

EXCELENCIA SEVERO OCHOA

Signatures of Primordial Black Holes in 21cm Cosmology Samuel J. Witte

Universidad de Valencia

arXiv: 1905.xxxx

in isibles Plus neutrinos, dark matter & dark energy physics

elusives neutrinos, dark matter & dark energy physics In collaboration with:

In collaboration with: Olga Mena, Sergio Palomares-Ruiz, and Pablo Villanueva-Domingo

Durham University, IPPP (May, 2019) Prin

Primordial Black Holes in 21cm Cosmology

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

The 21cm Line

Produced via the hyperfine transition of neutral hydrogen

$$\mathcal{H}_{hf} \propto S_e \cdot S_p \tag{1}$$

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

The 21cm Line

Produced via the hyperfine transition of neutral hydrogen

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

The 21cm Line

Neutral hydrogen at $z\gtrsim7$ backlight by CMB

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

Cosmological Timeline

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

Cosmological Timeline

21cm Cosmology

The Basics

Cosmological Timeline

21cm Cosmology

The Basics

Cosmological Timeline

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

Timeline of 21cm Experiments

- \rightarrow Now: LOFAR, MWA, PAPER, EDGES (single-dish) \cdots
- 2019 HERA(128) Results, HERA(240) Observations
- 2020 HERA(240) Results, HERA(350) Observations
- $2023 \rightarrow SKA-Low$ initial results

arXiv: 1606.07473, SKA Whitepaper, Patil et al 2017, Ali et al 2015, Beardsley et al 2016

Durham University, IPPP (May, 2019)

Primordial Black Holes in 21cm Cosmology

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

The 21cm Signal

$$\delta T_b \simeq 27 \, x_{\rm HI} \left(1 + \delta_b\right) \left(1 - \frac{T_{\rm cmb}}{T_S}\right) \, \left(\frac{1+z}{10}\right)^{1/2} \, \mathrm{mK} \tag{1}$$

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

The 21cm Signal IGM

$$\delta T_b \simeq 27 \ x_{\rm HI} \left(1 + \delta_b\right) \left(1 - \frac{T_{\rm cmb}}{T_s}\right) \left(\frac{1+z}{10}\right)^{1/2} \, {\rm mK}$$

Fraction of neutral hydrogen

At late time, reionization suppresses the signal

(1)

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

The 21cm Signal IGM

$$\delta T_b \simeq 27 \ x_{\rm HI} \left(1 + \delta_b\right) \left(1 - \frac{T_{\rm cmb}}{T_s}\right) \left(\frac{1+z}{10}\right)^{1/2} \, {\rm mK} \tag{1}$$
Fraction of neutral hydrogen
Baryon overdensity

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

The 21cm Signal IGM

$$\delta T_b \simeq 27 \quad x_{\rm HI} \quad (1 + \delta_b) \left(1 - \frac{T_{\rm cmb}}{T_s}\right) \left(\frac{1 + z}{10}\right)^{1/2} \, {\rm mK} \tag{1}$$
Fraction of neutral hydrogen
Baryon overdensity
Spin temperature
Must understand spatial and redshift dependence of spin temperature!
(notice this controls sign of δT_b)

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

The 21cm Signal IGM

$$\delta T_b \sim 0 \text{ if } T_s \sim T_{\text{cmb}}$$
 (2)

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

The 21cm Signal IGM

$$\delta T_b \simeq 27 \quad x_{\rm HI} \quad (1 + \delta_b) \left(1 - \frac{T_{\rm cmb}}{T_s}\right) \left(\frac{1 + z}{10}\right)^{1/2} \, {\rm mK} \tag{1}$$
Fraction of neutral hydrogen
Baryon overdensity
Spin temperature

 $\delta T_b > 0$ if $T_s > T_{\rm cmb}$ Signal saturates

(2)

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

The 21cm Signal IGM

$$\delta T_b \simeq 27 \quad x_{\rm HI} \quad (1 + \delta_b) \left(1 - \frac{T_{\rm cmb}}{T_s}\right) \left(\frac{1 + z}{10}\right)^{1/2} \, {\rm mK} \tag{1}$$
Fraction of neutral hydrogen
Baryon overdensity
Spin temperature

 $\delta T_b < 0$ if $T_s < T_{\text{cmb}}$ (here, $|\delta T_b|$ limited by $T_s \ge T_k$) (2)

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

8/55

$\Lambda CDM + Astro Expectations$

Durham University, IPPP (May, 2019) Primordial Black Holes in 21cm Cosmology

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

$\Lambda CDM + Astro Expectations$

Durham University, IPPP (May, 2019) Primordial Black Holes in 21cm Cosmology

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

$\Lambda CDM + Astro Expectations$

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

$\Lambda CDM + Astro Expectations$

Durham University, IPPP (May, 2019) Primordial Black Holes in 21cm Cosmology

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

$\Lambda CDM + Astro Expectations$

Cosmic Dawn

Durham University, IPPP (May, 2019) Primordial Black Holes in 21cm Cosmology

21cm Cosmology

Expectations within Λ CDM and Astrophysical Uncertainties

$\Lambda CDM + Astro Expectations$

Reionization

Primordial Black Holes in 21cm Cosmology

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

$\begin{array}{l} \Lambda \text{CDM Expectations} + \text{Astro Modeling} \\ _{\text{Global average}} \end{array}$

Durham University, IPPP (May, 2019) Primordial Black Holes in 21cm Cosmology

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

EDGES

Experiment to Detect Global Epoch of reionization Signature

Durham University, IPPP (May, 2019)

Primordial Black Holes in 21cm Cosmology

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

EDGES

Experiment to Detect Global Epoch of reionization Signature

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

Single Dish \rightarrow Interferometer

- More powerful removal of foregrounds in k-space
- Access to power spectrum

Beyond Global Signal

Power Spectrum

Global temperature is only a $1^{\rm st}$ order test statistic

$$\left\langle \delta_{T_b}(\vec{k}, z) \delta^*_{T_b}(\vec{k'}, z) \right\rangle = P_{21}(\vec{k}, z) \tag{4}$$

See e.g. Furlanetto, Oh, Briggs (2006), Pritchard and Loeb (2011)

The Basics Expectations within ΛCDM and Astrophysical Uncertainties

Beyond Global Signal Tomography

Comments on this later

Current Status Cosmological Implications 21cm Sensitivity

PBHs as Dark Matter

Sato-Polito, Kovetz, Kamionkowski (2019),

Current Status Cosmological Implications 21cm Sensitivity

Solar Mass PBHs

 $\mathcal{O}(M_{\odot})$ PBHs cannot account for entirety of dark matter, but still of interest to community

- Detection \rightarrow insight into early Universe Production from inflation, topological defects, phase transitions, etc
- Detection \rightarrow WIMPs and PBHs, a no-go Bertone et al (2019), Adamek et al (2019), Boucennaa et al (2017), Lacki and Beacom (2010), Eroshenko (2016)

• SMBH timing problem $(10^9 - 10^{10} M_{\odot} \text{ at } z \sim 7)$ Could be accomplished via $10^2 M_{\odot} - 10^6 M_{\odot}$ at $z \sim 15$ Swith Brown Leeb (2017). Howard et al (2019)

Current Status Cosmological Implications 21cm Sensitivity

Solar Mass PBHs

 $\mathcal{O}(M_{\odot})$ PBHs cannot account for entirety of dark matter, but still of interest to community

• Detection \rightarrow insight into early Universe Production from inflation, topological defects, phase transitions, etc

- Detection \rightarrow WIMPs and PBHs, a no-go

Bertone et al (2019), Adamek et al (2019), Boucennaa et al (2017), Lacki and Beacom (2010), Eroshenko (2016)

• SMBH timing problem $(10^9 - 10^{10} M_{\odot} \text{ at } z \sim 7)$ Could be accomplished via $10^2 M_{\odot} - 10^6 M_{\odot}$ at $z \sim 15$

Smith, Bromm, Loeb (2017), Haiman et al (2019)

Current Status Cosmological Implications 21cm Sensitivity

Solar Mass PBHs

 $\mathcal{O}(M_{\odot})$ PBHs cannot account for entirety of dark matter, but still of interest to community

- Detection \rightarrow insight into early Universe Production from inflation, topological defects, phase transitions, etc
- Detection \rightarrow WIMPs and PBHs, a no-go Bertone et al (2019), Adamek et al (2019), Boucennaa et al (2017), Lacki and Beacom (2010), Eroshenko (2016)
- SMBH timing problem $(10^9 10^{10} M_{\odot} \text{ at } z \sim 7)$ Could be accomplished via $10^2 M_{\odot} - 10^6 M_{\odot}$ at $z \sim 15$ Smith, Bromm, Loeb (2017), Haiman et al (2019)

Current Status Cosmological Implications 21cm Sensitivity

Cosmological Implications

Presence of $\sim M_{\odot}$ PBHs lead to 3 effects:

- Structure modified on small scales via PBH clustering Isocurvature perturbations induced via shot noise
- Accretion of gas onto PBH leads to:
 - Emission of X-rays that escape into IGM (global effect)
 - Local heating via advection, local absorption of X-rays

Current Status Cosmological Implications 21cm Sensitivity

Cosmological Implications

Presence of $\sim M_{\odot}$ PBHs lead to 3 effects:

- Structure modified on small scales via PBH clustering lsocurvature perturbations induced via shot noise
- Accretion of gas onto PBH leads to:
 - Emission of X-rays that escape into IGM (global effect)
 - Local heating via advection, local absorption of X-rays

Current Status Cosmological Implications 21cm Sensitivity

Cosmological Implications

Presence of $\sim M_{\odot}$ PBHs lead to 3 effects:

- Structure modified on small scales via PBH clustering lsocurvature perturbations induced via shot noise
- Accretion of gas onto PBH leads to:
 - Emission of X-rays that escape into IGM (global effect)
 - Local heating via advection, local absorption of X-rays

Current Status Cosmological Implications 21cm Sensitivity

PBHs in the IGM

Injected energy goes into heating and ionizing IGM

Mena, Palomares-Ruiz, Villanueva-Domingo, SJW
Current Status Cosmological Implications 21cm Sensitivity

PBHs in the IGM

Injected energy goes into heating and ionizing IGM

Mena, Palomares-Ruiz, Villanueva-Domingo, SJW CMB and 21cm provide very complimentary probes!

Durham University, IPPP (May, 2019) Primordial Black Holes in 21cm Cosmology

Current Status Cosmological Implications 21cm Sensitivity

PBH on δT_b

Mena, Palomares-Ruiz, Villanueva-Domingo, SJW

Current Status Cosmological Implications 21cm Sensitivity

21cm Power Spectrum

Mena, Palomares-Ruiz, Villanueva-Domingo, SJW

Current Status Cosmological Implications 21cm Sensitivity

21cm Power Spectrum

Mena, Palomares-Ruiz, Villanueva-Domingo, SJW

Current Status Cosmological Implications 21cm Sensitivity

Parameter Estimation

Mena, Palomares-Ruiz, Villanueva-Domingo, SJW

Durham University, IPPP (May, 2019) Pri

Primordial Black Holes in 21cm Cosmology

Current Status Cosmological Implications 21cm Sensitivity

Sensitivity

Mena, Palomares-Ruiz, Villanueva-Domingo, SJW

HERA: Running Now (Upgrade soon), SKA-Low: \sim 2020

Durham University, IPPP (May, 2019) Primordial Black Holes in 21cm Cosmology

Current Status Cosmological Implications 21cm Sensitivity

A Comment on the Astrophysics

Why not use a more complicated astrophysical model?

$$\vec{X} \in (M_{\text{pbh}}, f_{\text{pbh}}, T_{\min}, N_{\alpha}, \zeta_X, \zeta_{\text{UV}})$$
 (5)

(6D parameter space) \rightarrow Interpolation for MCMC (\rightarrow linear?) 10 points / dim requires 10^6 evaluations

Each realization requires ~ 6 hours on ~ 8 cores...

Current Status Cosmological Implications 21cm Sensitivity

A Comment on the Astrophysics

Why not use a more complicated astrophysical model?

$$\vec{X} \in (M_{\text{pbh}}, f_{\text{pbh}}, T_{\min}, N_{\alpha}, \zeta_X, \zeta_{\text{UV}})$$
 (5)

(6D parameter space) \rightarrow Interpolation for MCMC (\rightarrow linear?) 10 points / dim requires 10^6 evaluations

Each realization requires ~ 6 hours on ~ 8 cores...

 \rightarrow ML techniques allowed 10^6 to be reduced to $\sim 10^3$

Computational Complications

- Practical issue of computational time Producing one full realization of 21cm maps using semi-analytic techniques may require ≥ 6 hours on a cluster
- Issue of information extraction
 Power spectrum does not contain full wealth of information...

Computational Complications

- Practical issue of computational time Producing one full realization of 21cm maps using semi-analytic techniques may require $\gtrsim 6$ hours on a cluster
- Issue of information extraction
 Power spectrum does not contain full wealth of information...

Computational Complications

- Practical issue of computational time Producing one full realization of 21cm maps using semi-analytic techniques may require $\gtrsim 6$ hours on a cluster
- Issue of information extraction

Power spectrum does not contain full wealth of information...

 \rightarrow Wish list: quick map production, extract more information (move beyond PS), easily identify new physics

Ruiz De Austri, SJW, Mena + others (in progress)

Machine Learning 101

Consider simple χ^2 fit

$$\chi^2 = \sum_{i} \left(\frac{\operatorname{data}_i - f(\sigma, m, \cdots, x_i)}{\sigma_i} \right)^2 \tag{6}$$

Minimize χ^2 to determine $\hat{\sigma}, \hat{m}, \cdots$

Machine Learning 101

Consider simple χ^2 fit

$$\chi^2 = \sum_{i} \left(\frac{\operatorname{data}_i - f(\sigma, m, \cdots, x_i)}{\sigma_i} \right)^2 \tag{6}$$

Minimize χ^2 to determine $\hat{\sigma}, \hat{m}, \cdots$

Neural net: $f \to$ generic function with unknown parameters $\vec{w},$ values attained from minimizing cost function

1) Supervised learning: data_i given

2) Unsupervised learning: no data_i, cost function replaced by alternative criteria independent of data

Neural Nets

Basic Architecture

Variational Autoencoder

Durham University, IPPP (May, 2019) Primordial Black Holes in 21cm Cosmology

Variational Autoencoder Example: Learning to recognize numbers

Variational Autoencoder for 21cm

Variational Autoencoder for 21cm

Conclusions

- 21cm Cosmology promises to be a power tool for both cosmology and particle physics alike
- $\sim M_{\odot}$ PBHs can give rise to various effects, leaving significant imprint on 21cm signal Near-future experiments could increase sensitivity by \sim 2 orders of magnitude
- New computational techniques necessary Practical computations and information extraction

Thank you!

This project has received funding/support from the European Union's Horizon 2020 research and innovation programme under the Marie Sklodowska-Curie grant agreement No 674896

Back Up Slides

The 21cm Signal

 $\ensuremath{\mathsf{Predictions}}$ are attained from absorption and emission properties of the $\ensuremath{\mathsf{IGM}}$

Solve radiative transfer equation (neglect scattering) for IGM cloud...

$$\frac{dI_{\nu}}{d\ell} = -\alpha_{\nu} I_{\nu} + j_{\nu}$$
(7)
Opacity (Emission Coefficient 33/55)

Absorption/Emission Coefficients

Solving for I_{ν} requires knowing j_{ν} , α_{ν} , which are dictated by:

$$\alpha_{\nu} \propto (n_0 B_{01} - n_1 B_{10})$$
(9)

 $j_{\nu} \propto n_1 A_{10}$
(10)

Rather than use n_0 and $n_1 \rightarrow$ use n_H and T_s

Boltzmann factor for excitation temperature ('spin temperature' T_s)

$$\frac{n_1}{n_0} = \frac{g_1}{g_0} e^{-\Delta E_{10}/k_B T_s}, \tag{11}$$

The 21cm Signal

For IGM cloud $\frac{j_{
u}}{\alpha_{
u}}$ independent of ℓ and $\tau_{
u} \ll 1$, leading to:

$$\delta I_{\nu} \equiv I_{\nu} - I_{\rm cmb}(\nu) = \left(\frac{j_{\nu}}{\alpha_{\nu}} - I_{\rm cmb}(\nu)\right) \tau_{\nu}$$
(13)

See e.g. Pritchard and Loeb (2011) for review

The 21cm Signal

Convert intensity to effective temperature $I_{\nu} \rightarrow 2 \, \nu^2 \, T_b$

$$\delta I_{\nu} \rightarrow \delta T_b \equiv \left(\frac{T_s - T_{\rm cmb}(z)}{1+z}\right) \tau_{\nu}$$
 (13)

See e.g. Pritchard and Loeb (2011) for review

 T_s (equivalently n_1/n_0) determined by:

See e.g. Pritchard and Loeb (2011)

- Spontaneous absorption/emission and stimulated emission (A₁₀, B₁₀I_{cmb}, B₀₁I_{cmb})
- Collision excitation/de-excitations with HH, He, Hp (C_{10} , C_{01})
- Indirect excitation/de-excitations via scattering with Ly- α photons (P_{10} , P_{01}), 'Wouthuysen-Field effect' (WF)

T_s (equivalently n_1/n_0) determined by:

See e.g. Pritchard and Loeb (2011)

- Spontaneous absorption/emission and stimulated emission (A₁₀, B₁₀I_{cmb}, B₀₁I_{cmb})
- Collision excitation/de-excitations with HH, He, Hp (C_{10} , C_{01})
- Indirect excitation/de-excitations via scattering with Ly- α photons (P_{10} , P_{01}), 'Wouthuysen-Field effect' (WF)

T_s (equivalently n_1/n_0) determined by:

See e.g. Pritchard and Loeb (2011)

- Spontaneous absorption/emission and stimulated emission
- Collision excitation/de-excitations with HH, He, Hp (C_{10} , C_{01})
- Indirect excitation/de-excitations via scattering with Ly- α photons (P_{10} , P_{01}), 'Wouthuysen-Field effect' (WF)

Wouthuysen-Field effect

The rates are fast enough that we can assume an equilibrium, allowing us to derive:

$$n_1(A_{10} + C_{10} + P_{10} + B_{10}I_{\rm cmb}) = n_0(C_{01} + P_{01} + B_{01}I_{\rm cmb})$$
(14)

which can be expressed in terms of $T_{\rm cmb}$ and T_k

$$T_s \simeq \frac{T_{\rm cmb} + (x_c + x_\alpha)T_k}{1 + x_c + x_\alpha}, \qquad (15)$$

where x_c and x_{α} are the collisional and WF coupling coefficients See e.g. Pritchard and Loeb (2011)

The rates are fast enough that we can assume an equilibrium, allowing us to derive:

$$n_1(A_{10} + C_{10} + P_{10} + B_{10}I_{\rm cmb}) = n_0(C_{01} + P_{01} + B_{01}I_{\rm cmb})$$
(14)

$$T_s \simeq \frac{T_{\rm cmb} + (x_c + x_\alpha)T_k}{1 + x_c + x_\alpha}, \qquad (15)$$

where x_c and x_{α} are the collisional and WF coupling coefficients

$$T_s \simeq T_{
m cmb}$$
 if $x_c, x_\alpha \ll T_{
m cmb}/T_k$ (16)
 $T_s \simeq T_k$ if $x_c(x_\alpha) \gg T_{
m cmb}/T_k$ (17)

38/55

Durham University, IPPP (May, 2019) Primordial Black Holes in 21cm Cosmology

$\begin{array}{l} \Lambda \text{CDM Expectations} + \text{Astro Modeling} \\ _{\text{Global average}} \end{array}$

Appearance of WF effect depends on when stars form $(M_{\min} \text{ or } T_{\min}^{\text{vir}})$ Note: non SF halos ('minihalos') have \sim negligible impact on 21cm signal in Λ CDM Furlanetto et al (2006)

$\begin{array}{l} \Lambda \text{CDM Expectations} + \text{Astro Modeling} \\ _{\text{Global average}} \end{array}$

Strength of x_{α} depends on number of Ly- α produced by stars (N_{α})

Depth of absorption depends on efficiency of X-ray heating (ζ_X)

Heating bump depends on efficiency of ionizing photons (ζ_{UV})

ΛCDM Expectations

Simplified astrophysical model

SJW, Villanueva-Domingo, Gariazzo, Mena, Palomares-Ruiz (2018)

39/55

Durham University, IPPP (May, 2019) Primordial

Primordial Black Holes in 21cm Cosmology
ΛCDM Expectations

Simplified astrophysical model

SJW, Villanueva-Domingo, Gariazzo, Mena, Palomares-Ruiz (2018)

39/55

Durham University, IPPP (May, 2019)

Primordial Black Holes in 21cm Cosmology

Shot Noise

For PBHs that form during radiation dominated epoch, one expects an average of N per Hubble volume $% \left({{{\rm{P}}_{{\rm{A}}}} \right)$

 \rightarrow Manifests as isocurvature modes that grow after M-R equality

Carr Hawking (1974), Mukhanov et al. (1992), Afshordi, McDonald, Spergel (2003)

40/55

Shot Noise Matter Power Spectrum

Primordial Black Holes in 21cm Cosmology

Shot Noise

Halo Mass Function

 $M_{\rm pbh} = M_{\odot}$ and $f_{\rm pbh} = 10^{-1} \rightarrow 10^{-5}$

Gong, Kitajima (2017, 2018)

PBH Accretion

Shapiro and Lightman (1976), Ipser and Price (1977), Ruffert (1999): Accretion disk should form when angular momentum at Bondi radius is sufficient to maintain Keplerian orbits at $r \gg r_S$

Poulin et al (2017): For PBHs this implies disk forms if

$$\sqrt{f_{\rm pbh}} \frac{M}{M_{\odot}} \gg \left(\frac{1+z}{730}\right)^3$$
 (18)

PBH Accretion

Shapiro and Lightman (1976), Ipser and Price (1977), Ruffert (1999): Accretion disk should form when angular momentum at Bondi radius is sufficient to maintain Keplerian orbits at $r \gg r_S$

Poulin et al (2017): For PBHs this implies disk forms if

$$\sqrt{f_{\rm pbh}} \frac{M}{M_{\odot}} \gg \left(\frac{1+z}{730}\right)^3 \tag{18}$$

 \rightarrow Expect formation of optically thin puffy disk that radiates inefficiently (Advection Dominated Accretion Flow) Expectations for ϵ and \dot{M}

PBH Accretion

PBH Accretion

Poulin et al (2017)

Yuan and Narayan (2014)

44/55

Local Accretion

Must derive $[\rho(r), T(r), x_e(r)]$ from fluid equations (specifically at $r \sim r_B$)

Using simplified set of accretion equations (e.g. adopting spherical symmetry, no X-ray absorption, etc), we can derive radial profiles In $L/L_{\rm Edd} \rightarrow 0$ we get Bondi-like problem

Leading to $\rho \propto r^{-3/2}$ and $T \propto r^{-1}$ for $r/r_B \ll 1$

Local Accertion

Must resolve radiative transfer equation for local contribution lliev et al (2002)

$$T_{b,loc}(\nu) = T_{cmb} e^{-\tau_{loc}(\nu)} + \int_{-\infty}^{\infty} dR T_s(R) e^{-(\tau_{IGM} + \tau_{loc}(\nu,R))} \frac{d\tau_{loc}}{dR}$$
(18)

+ absorption of CMB locally

+ signal produced locally

absorption of signal produced locally

Total Signal:

$$\bar{T}_b \propto n_{\rm pbh} \left\langle \Delta_{v_{\rm eff}} T_{b,\nu_0} \right\rangle$$
 (19)

46/55

Local Accretion

Profile Single PBH

Total Signal All PBHs

Mena, Palomares-Ruiz, Villanueva-Domingo, SJW

Contrary to previous claims in literature, this contribution is negligible

Durham University, IPPP (May, 2019) Primordial Black Holes in 21cm Cosmology

Cosmological Implications Summary

We said that PBHs can have ${\sim}3$ effects:

- Modify power spectrum \rightarrow enhance number of halos
 - Current constraints do not allow enhanced number density of star forming halos
 - Signal from minihalos quite small
- Local heating from accretion
- Global heating from accretion

Cosmological Implications Summary

We said that PBHs can have ${\sim}3$ effects:

- Modify power spectrum \rightarrow enhance number of halos
 - Current constraints do not allow enhanced number density of star forming halos
 - Signal from minihalos quite small
- Local heating from accretion
- Global heating from accretion

Cosmological Implications Summary

We said that PBHs can have ${\sim}3$ effects:

- Modify power spectrum \rightarrow enhance number of halos
 - Current constraints do not allow enhanced number density of star forming halos
 - Signal from minihalos quite small
- Local heating from accretion
- Global heating from accretion

Cosmological Implications

Summary

We said that PBHs can have ${\sim}3$ effects:

- Modify power spectrum \rightarrow enhance number of halos
 - Current constraints do not allow enhanced number density of star forming halos
 - Signal from minihalos quite small
- Local heating from accretion
- Global heating from accretion

Contrary to previous work, we show only global heating determines signal

Minihalos

Recall that dn/dM enhanced by shot noise \rightarrow question remains whether minihalos can contribute significantly $_{\rm Gong\ and\ Kitajima\ (2017,\ 2018)}$

$$T_{b,mh}(\nu) = T_{\rm cmb} e^{-\tau_{mh}(\nu)} + \int_{-\infty}^{\infty} dR \frac{T_s(R)}{T_s(R)} e^{-(\tau_{\rm IGM} + \tau_{mh}(\nu,R))} \frac{d\tau_{mh}}{dR}$$
(20)
Model ρ_b and T_k

$$\bar{T}_b \propto \int_{M_{\rm min}}^{M_{\rm max}} dM \, \frac{dn}{dM} \left\langle \Delta_{v_{\rm eff}} T_{b,\nu_0} \right\rangle \tag{21}$$

 $M_{\rm max}$ set to star formation threshold, $M_{\rm min}=M_J$

Minihalos

Observability

 $\label{eq:Mena, Palomares-Ruiz, Villanueva-Domingo, SJW Maximum minihalo contribution $$\sim 8mK$ (very small modifications)$

Kleban et al (2007)

In limit that $L/L_{\rm Edd} \rightarrow 0$, local heating dictated by gravity

$$4\pi r^2 \rho |v| = \dot{M} = \text{constant}$$
(22)

$$v \frac{dv}{dr} = -\frac{1}{\rho} \frac{dP}{dr} - \frac{GM}{r^2}$$
(23)

$$\Lambda_{\text{ion}}(1 - x_e) = \alpha n_H x_e^2$$
(24)

Leading to $\rho \propto r^{-3/2}$ and $T \propto r^{-1}$ for $r/r_B \ll 1$

Minihalos

Observability

Discrepancy an issue of self-consistency $\rightarrow M_{
m min} = M_{
m Jeans} \propto T_k^{3/2}$

55/55