈σv〉n2, then the
right-hand-side can be neglected and the resulting differential equation dn/n = −3da/a implies
that n ∝ a−3. This is equivalent to saying that DM particles do not annihilate anymore and their
number density decreases only because the scale factor of the Universe increases.

It is also customary to define the dimensionless variable 5

x =
m

T
. (37)

5It is important to point that this definition of x is not universal; some authors use T/m and care should be taken
when comparing results from different sources in the literature.



Exercise: Using the yield defined in equation (14) we can simplify Boltzmann
equation. Notice that

dY

dt
=

d

dt

(n
s

)
=

d

dt

(
a3n

a3s

)
=

1

a3s

(
3a2ȧn+ a3dn

dt

)
=

1

s

(
3Hn+

dn

dt

)
. (38)

Here we have used that the expansion of the Universe is iso-entropic and thus a3s
remains constant. Also we use the definition of the Hubble parameter H = ȧ

a . This
allows us to rewrite Boltzmann equation as follows

dY

dt
= −s〈σv〉

(
Y 2 − Y 2

eq

)
. (39)

Now, since a ∝ T−1 and s ∝ T 3,

d

dt
(a3s) = 0→ d

dt
(aT ) = 0→ d

dt

(a
x

)
= 0 , (40)

which in turns leads to
dx

dt
= Hx , (41)

and thus
dY

dt
=
dY

dx

dx

dt
=
dY

dx
Hx . (42)

Using the results of Example (2.2) we can express Boltzmann equation (36) as

dY

dx
=
−sx〈σv〉
H(m)

(
Y 2 − Y 2

eq

)
=
−λ〈σv〉
x2

(
Y 2 − Y 2

eq

)
, (43)

where we have used the expression of the entropy density (15) in the last line and defined

λ ≡ 2π2

45

MP g∗s

1.66 g
1/2
∗

m

≈ 0.26
g∗s

g
1/2
∗

MP m . (44)

Eq. (43) is a Riccati equation, without closed analytical form. Thus, to calculate its solutions we
have to rely on numerical methods. However, it is possible to solve it approximately.

2.2.1 Freeze out of relativistic species

The freeze-out of relativistic species is easy to compute, since the yield (20) has no dependence
on xf . Neutrinos are a paradigmatic example of relativistic particles and one must in principle
consider their contribution to the total amount of dark matter (after all, they are dark).



Since neutrinos decouple while they are still relativistic, their yield reads

Yeq ≈ 0.278
geff
g∗s

. (45)

Neutrinos decouple at a few MeV, when the species that were still relativistic are e±, γ, ν and ν̄.
Thus, the number of relativistic degrees of freedom is g∗ = g∗s = 10.75. For one neutrino family,
the effective number of degrees of freedom is geff = 3g/4 = 3/2. Using these values, the relic
density today an be written as

Ωh2 =

∑
imνiY∞s0h

2

ρc

≈
∑

imνi

91 eV
. (46)

Notice that in order for neutrinos to be the bulk of dark matter, we would need
∑

imνi ≈ 9 eV ,
which is much bigger than current upper limits (for example, obtained from cosmological observa-
tions). Notice, indeed, that if we consider the current bound

∑
imνi ≤ 0.3 eV we can quantify the

contribution of neutrinos to the total amount of dark matter, resulting in Ωh2 ≤ 0.003. This is less
than a 3% of the total dark matter density.

2.2.2 Freeze out of non-relativistic species

We can define the quantity

∆Y ≡ Y − Yeq . (47)

Boltzmann equation (43) is now easier to solve, at least approximately, as follows

• For early times, 1 < x� xf , the yield follows closely its equilibrium value, Y ≈ Yeq, and we
can assume that d∆Y /dx = 0. We then find

∆Y = −
dYeq
dx

Yeq

x2

2λ〈σv〉
. (48)

Thus, at freeze-out we obtain

∆Yf ≈
x2
f

2λ〈σv〉
, (49)

where in the last line we have used that for large enough x, using eq. (22) implies
dYeq
dx ≈ −Yeq.

• For late times, x � xf , we can assume that Y � Yeq, and thus ∆Y∞ ≈ Y∞, leading to the
following expression,

d∆Y

dx
≈ −λ〈σv〉

x2
∆2
Y , (50)



This is a separable equation that we integrate from the freeze-out time up to nowadays.
In doing so, it is customary to expand the thermally averaged annihilation cross section in
powers of x−1 as 〈σv〉 = a+ b

x .∫ ∆Y∞

∆Yf

d∆Y

∆2
Y

= −
∫ x∞

xf

λ〈σv〉
x2

dx . (51)

Taking into account that x∞ � xf , this leads to

1

∆Y∞
=

1

∆Yf

+
λ

xf

(
a+

b

2xf

)
. (52)

The term 1/∆Yf is generally ignored (if we are only aiming at a precision up to a few per
cent [17]) . We can check that this is a good approximation using the previously derived (49)
for xf ≈ 20 (which, as we saw in Fig. 5 is the value for which the equilibrium Yield has the
right value). This leads to

∆Y∞ = Y∞ =
xf

λ
(
a+ b

2xf

) . (53)

The relic density can now be expressed in terms of this result as follows

Ωh2 =
mχ Y∞ s0h

2

ρc

≈ 10−10 GeV−2

a+ b
40

≈ 3× 10−27 cm3 s−1

a+ b
40

. (54)

This expression explicitly shows that for larger values of the annihilation cross section, smaller
values of the relic density are obtained.

2.2.3 WIMPs

Equation (54) implies that in order to reproduce the correct relic abundance, dark matter particles
must have a thermally averaged annihilation cross section (from now on we will shorten this to
simply annihilation cross section when referring to 〈σv〉) of the order of 〈σv〉 ≈ 3× 10−26 cm3 s−1.

We can now consider a simple case in which dark matter particles self-annihilate into Standard
Model ones through the exchange (e.g., in an s-channel) of a gauge boson. It is easy to see that if
the annihilation cross section is of order 〈σv〉 ∼ G2

Fm
2
WIMP , where GF = 1.16× 10−5 GeV−2, then

the correct relic density is obtained for masses of the order of ∼ GeV.

2.3 Computing the DM annihilation cross section

In the previous sections we have derived a relation between the thermally averaged annihilation cross
section and the corresponding dark matter relic abundance. This is very useful, since it provides



an explicit link with particle physics. A central point in that calculation was the expansion in
velocities of the thermally averaged annihilation cross section.

〈σv〉 = 〈a+ bv2 + cv4 + . . .〉 = a+
3

2

b′

x
+

15

8

c

x2
+ . . . . (55)

Notice that in the expressions of the previous section we have defined b ≡ 3b′/2. As we also
mentioned before, DM candidates tend to decouple when xf ≈ 20. For this value, the rms velocity
of the particles is about c/4, thus corrections of order x−1 can in general not be ignored (they can
be of order 5− 10%). Moreover, some selection rules can actually lead to a = 0 for some particular
annihilation channels and in that case 〈σv〉 is purely velocity-dependent.

It is important to define correctly the relative velocity that enters the above equation. In Ref. [17]
an explicitly Lorentz-invariant formalism is introduced where

g1

∫
C[f1]

d3p1

2π3E1
= −

∫
〈σv〉Møl(dn1dn2− dneq1 dn

eq
2 ) , (56)

where 〈σv〉Møln1n2 is invariant under Lorentz transformations and equals vlabn1,labn2,lab in the rest
frame of one of the incoming particles. In our case the densities and Møller velocity refer to the
cosmic comoving frame. In terms of the particle velocities ~vi = ~pi/Ei,

vMøl =
[
|~v1 − ~v2|2 + |~v1 × ~v2|2

]1/2
. (57)

The thermally-averaged product of the dark matter pair-annihilation cross section and their relative
velocity 〈σvMøl〉 is most properly defined in terms of separate thermal baths for both annihilating
particles [17, 18],

〈σvMøl〉(T ) =

∫
d3p1d

3p2 σvMøl e
−E1/T e−E2/T∫

d3p1d3p2e−E1/T e−E2/T
, (58)

where p1 = (E1,p1) and p2 = (E2,p2) are the 4-momenta of the two colliding particles, and T is
the temperature of the bath. The above expression can be reduced to a one-dimensional integral
which can be written in a Lorentz-invariant form as [17]

〈σvMøl〉(T ) =
1

8m4
χTK

2
2 (mχ/T )

∫ ∞
4m2

χ

ds σ(s)(s− 4m2
χ)
√
sK1

(√
s

T

)
, (59)

where s = (p1 + p2)2 and Ki denote the modified Bessel function of order i. In computing the relic
abundance [19] one first evaluates eq. (59) and then uses this to solve the Boltzmann equation. The
freeze out temperature can be computed by solving iteratively the equation

xf = ln

(
mχ

2π3

√
45

2g∗GN
〈σvMøl〉(xf )x

−1/2
f

)
(60)

where g∗ represents the effective number of degrees of freedom at freeze-out (
√
g∗ ≈ 9). As explained

in the previous section, one finds that the freeze-out point xf ≡ mχ/Tf is approximately xf ∼ 20.

The procedure can be simplified if we consider that the annihilation cross section can be expanded
in plane waves. For example, consider the dark matter annihilation process χχ → ij and assume



that the thermally averaged annihilation cross section can be expressed as 〈σv〉ij ≈ aij + bijx. It
can then be shown that the coefficients aij and bij can be computed from the corresponding matrix
element. For example,

aij =
1

m2
χ

(
Nc

32π
β(s,mi,mj)

1

2

∫ 1

−1
d cos θCM |Mχχ→ij |2

)
s=4m2

χ

, (61)

where θCM denotes the scattering angle in the CM frame, Nc = 3 for q̄q final states and 1 otherwise,
and

β(s,mi,mj) =

(
1− (mi +mj)

2

s

)1/2(
1− (mi −mj)

2

s

)1/2

(62)

The contribution for each final state is calculated separately.

2.3.1 Special cases

The derivation of equation (54) relied on the expansion of 〈σv〉 in terms of plane waves. This
expansion can be done when 〈σv〉 varies slowly with the energy (we can express this in terms of
the centre of mass energy s). However, there are some special cases in which this does not happen
and which deserve further attention.

• Annihilation thresholds

A new annihilation channel χ + χ → A + B opens up when 2mχ ≈ mA + mB. In this case
the expansion in velocities of 〈σv〉 diverges (at the threshold energy) and it is no longer a
good approximation [17]. Notice in particular that below the threshold, the expression of
aij in Equation (61) is equal to zero (as it is only evaluated for s > 4m2

χ). A qualitative
way of understanding this is of course that DM particles have a small velocity, which is here
approximated to zero. In the limit of zero velocity, the total energy available is determined
by the DM mass.

However, we are here ignoring that a fraction of DM particles (given by their thermal distribu-
tion in the Early Universe) have a kinetic energy sufficient to annihilate into heavier particles
(above the threshold). In other words, 〈σv〉 is different from zero below the corresponding
thresholds. A very good illustration of this effect is shown in Ref. [17] and is here reproduced
in Fig. 6.

The thin solid line corresponds to the approximate expansion in velocities and shows that not
only 〈σv〉 is zero below the threshold, but also diverges at the threshold, thereby not leading
to a good solution. Expression (59), represented by a thick solid line, still provides a good
solution .

• Resonances

The annihilation cross section is not a smooth function of s in the vicinity of an s-channel
resonance. Thus, the velocity expansion of 〈σv〉 will fail (although once more, expression (59)
still provides a good solution). For a Breit-Wigner resonance (due to a particle φ) we have

σ =
4πw

p2
BiBf

m2
φΓ2

φ

(s−m2
φ)2 +m2

φΓ2
φ

, (63)



Figure 6: Relativistic thermal average near a threshold (thick solid line) compared to the result fro
the expansion in powers of x−1 (thin line). Figure from Ref. [17].

in terms of the centre of mass momentum p = 1/2(s − 4m2)1/2 and the statistical factor
w = (2J + 1)/(2S + 1)2. The quantities Bi,f correspond to the branching fractions of the
resonance into the initial and final channel.

We can define the kinetic energy per unit mass in the lab frame, ε, as

ε =
(E1,lab −m) + (E2,lab −m)

2m
=

2− 4m2

4m2
, (64)

and rewrite the expression for σ in the lab frame (we want to use Equation (3.21) in Ref. [17]
to compute 〈σvMøl〉). Summing to all final states, and using vlab = 2ε1/2(1 + ε)1/2/(1 + 2ε),
we obtain

σvlab =
8πw

m2
bφ(ε)

γ2
φ

(ε− ε2φ)2 + γ2
φ

, (65)

with the definitions b(ε) = Bi(1 − Bi)(1 + ε)1/2/(ε1/2(1 + 2ε), γφ = mφΓφ/4m
2, and εφ =

(m2
φ − 4m2)/4m2.

It can be shown that in the case of a very narrow resonance, γφ � 1, the expression above
can be approximated as

σvlab =
8πw

m2
bφ(ε)πγφδ(ε− εφ) , (66)

the relativistic formula for the thermal average then reads [17]

〈σvMøl〉 =
16πw

m2

x

K2
2 (x)

πγφε
1/2
φ (1 + 2eφ)K1(2x

√
1 + εφ)bφ(eφ)θ(εφ) . (67)

Notice that εφ > 0 when m < 2mφ, i.e., when the mass of the DM is not enough to enter the
resonance. The reason is easy to understand. Only through the extra kinetic energy provided



Figure 7: Relativistic thermal average in a resonance (thick solid line) compared to the result fro
the expansion in powers of x−1 (thin line). Figure from Ref. [17].

by the thermal bath, the resonance condition can be satisfied. However, when the mass of
the DM exceeds the resonance condition, the kinetic energy only takes us further away from
the resonant condition and the thermalised cross section tends to vanish. In other words, the
centre of mass rest energy exceeds mφ/2. This can be seen in Figure 7.

For a large width the expression has to be computed numerically and can be found in [17].

• Coannihilations

When deriving Boltzmann equation (36) we have only considered one exotic species, but this
needs not be the case. In fact, in most particle models for DM, there are more exotic species
that we need to take into account. Notice that, in principle, this would lead to a system of
coupled Boltzmann equations. If we label exotic species as χi, with i = 0, 1 . . . k, and SM
particles as A, B, we have to consider all number changing processes for each species,

(i) χi + χj → A+B

(ii) χi +A→ χj +B

(iii) χj → χi +A

If we consider the (usual) case in which the DM is protected by a symmetry (e.g., in the
case of Supersymmetric theories) and that the exotic particles all must decay eventually into
the lightest one χ0, then, we must only trace the evolution of the total number density of
exotic species, n =

∑k
i=0 ni. Under this assumption, processes (ii) and (iii) do not need to be

considered, as they do not change the number of exotics. This is correct as long as the rate
of these is faster than the expansion of the Universe.

Regarding process (i) we have to be aware that the cross section σij is going to appear
multiplied by the corresponding number densities, ninj . Now, we are considering the case



in which both particles i and j are non-relativistic and as a consequence, ni,j are Boltzmann
suppressed, ni,j/e

−mi,j/T . Thus, unless mj ≈ mi, the abundance of χj is negligible and only
the process χi + χj → A+B is important (and we are back to the case of a single exotic).

However, when mj ≈ mi, there can be coannihilation effects and particle j may serve as a
channel through which particles i can be more effectively depleted. This is the case, e.g., of
the stau and the neutralino in supersymmetric theories.

3 Direct Dark Matter Detection

3.1 Computation of the Dark Matter detection rate

3.1.1 DM flux

We can easily estimate the flux of DM particles through the Earth. The DM typical velocity is of
the order of 300 km s−1 ∼ 10−3 c. Also, the local DM density is ρ0 = 0.3 GeV cm−3, thus, the DM
number density is n = ρ/m.

φ =
vρ

m
≈ 107

m
cm−2 s−1 (68)

These particles interact very weakly with SM particles.

3.1.2 Kinematics

Direct DM detection is based on the search of the scattering between DM particles and nuclei
in a detector. This process is obly observable through the recoiling nucleus, with an energy ER.
DM particles move at non-relativistic speeds in the DM halo. Thus, the dynamics of their elastic
scattering off nuclei are easily calculated. In particular, the recoiling energy of the nucleus is given
by

ER =
1

2
mχ v

2 4mχmN

(mχ +mN )2

1 + cos θ

2
(69)

It can be checked that for DM particles with a mass of the order of 100 GeV, this leads to recoil
energies of approximately ER ∼ 100 keV. Notice also that the maximal energy transfer occurs on
a head-on-collision and when the DM mass is equal to the target mass. In such a case

EmaxR =
1

2
mχ v

2 =
1

2
mχ × 10−6 =

1

2

( mχ

1 GeV

)
keV (70)

where we have used that in a DM halo the typical velocity is v ∼ 10−3c.

Experiments must therefore be very sensitive and be able to remove an overwhelming background
of ordinary processes which lead to nuclear recoils of the same energies.



3.2 The master formula for direct DM detection

The total number of detected DM particles, N , can be understood as the product of the DM flux
(which is equal to the DM number density, n, times its speed, v), times the effective area of the
target (i.e., the number of targets NT times the scattering cross-section, σ), all of this multiplied
by the observation time, t,

N = t n v NT σ . (71)

We will be interested in determining the spectrum of DM recoils, i.e., the energy dependence of the
number of detected DM particles. Thus,

dN

dER
= t n v NT

dσ

dER
. (72)

Now, the DM velocity is not unique, and in fact DM particles are described by a local velocity
distribution, f(~v), where ~v is the DM velocity in the reference frame of the detector. We therefore
have to integrate to all possible DM velocities, with their corresponding probability density,

dN

dER
= t nNT

∫
vmin

vf(~v)
dσ

dER
d~v , (73)

where
vmin =

√
mχER/2µ2

χN (74)

is the minimum speed necessary to produce a DM recoil of energy ER, in terms of the WIMP-
nucleus reduced mass, µχN . Using n = ρ/mχ and NT = MT /mN (where MT is the total detector
mass and mN is the mass of the target nuclei), and defining the experimental exposure ε = tMT ,
we arrive at the usual expression for the DM detection rate

dN

dER
= ε

ρ

mχmN

∫
vmin

vf(~v)
dσ

dER
d~v . (75)

3.2.1 The scattering cross section

The scattering takes place in the non-relativistic limit. The cross section is therefore approximately
isotropic (angular terms being suppressed by v2/c2 ∼ 10−6. This implies that

dσ

d cos θ∗
= constant =

σ

2
(76)

On the other hand,

ER = EmaxR

1 + cos θ∗

2
→ dER

d cos θ∗
=
EmaxR

2
(77)

From this, we can see that

dσ

dER
=

dσ

d cos θ∗
d cos θ∗

dER
=

σ

EmaxR

=
mN

2µ2
χN

σ

v2
(78)



Notice finally that the momentum transfer from WIMP interactions reads (remember that we are
considering non-relativistic processes and thus we neglect the kinetic energy of the nucleus)

q =
√

2mN ER (79)

and is typically of the order of the MeV. The equivalent de Broglie length would be λ ∼ 2π~/p ∼
10 − 100 fm. For light nuclei, the DM particle sees the nucleus as a whole, without substructure,
only for heavier nuclei we have to take into account a suppression form factor. The nuclear form
factor, F 2(ER), accounts for the loss of coherence

dσ

dER
=

mN

2µ2
χN

σ0

v2
F 2(ER) (80)

Finally, the scattering cross section receives different contributions, depending on the microscopic
description of the interaction.

In the end, we can
dN

dER
= ε

ρ

2mχ µ2
χN

σ0 F
2(ER)

∫
vmin

f(~v)

v
d~v . (81)

The inverse mean velocity

η(vmin) =

∫
vmin

f(~v)

v
d~v . (82)

is the main Astrophysical input.

3.2.2 The importance of the threshold

From the kinematics of the DM-nucleus interaction, we see that, for a given recoil energy ER, we
require a minimal velocity of DM particles, given by expression (74).

Thus, given that experiments are only sensitive to DM interactions above a certain energy threshold,
ET , this means that we are only probing a part of the WIMP velocity distribution function (for
a given DM mass). Conversely, given that DM particles have a maximum velocity in the halo
(otherwise they become unbound and escape the galaxy), the experimental energy threshold is a
limitation to explore low-mass WIMPs.

Exercise: Consider a germanium experiment and a xenon experiment with a
threshold of 2 keV. Given the escape velocity in a typical isothermal halo, vesc =
554 km s−1, determine the minimum DM mass that these experiments can probe.

This is the reason that experiments loose sensitivity for small masses.



3.2.3 Velocity distribution function

It is customary to consider the Isothermal Spherical Halo, which assumes that the Milky Way (MW)
halo is an isotropic, isothermal sphere with density profile ρ ∝ r−2. The velocity distribution, in
the galactic rest frame, for such a halo reads

fgal(~v) =
1

(2πσ)3/2
e−

|~v|2

2σ2 , (83)

where the one-dimensional velocity dispersion, σ, is related to the circular speed, vc, as σ = vc/
√

2.
The canonical values are vc = 220km s−1, with a statistical error of order 10% (see references in
[20])

Now, in order to use it for direct detection experiments we need to carry out a Galilean transfor-
mation ~v → ~v + ~vE , such that

f(~v) = fgal(~v + ~vE(t)). (84)

where ~vE(t) is the velocity of the Earth with respect to the Galactocentric rest frame.

~vE(t) = ~vLRF + ~v� + ~vorbit(t) (85)

Notice that vE includes contributions from the speed of the Local Standard of Rest vLSR, the
peculiar velocity of the Sun with respect to vLSR, and the Earths velocity around the Sun, which
has an explicit time dependence.

Notice that if we work with the SHM, the angular integration in the computation of direct detection
rates can be easily done as follows∫

f(~v)

v
d3v =

∫
dφ

∫
d cos θ

∫
dv v

1

(2πσ2)3/2
e−

|~v|2+|~vE |2

2σ2 e
|~v| |~vE | cos θ

σ2

= 2π

∫
dv v

2σ2

|v||~vE |(2πσ)3/2
e−

|~v|2+|~vE |2

2σ2 sinh

(
|~v| |~vE |
σ2

)
=

∫
dv

√
2√

πσ|~vE |
e−

|~v|2+|~vE |2

2σ2 sinh

(
|~v| |~vE |
σ2

)
(86)

3.3 Coherent neutrino scattering

Solar neutrinos might leave a signal in DD experiments, either through their coherent scattering
with the target nuclei or through scattering with the atomic electrons.

In general, the number of recoils per unit energy can be written

dR

dER
=

ε

mT

∫
dEν

dφν
dEν

dσν
dER

, (87)

where ε is the exposure and mT is the mass of the target electron or nucleus. If several isotopes
are present, a weighted average must be performed over their respective abundances.



The SM neutrino-electron scattering cross section is

dσνe
dER

=
G2
Fme

2π

[
(gv + ga)

2 + (88)

(gv − ga)2

(
1− ER

Eν

)2

+ (g2
a − g2

v)
meER
E2
ν

]
,

where GF is the Fermi constant, and

gv;µ,τ = 2 sin2 θW −
1

2
; ga;µ,τ = −1

2
, (89)

for muon and tau neutrinos. In the case νe + e → νe + e, the interference between neutral and
charged current interaction leads to a significant enhancement:

gv;e = 2 sin2 θW +
1

2
; ga;e = +

1

2
. (90)

The neutrino-nucleus cross section in the SM reads

dσνN
dER

=
G2
F

4π
Q2
vmN

(
1− mNER

2E2
ν

)
F 2(ER), (91)

where F 2(ER) is the nuclear form factor, for which we have taken the parametrisation given by
Helm [21]. Qv parametrises the coherent interaction with protons (Z) and neutrons (N = A− Z)
in the nucleus:

Qv = N − (1− 4 sin θW )Z. (92)

3.4 Inelastic scattering of DM particles

WIMPs can also have inelastic scattering off nuclei [22]. The WIMP needs to have sufficient speed
to interact with the nucleus and promote to an excited state (with energy separation δ)

1

2
µχNv

2 > δ (93)

This leads to the condition

vmin =

√
1

2mN ER

(
mN ER
µχN

+ δ

)
(94)

Therefore, the main effect at a given experiment is to limit the sensitivity only to a part of the
phase space of the halo. This favours heavy nuclei (since they can transfer more energy to the
outgoing WIMP) and can account for observation in targets such as iodine (DAMA/LIBRA) while
avoiding observation in lighter ones such as Ge (CDMS)
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