Theory predictions for vector-boson scattering at the LHC

Mathieu PELLEN

Cavendish Laboratory, University of Cambridge

IPPP Durham seminar

University of Cambridge - United Kingdom

28th of February 2019

European Research Council

\rightarrow Illustration of Giordano Bruno's philosophical ideas

Mathieu PELLEN

Theory predictions for vector-boson scattering at the LHC

<u>LHC</u>: Great tool to probe fundamental interactions at high energies \rightarrow Cross talk between experiment and theory

 $pp \rightarrow t^{\star} \bar{t}^{\star} \rightarrow (W^{\star} \rightarrow \nu_{\mu} \mu^{-}) (W^{\star} \rightarrow jj) b\bar{b}$

LHC program

• <u>Run I</u>

- Discovery of the Higgs boson
- Exclusion of new physics parameters/models
- <u>Run II</u> $\rightarrow \sqrt{s} = 13 \text{ TeV}$
 - Study of the properties of the Higgs boson
 - Precision study of standard candle processes (tt, di-boson, ...)
 - Measurement of *new* SM processes (tth, <u>VBS</u>, tri-boson, ...)
 - Discovery of new physics?

 \rightarrow Precision physics on both the experimental and theoretical side

 \leftrightarrow Precise theoretical predictions comparable with measurements

Vector-Boson Scattering (VBS) at the LHC

 \rightarrow Scattering of vector bosons!

Why this is interesting:

- High multiplicity process
- Key process to investigate electroweak symmetry breaking
- Crucial role of Higgs boson
- Possibility to measure SM parameters
 - \rightarrow Higgs width: [Campbell, Ellis; 1502.02990]
- Window to new physics (triple/quadric gauge coupling)

[Buarque Franzosi, Ferrarese; 1705.02787], [Gomez-Ambrosio; 1809.04189], [Zhang, Zhou; 1808.00010],

[1807.02707; Perez, Sekulla, Zeppenfeld] [Brass, Fleper, Killian, Reuter, Sekulla; 1807.02512] ...

...

\rightarrow Measure VBS at the LHC

Mathieu PELLEN

Theory predictions for vector-boson scattering at the LHC

 \rightarrow Limited experimental precision for VBS (for now)

Mathieu PELLEN

Theory predictions for vector-boson scattering at the LHC

Experimental status (1): Measured

 \rightarrow Several VBS signatures according to the final state (VV):

- $VV = W^{\pm}W^{\pm}$ (leptonic) \rightarrow Golden channel
 - Low background
 - Evidence by ATLAS and CMS at Run-I [1405.6241, 1611.02428, 1410.6315]
 - Measurement by ATLAS and CMS at run-II [CMS-PAS-SMP-17-004; 1709.05822], [ATLAS-CONF-2018-030]
- *VV* = WZ (leptonic)
 - Good rate but large background
 - Observation by ATLAS and CMS at Run-II [ATLAS-CONF-2018-033, 1812.09740], [CMS-PAS-SMP-18-001, 1901.04000]
- *VV* = ZZ (leptonic)
 - Low cross section but good reconstruction
 - $\bullet~$ Evidence by CMS at Run-II for ${\rm ZZ}$ $_{\rm [1708.02812]}$

Experimental status (2): Not (yet) measured

 \rightarrow Several VBS signatures according to the final state (VV):

- $VV = W^+W^-$ (leptonic)
 - VBF (pp \rightarrow jjH) + H \rightarrow W^+W^- in a larger phase space
 - Very large background from $t\bar{t}$
- VV (semi-leptonic: 4 jets in the final state)
 - Large cross section but very large background
 - Used for BSM exlcusion only (for now) [ATLAS; 1609.05122, 1710.07235]
- VV (fully-leptonic: 6 jets in the final state)
 - Very large cross section but gigantic background

Measurements are only starting

 \rightarrow We should get excited!

 \rightarrow We should get theoretical predictions ready...

Slide from Jakob Salfeld-Nebgen (https://indico.cern.ch/event/711256/)

LHC Future Timeline

- Assume scaling of uncertainties with 1/√L
 - dedicated studies with detector simulation for example in <u>CMS-PAS-SMP-14-008</u>

Integrated Luminosity	36 fb	150 fb	300 fb	3000 fb-			
Year	2016	2016 2019		2038			
EW(VBS) W±W±	20%	10%	7%	2%			
EW (VBS) ZZ	35%	18%	13%	6%			
EW (VBS) WZ	35% personally anticipated	18%	13%	6%			
00							

- 36

Mathieu PELLEN

٠

Theory predictions for vector-boson scattering at the LHC

Outline

 \rightarrow Presentation of (some) theory aspects of VBS (mostly SM)

• LO

- NLO (QCD and EW) \rightarrow focus on NLO EW
- Quality of the VBS approximation
- Beyond fixed order
- Final remarks

 \rightarrow Mainly for W⁺W⁺ (WZ) but stress Common features of all VBS signatures

Vector-Boson Scattering (VBS) at the LHC

- Two jets back-to-back close to the beam pipe due to colour \rightarrow large delta rapidity (Δy_{jj}) and invariant mass (m_{jj})
- Gauge boson produced centrally

Mathieu PELLEN

Consider: $pp \rightarrow \mu^+ \nu_\mu e^+ \nu_e jj$

 \rightarrow All partonic channels to be taken into account:

- $uu \rightarrow \mu^+ \nu_\mu e^+ \nu_e dd$ • ud $\rightarrow \mu^+ \nu_\mu e^+ \nu_e d\bar{u}$ • $u\bar{d} \rightarrow \mu^+ \nu_\mu e^+ \nu_e s\bar{c}$ • $u\bar{s} \rightarrow \mu^+ \nu_\mu e^+ \nu_e d\bar{c}$
- $\mathrm{uc} \to \mu^+ \nu_\mu \mathrm{e}^+ \nu_\mathrm{e} \mathrm{sd}$ $\mathrm{\bar{sd}} \to \mu^+ \nu_\mu \mathrm{e}^+ \nu_\mathrm{e} \mathrm{\bar{uc}}$
- $\bar{\mathrm{d}}\bar{\mathrm{d}} \to \mu^+ \nu_\mu \mathrm{e}^+ \nu_\mathrm{e} \bar{\mathrm{u}}\bar{\mathrm{u}}$
- \rightarrow Tree amplitudes of order $\mathcal{O}(g^6)$ and $\mathcal{O}(g_s^2 g^4)$

• LO contributions at: $\mathcal{O}(\alpha^6)$, $\mathcal{O}(\alpha_s \alpha^5)$, and $\mathcal{O}(\alpha_s^2 \alpha^4)$ (EW contribution/signal, interference, and QCD contribution/background)

 \rightarrow Example of W^+W^+ :

[Ballestrero, MP et al.; 1803.07943]

- The contributions have different kinematic
- <u>Need for exclusive cuts to enhance</u> <u>the EW contribution</u>
 - \rightarrow typical cuts are $m_{\rm jj}$ and $|\Delta y_{\rm jj}|$.

Common feature of all VBS signatures \rightarrow LO cross sections in fiducial volume

• for W^+W^+ :

[Biedermann, Denner, MP; 1708.00268]

• for W^+Z :

[Andersen, MP et al.; 1803.07977 LH proceedings]

 \to The relative size of the EW contribution is process dependent (87% for $\rm W^+W^+$ vs. 20% for $\rm W^+Z)$

 \rightarrow Background can be overwhelming

 $(80\% \ e.g. \text{ for } W^+Z)$

 \rightarrow Interference usually small but not negligible

$$(3\% e.g. \text{ for } W^+W^+)$$

 \rightarrow Example of WZ:

[Andersen, MP et al.; 1803.07977 LH proceedings]

 \rightarrow Phase-space regions where EW contribution is dominating: very low statistics

 \rightarrow Challenge for experimental collaborations

NLO computations (1)

- $W^{\pm}W^{\pm}$
 - NLO QCD to EW-induced process in VBS approximation [Jäger, Oleari, Zeppenfeld; 0907.0580], [Denner, Hošeková, Kallweit; 1209.2389]
 - NLO QCD to QCD-induced process [Melia et al.; 1007.5313, 1104.2327], [Campanario et al.; 1311.6738]
 - Matching to parton shower [Jäger, Zanderighi; 1108.0864], [Melia et al.; 1102.4846]
 - \rightarrow Available in VBFNLO or POWHEG-BOX
 - Full NLO QCD and EW to EW- and QCD-induced process

[Biedermann, Denner, MP; 1611.02951, 1708.00268]

- $W^{\pm}Z$
 - NLO QCD to EW-induced process in VBS approximation [Bozzi et al.; hep-ph/0701105]
 - Matching to parton shower [Jäger, Karlberg, Scheller; 1812.05118]
 - NLO QCD to QCD-induced process [Campanario et al.; 1305.1623] \rightarrow Available in VBFNLO and POWHEG-BOX

NLO computations (2)

- W⁺W⁻
 - NLO QCD to EW-induced process in VBS approximation [Jäger, Oleari, Zeppenfeld; hep-ph/0603177]
 - NLO QCD to QCD-induced process [Melia et al.; 1104.2327], [Greiner et al.; 1202.6004]
 - Matching to parton shower [Jäger, Zanderighi; 1301.1695], [Rauch, Plätzer; 1605.07851]
 - \rightarrow Available in VBFNLO or POWHEG-BOX

 \circ ZZ

- NLO QCD to EW-induced process in VBS approximation and matching to parton shower [Jäger, Karlberg, Zanderighi; 1312.3252]
- NLO QCD to QCD-induced process [Campanario et al.; 1405.3972] \rightarrow Available in VBFNLO or POWHEG-BOX

NLO computations - state of the art

 \rightarrow All processes known at NLO QCD accuracy matched to PS

- in VBS approximation
- for both QCD-/EW-induced process
- all available in VBFNLO (apart from QCD-induced W⁺W⁻)
- all available in POWHEG-BOX
- \bullet possible to generate in $MG5_AMC@NLO$ or SHERPA
- \rightarrow NLO EW corrections only known for W^+W^+ (WZ preliminary)
- \rightarrow Full NLO computation only known for W^+W^+
- \rightarrow No NNLO computation known apart in VBF

[Cacciari et al.; 1503.02660], [Cruz-Martinez et al.; 1802.02445]

\rightarrow Calculation of both NLO QCD and EW corrections to

 $pp \rightarrow \mu^+ \nu_\mu e^+ \nu_e jj$

[Biedermann, Denner, MP; 1708.00268]

- Off-shell and non-resonant contributions
 → Realistic final state
- Full calculations for NLO QCD corrections
- EW corrections can be large in certain phase space regions
 → Sudakov logarithms
- Theoretical and numerical challenge to consider 2 → 6 process
 → Virtual corrections involving up to 8-point functions

LO contributions at $\mathcal{O}(\alpha^6)$, $\mathcal{O}(\alpha_s \alpha^5)$, and $\mathcal{O}(\alpha_s^2 \alpha^4)$

NLO contributions at $\mathcal{O}\left(\alpha^{7}\right)$, $\mathcal{O}\left(\alpha_{s}\alpha^{6}\right)$, $\mathcal{O}\left(\alpha_{s}^{2}\alpha^{5}\right)$, and $\mathcal{O}\left(\alpha_{s}^{3}\alpha^{4}\right)$

 \rightarrow Order $\mathcal{O}\left(\alpha_{s}\alpha^{6}\right)$ and $\mathcal{O}\left(\alpha_{s}^{2}\alpha^{5}\right)$: QCD and EW corrections mix

\rightarrow At NLO: meaningless distinction between	Common feature to all VBS	
EW signal and QCD background		
\rightarrow Combined measurement		
	signatures	

 \rightarrow Theoretical version of the previous graph:

 \rightarrow Typical mixed QCD-EW corrections when having two quark lines linked by a neutral current

Tools

ightarrow Virtual corrections: RECOLA [Actis, Denner, Hofer, Lang, Scharf, Uccirati]

- + COLLIER [Denner, Dittmaier, Hofer]
- \rightarrow Private Monte Carlo $\rm MoCANLO~{{\tiny [Feger]}}$
- \rightarrow Dipole subtraction scheme [Catani,Seymour], [Dittmaier]
- \rightarrow Complex-mass scheme [Denner et al.]
- Inputs

$$ightarrow G_{\mu}$$
 scheme:

$$\alpha = \frac{\sqrt{2}}{\pi} G_{\mu} M_{W}^{2} \left(1 - \frac{M_{W}^{2}}{M_{Z}^{2}} \right) \quad \text{with} \quad G_{\mu} = 1.16637 \times 10^{-5} \text{ GeV}$$

 \rightarrow Parameters:

$$\begin{split} m_{\rm t} &= 173.21\,{\rm GeV}, & \Gamma_{\rm t} &= 0\,{\rm GeV} \\ M_Z^{\rm OS} &= 91.1876\,{\rm GeV}, & \Gamma_Z^{\rm OS} &= 2.4952\,{\rm GeV} \\ M_W^{\rm OS} &= 80.385\,{\rm GeV}, & \Gamma_W^{\rm OS} &= 2.085\,{\rm GeV} \\ M_{\rm H} &= 125\,{\rm GeV} & \Gamma_{\rm H} &= 4.07\times10^{-3}\,{\rm GeV} \end{split}$$

Validations

- Two independent Monte Carlo integrators
- Tree-level matrix elements: MADGRAPH5_AMC@NLO [Alwall et al.; 1405.0301]
- One-loop matrix elements:
 - VS. Madloops [Hirschi et al.; 1103.0621]:
 - $\mathcal{O}\!\left(\alpha^7\right)$ and $\mathcal{O}\!\left(\alpha_{\rm s}^3 \alpha^4\right)$
 - Two libraries in COLLIER [Denner, Dittmaier, Hofer; 1407.0087, 1604.06792]:

•
$$\mathcal{O}(\alpha_{\rm s}\alpha^6)$$
, $\mathcal{O}(\alpha_{\rm s}^2\alpha^5)$, and $\mathcal{O}(\alpha_{\rm s}^3\alpha^4)$

- NLO computations:
 - DPA for $\mathcal{O}(\alpha^7)$ (automatised in [Denner, MP et al.; 1607.05571, 1612.07138] following [Dittmaier, Schwan; 1511.01698])
 - $\mathcal{O}\!\left(\alpha_{\rm s}\alpha^{6}\right)$ vs. [Denner, et al.; 1209.2389] in the VBS approximation
- IR-subtraction/finiteness:
 - Variation of α parameter [Nagy, Troscanyi; hep-ph/9806317]
 - Variation of technical cuts
 - Variation of IR-scale

Predictions for $\sqrt{s} = 13$ TeV at the LHC pp $\rightarrow \mu^+ \nu_\mu e^+ \nu_e j j$

- NNPDF3.0QED [NNPDF collaboration]
- dynamical renormalisation and factorisation scale:

 $\mu_{\rm ren} = \mu_{\rm fac} = \sqrt{p_{\rm T,j_1} p_{\rm T,j_2}}$

• Cuts inspired by Refs. [1405.6241, 1611.02428, 1410.6315, CMS-PAS-SMP-17-004] :

 $\begin{array}{ll} \mbox{charged lepton:} & p_{{\sf T},\ell} > 20\,{\rm GeV}, & |y_\ell| < 2.5, & \Delta R_{\ell\ell} > 0.3 \\ & \mbox{jets:} & p_{{\sf T},j} > 30\,{\rm GeV}, & |y_j| < 4.5, & \Delta R_{j\ell} > 0.3 \\ & \mbox{missing energy:} & p_{{\sf T},{\rm miss}} > 40\,{\rm GeV}, \end{array}$

 \rightarrow For the two leading jet in p_{T} :

jet-jet: $m_{jj} > 500 \text{ GeV}, |\Delta y_{jj}| > 2.5.$

 \rightarrow Final state: 2 jets, missing $p_{T,i}$, and 2 same sign leptons

• anti- $k_{\rm T}$ jet algorithm [Cacciari, Salam, Soyez; 0802.1189]

R = 0.4 for jet recombination and R = 0.1 for photon recombination

Calculation of both NLO QCD and EW corrections to ${\rm pp} \to \mu^+ \nu_\mu {\rm e}^+ \nu_{\rm e} {\rm jj}$

 \rightarrow <u>NLO fiducial cross sections</u>: (normalised to σ_{LO})

Order	$\mathcal{O}(\alpha^7)$	$\mathcal{O}(\alpha_{s}\alpha^{6})$	$\mathcal{O}(\alpha_s^2 \alpha^5)$	$\mathcal{O}(\alpha_s^3 \alpha^4)$	Sum
$\delta\sigma_{\rm NLO}$ [fb]	-0.2169(3)	-0.0568(5)	-0.00032(13)	-0.0063(4)	-0.2804(7)
$\delta \sigma_{\rm NLO} / \sigma_{\rm LO}$ [%]	-13.2	-3.5	0.0	-0.4	-17.1

[Biedermann, Denner, MP; 1708.00268]

- \rightarrow Large EW corrections at $\mathcal{O}(\alpha^7)$
- \rightarrow Negative corrections at $\mathcal{O}(\alpha_{s}\alpha^{6})$:
- \rightarrow Photon PDF contribution at NLO (not included in NLO definitions):
- +1.50% with LUXqed [Manohar et al.; 1607.04266]

NLO corrections - W^+W^+ / Separated contributions

[[]Biedermann, Denner, MP; 1708.00268]

- \rightarrow Clear hierarchy of LO contributions
- \rightarrow Different behaviour of the NLO corrections (normalised to the full LO)

NLO corrections - W^+W^+ / Combined predictions

[Biedermann, Denner, MP; 1708.00268]

- \rightarrow Large negative corrections for the full process
- \rightarrow Corrections dominated by EW correction to EW process
 - \rightarrow Bands do not overlap

Common feature of all VBS signatures

- EW corrections $\mathcal{O}\!\left(\alpha^7\right)$ large with respect to LO $\mathcal{O}\!\left(\alpha^6\right)$
- Correction of $\mathcal{O}(\alpha_{\rm s}\alpha^{\rm 6})$ are expected to be of comparable size
- Small but not negligible photon contribution
- The size of $\mathcal{O}\bigl(\alpha_{\rm s}^3\alpha^4\bigr)$ depends strongly on the size of the QCD-induced process at LO

NLO EW corrections - $W^{\pm}W^{\pm}$

Mathieu PELLEN

NLO EW corrections - WZ

\rightarrow Cross section:

[Denner, Dittmaier, Maierhöfer, MP, Schwan] Preliminary

 \rightarrow <u>Differential distribution</u>:

[Denner, Dittmaier, Maierhöfer, MP, Schwan] Preliminary

 \rightarrow Also large corrections!

Mathieu PELLEN

• Leading behaviour dominated by:

Sudakov logarithms (bosonic part of the virtual), $\log^2 \left(\frac{Q^2}{M_{es}^2}\right)$

- \rightarrow Usually in the tail of the distribution (suppressed)
- \rightarrow Usually small for total cross section
- \rightarrow Usually smaller than the QCD corrections
- Large corrections not due to VBS cuts
 - ightarrow remove $m_{
 m jj} > 500~{
 m GeV}$ and $|\Delta y_{
 m jj}| > 2.5$
 - \rightarrow relax $p_{T,j}$ and $p_{T,miss}$

■ Double-pole approximation: [Dittmaier, Schwan; 1511.01698]
 ■ leading contribution of expansion about the resonance poles
 → Required two W bosons for the virtual contributions

- Agree within 1% with full calculation
- Dominated by factorisable corrections
 - \rightarrow Large corrections driven by the scattering process

• Effective vector-boson approximation:

- $\bullet\,$ Simplify the discussion to $W^+W^+ \to W^+W^+$
- Leading logarithm approximation [Denner, Pozzorini; hep-ph/0010201]

$$\sigma_{\rm LL} = \sigma_{\rm LO} \bigg[1 - \frac{\alpha}{4\pi} 4 C_{\rm W}^{\rm ew} \log^2 \left(\frac{Q^2}{M_{\rm W}^2} \right) + \frac{\alpha}{4\pi} 2 b_{\rm W}^{\rm ew} \log \left(\frac{Q^2}{M_{\rm W}^2} \right) \bigg]$$

(double EW logs, collinear single EW logs, and single logs from parameter renormalisation included) (angular-dependant logarithms omitted)

Mathieu PELLEN

$$\sigma_{\rm LL} = \sigma_{\rm LO} \left[1 - \frac{\alpha}{4\pi} 4 C_{\rm W}^{\rm ew} \log^2 \left(\frac{Q^2}{M_{\rm W}^2} \right) + \frac{\alpha}{4\pi} 2 b_{\rm W}^{\rm ew} \log \left(\frac{Q^2}{M_{\rm W}^2} \right) \right]$$

• For
$$Q=\langle m_{4\ell}
angle\sim$$
 390 GeV

$$\delta_{
m EW}^{
m LL} = -16\%$$
 (!)

 \rightarrow Corrections 3-4 times larger than for $q\bar{q} \rightarrow {\rm W}^+ {\rm W}^+$

- C^{ew} larger for bosons than fermions
- $\langle m_{4\ell} \rangle$ larger for VBS (massive *t*-channel [Denner, Hahn; hep-ph/9711302]) NB: $\langle m_{4\ell} \rangle \sim 250 \text{ GeV}$ for $q\bar{q} \rightarrow W^+W^+$

Large NLO EW corrections: intrinsic feature of VBS at the LHC

Mathieu PELLEN

Theory predictions for vector-boson scattering at the LHC

[Biedermann, Denner, MP; 1611.02951]

→ Near $y_{j_1 j_2} = 0$: two jets back-to-back Bulk of the cross section, $\sim -16\%$ corrections → Band: $\pm 1/\sqrt{N_{\rm obs}}$ for 3000 fb⁻¹ → probe of the EW sector

Effects from Higgs sector

[Dittmaier, Maierhöfer, Schwan, Siegert, In: PoS RADCOR2017]

 \rightarrow low $p_{\rm T}$ region sensitive to modified Higgs sector, \rightarrow large $p_{\rm T}$ is unaffected

VBS approximation

\rightarrow VBS approximation:

Neglecting *s*-channel contributions and t/u interferences Implemented in POWHEG and VBFNLO (possibly including *s*-channel)

 \rightarrow Extension to NLO Implemented in $\rm POWHEG$ and $\rm VBFNLO$ (possibly including s-channel)

 \rightarrow Comparison against full computations at NLO has never been performed before $_{[Ballestrero,\ MP\ et\ al.;\ 1803.07943]}$

Quality of the VBS approximation (LO)

[Ballestrero, MP et al.; 1803.07943]

\rightarrow Using the full computation:

Presence of a peak at the W-boson mass (s-channel contribution)

Quality of the VBS approximation (LO)

[[]Ballestrero, MP et al.; 1803.07943]

- For low m_{jj} and low Δy_{jj}, significant s-channel contributions

 tri-boson contributions with resonant W-boson
 Good approximation in fiducial region for W⁺W⁺
 - ightarrow confirmed for $W^{\pm}Z$ [Andersen, MP et al.; 1803.07977]

natures

Quality of the VBS approximation (LO)

[Ballestrero, MP et al.; 1803.07943]

 \rightarrow In single-differential distributions in fiducial region at LO: hardly any differences especially compared to QCD-scale band

Mathieu PELLEN

Theory predictions for vector-boson scattering at the LHC

Quality of the VBS approximation (NLO)

[[]Ballestrero, MP et al.; 1803.07943]

- The approximations are in general worse at NLO
- Approximation can fail by up to 20% even in fiducial region
 → OK now for current experimental precision but might be
 important in the future
- Similar behaviour expected for other signatures:
 - \rightarrow but harder to predict
 - \rightarrow full computation not available for other signatures (yet)

Quality of the VBS approximation (NLO)

 \rightarrow Typical *s*-channel contribution:

\rightarrow Less suppressed at NLO due to extra jet in the real

Similar effect for tt production at NLO QCD in lepton+jet channel [Denner, MP; 1711.10359]

Quality of the VBS approximation (NLO)

[Ballestrero, MP et al.; 1803.07943]

Differences lie outside the band
 → relevant for precision measurements

Beyond fixed order (1)

[[]Ballestrero, MP et al.; 1803.07943]

 \rightarrow Reasonable agreement at both LO (left) and NLO (right) for observables defined at LO

 \rightarrow NB: input parameters (masses, widths, PDF, scales) all set to common values

Beyond fixed order (2)

[Ballestrero, MP et al.; 1803.07943]

 \rightarrow Very large differences for observables related to the third jet (only defined at NLO)

- \rightarrow Different treatment of recoil in Pythia
- \rightarrow Triggered similar study in ATLAS with $_{\rm SHERPA}$

[ATL-PHYS-PUB-2019-004]

Mathieu PELLEN

Beyond fixed order (3)

 \rightarrow Also observed by CMS in VBF-Z production $_{[CMS;\;1712.09814]}$ (i.e. $pp \rightarrow jjZ)$

- \rightarrow Processes with larger cross sections ...
- ... but similar topologies ...
- ... can help to improve on the predictions for VBS

Mathieu PELLEN

Presentation mainly based on results for $W^{\pm}W^{\pm}$ (with a bit of WZ)

- Full NLO corrections [Biedermann, Denner, MP; 1708.00268]
 - \rightarrow Only the measurement of the full process is meaningful
- NLO EW corrections to VBS $_{\rm [Biedermann, Denner, MP; 1611.02951]}$ \rightarrow Intrinsic feature of VBS at the LHC
- Comparison of theoretical predictions

[Ballestrero, MP et al.; 1803.07943]

 \rightarrow Effect of parton shower can be sizeable

All these effects will be measurable in the future!

Going toward making VBS a precision test of the Standard Model

- Experiment: Start of VBS measurements
 - \rightarrow better measurements, new signatures measured etc.
- Theory: Significant progresses
 - \rightarrow NLO corrections, VBS approximation, parton shower etc.
- VBS are challenging both theoretically and experimentally
- Significant interest in the theory and experimental community
- New territories (new physics!) and lots to be done
- Exciting time ahead of us!

BACK-UP

Predictions for $\sqrt{s} = 13$ TeV at the LHC pp $\rightarrow \mu^+ \nu_\mu e^+ \nu_e j j$

- NNPDF3.0QED [NNPDF collaboration]
- dynamical renormalisation and factorisation scale:

 $\mu_{\rm ren} = \mu_{\rm fac} = \sqrt{p_{\rm T,j_1} p_{\rm T,j_2}}$

• Cuts inspired by Refs. [1405.6241, 1611.02428, 1410.6315, CMS-PAS-SMP-17-004] :

 $\begin{array}{ll} \mbox{charged lepton:} & p_{{\sf T},\ell} > 20\,{\rm GeV}, & |y_\ell| < 2.5, & \Delta R_{\ell\ell} > 0.3 \\ & \mbox{jets:} & p_{{\sf T},j} > 30\,{\rm GeV}, & |y_j| < 4.5, & \Delta R_{j\ell} > 0.3 \\ & \mbox{missing energy:} & p_{{\sf T},{\rm miss}} > 40\,{\rm GeV}, \end{array}$

 \rightarrow For the two leading jet in p_{T} :

jet-jet: $m_{jj} > 500 \text{ GeV}, |\Delta y_{jj}| > 2.5.$

 \rightarrow Final state: 2 jets, missing $p_{T,i}$, and 2 same sign leptons

• anti- $k_{\rm T}$ jet algorithm [Cacciari, Salam, Soyez; 0802.1189]

R = 0.4 for jet recombination and R = 0.1 for photon recombination

Distributions extra

• <u>At LO</u>

• Factorisable corrections

$$\mathcal{M}_{\text{virt,fact,PA}} = \sum_{\lambda_{1},...,\lambda_{r}} \left(\prod_{i=1}^{r} \frac{1}{K_{i}} \right) \left[\mathcal{M}_{\text{virt}}^{I \to N,\overline{R}} \prod_{j=1}^{r} \mathcal{M}_{\text{LO}}^{j \to R_{j}} \right. \\ \left. + \left. \mathcal{M}_{\text{LO}}^{I \to N,\overline{R}} \sum_{k=1}^{r} \mathcal{M}_{\text{virt}}^{k \to R_{k}} \prod_{j \neq k}^{r} \mathcal{M}_{\text{LO}}^{j \to R_{j}} \right]_{\left\{ \overline{k}_{l}^{2} \to \overline{k}_{l}^{2} = M_{l}^{2} \right\}_{l \in \overline{R}}}$$

• Non-factorisable corrections:

$$2\mathrm{Re}\left\{\mathcal{M}_{\mathrm{LO},\mathrm{PA}}^{*}\mathcal{M}_{\mathrm{virt},\mathrm{nfact},\mathrm{PA}}\right\}=|\mathcal{M}_{\mathrm{LO},\mathrm{PA}}|^{2}\delta_{\mathrm{nfact}}$$

- On-shell projection
- DPA applied to virtual corrections and I-operator
- Full Born and Real contributions:

Background processes

\rightarrow For $W^{\pm}W^{\pm}$

- no bottom quark contributions:
 "top-jets" in the final state that have different signature
- no top contamination
- no g contributions due to charge conservation
- $\rightarrow \underline{\text{For }W^+W^-} \text{ or }W^\pm Z$
 - bottom quark contributions
 - top contamination:
 - \rightarrow tZj contributions for $\rm W^{\pm}Z$
 - \rightarrow tWj/tT contributions for $\rm W^+W^-$

 \rightarrow For W^+W^- or ZZ

• Large loop-induced gg contributions part of the NNLO corrections to the QCD-induced process $O\left(\alpha_{\rm s}\alpha^5\right)$