Latest measurements of multibosons of the ATLAS experiment and what to do with them

Kristin Lohwasser, University of Sheffield

LHC Run-2: A success story (of the machine)

- > 1982: First LHC studies
- > 2003: Start of LHC installation
- > 2009: Actual start of LHC

> Run 2 (5.4.2015 – 3.12.2018)

- Delivered: 158 fb⁻¹
 Recorded: 149 fb⁻¹ (94.3%)
- Good f. Physics: 140 fb⁻¹ (94%)

- > 13 TeV proton-proton collisions
- "Discovery machine" (Higgs!! – but anything else?)

Very successful data taking period

Precision physics data set: $<\mu>= 2$

Year	Dataset	Description	> HL	-LHC m W s://cds.cern.cl	PUB r	note 2643352
			↓ > Wo	ork in progi	ress for	⁻ m W
2015	50ns	13 TeV collisions with 50 ns bunch spacing (First	cor	nbination v	with Tev	vatron:
		physics dataset)	http	s://indico.cern	.ch/event	/779259/
	13 TeV- <i>pp</i>	13 TeV collisions with 25 ns bunch spacing	[> We	ak mixina	angle s	sin²θ
	5 TeV- <i>pp</i>	5 TeV collisions	ATL	AS-CONF-20	18-037	
	Pb- Pb	Heavy ion collisions at 6369 Z-TeV	ALEPH	ATLAS		
2016	5 TeV- <i>p</i> - <i>Pb</i>	proton-nucleus collisions at 5 TeV				
	8 TeV- <i>p</i> - <i>Pb</i>	proton-nucleus collisions at 8 TeV	OPAL			
	13 TeV- <i>pp</i>	13 TeV collisions with 25 ns bunch spacing	CDF D0			
	low- μ	13 TeV collisions at low instananeous luminosity (μ)	ATLAS W ⁺		•	
2017	low- μ	13 TeV collisions at low instananeous luminosity (μ)	ATLAS W ⁻	Stat. Uncertainty		
	13 TeV- <i>pp</i>	13 TeV collisions with 25 ns bunch spacing		80250 80300	80350 80400	80450 80500
	ALFA	900 GeV collisions (high β^*)	1	ATLAS Prelimi	nary	m _w [MeV]
	5 TeV-pp	5 TeV collisions	LEP-1 and SLD:	Z-pole	-	0.23152 ± 0.00016
	XeXe	Collisions with Xenon Ions	SLD: A ₁			0.23221 ± 0.00029 0.23098 ± 0.00026
2018	Pb-Pb	Heavy ion collisions at 6369 Z-TeV	Tevatron LHCb: 7+8 TeV			$0.23148 \pm 0.00033 \\ 0.23142 \pm 0.00106$
	ALFA	900 GeV collisions (high β^*)	CMS: 8 TeV	•	•	0.23101±0.00053
	13 TeV- <i>pp</i>	13 TeV collisions with 25 ns bunch spacing	TLAS: 7 TeV ATLAS: ee _{cc} +μμ			$\begin{array}{c} 0.23080 \pm 0.00120 \\ 0.23119 \pm 0.00049 \end{array}$
	low- μ	13 TeV collisions at low instananeous luminosity (μ)	ATLAS: ee _{CF}	~ _		0.23166 ± 0.00043
			A Í LAS: 8 TeV	0.23 0.2	31 0.232	0.23140 ± 0.00036

 $\sin^2 \theta'_{eff}$

Low energy *pp*-collisions

Year	Dataset	Description	W and Z production in 5.02 TeV pp collisions
2015	50ns	13 TeV collisions with 50 ns bunch spacing (First	Eur. Phys. J. C 79 (2019) 128
		physics dataset)	$\square \qquad \qquad$
	13 TeV-pp	13 TeV collisions with 25 ns bunch spacing	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
	5 TeV-pp	5 TeV collisions	10 ■□ D W→ (e/g) ↓ UA1 W→ Iv UA1 W→ Iv
	Pb-Pb	Heavy ion collisions at 6369 Z-TeV	VIA2 W→ e v ●/○ Phenix W ² → (e [*] /e [*])v
2016	5 TeV- <i>p</i> - <i>Pb</i>	proton-nucleus collisions at 5 TeV	
	8 TeV- <i>p</i> - <i>Pb</i>	proton-nucleus collisions at 8 TeV	ATLAS
	13 TeV-pp	13 TeV collisions with 25 ns bunch spacing	10 ⁻¹
	low- μ	13 TeV collisions at low instananeous luminosity (μ)	
2017	low-µ	13 TeV collisions at low instananeous luminosity (μ)	
	13 TeV- <i>pp</i>	13 TeV collisions with 25 ns bunch spacing	= 0.32 ATLAS 0.3 D $\sqrt{c_5}$ 0.2 TeV 25 pb ⁻¹
	ALFA	900 GeV collisions (high β^*)	$0.28 \qquad \qquad$
	5 TeV-pp	5 TeV collisions	0.26 $p_{T}^{V}>25 \text{ GeV}$ 0.24 $m_{T}>40 \text{ GeV}$
	XeXe	Collisions with Xenon Ions	0.22 0.22 0.22
2018	Pb-Pb	Heavy ion collisions at 6369 Z-TeV	
	ALFA	900 GeV collisions (high β^*)	0.16 + NNPDF3.1 HERAPDF2.0
	13 TeV-pp	13 TeV collisions with 25 ns bunch spacing	
	low- μ	13 TeV collisions at low instananeous luminosity (μ)	
			⁻ Ζ η,

Quark-Gluon plasma and beyond

Year	Dataset	Description
2015	50ns	13 TeV collisions with 50 ns bunch spacing (First
		physics dataset)
	13 TeV-pp	13 TeV collisions with 25 ns bunch spacing
	5 TeV-pp	5 TeV collisions
	Pb- Pb	Heavy ion collisions at 6369 Z-TeV
2016	5 TeV- <i>p</i> - <i>Pb</i>	proton-nucleus collisions at 5 TeV
	8 TeV- <i>p</i> - <i>Pb</i>	proton-nucleus collisions at 8 TeV
	13 TeV-pp	13 TeV collisions with 25 ns bunch spacing
	low- μ	13 TeV collisions at low instananeous luminosity (μ)
2017	low- μ	13 TeV collisions at low instananeous luminosity (μ)
	13 TeV- <i>pp</i>	13 TeV collisions with 25 ns bunch spacing
	ALFA	900 GeV collisions (high β^*)
	5 TeV-pp	5 TeV collisions
	XeXe	Collisions with Xenon Ions
2018	Pb-Pb	Heavy ion collisions at 6369 Z-TeV
	ALFA	900 GeV collisions (high β^*)
	13 TeV- <i>pp</i>	13 TeV collisions with 25 ns bunch spacing
	low- μ	13 TeV collisions at low instananeous luminosity (μ)

https://arxiv.org/abs/1702.01625

Minimum Bias: 900 GeV collisions

Year	Dataset	Description	Bose-Einstein correlations at 0.9 and 7 TeV – Eur. Phys. J. C75 (2015) 466
2015	50ns	13 TeV collisions with 50 ns bunch spacing (First	
		physics dataset)	Two-particle angular correlations at 0.9
	13 TeV-pp	13 TeV collisions with 25 ns bunch spacing	JHEP 1205 (2012) 157
	5 TeV-pp	5 TeV collisions	
	Pb- Pb	Heavy ion collisions at 6369 Z-TeV	Forward-backward correlations and
2016	5 TeV- <i>p</i> - <i>Pb</i>	proton-nucleus collisions at 5 TeV	at 0.9 and 7 TeV
	8 TeV- <i>p</i> - <i>Pb</i>	proton-nucleus collisions at 8 TeV	JHEP 1207 (2012) 019
	13 TeV-pp	13 TeV collisions with 25 ns bunch spacing	-
	low- μ	13 TeV collisions at low instananeous luminosity (μ)	Azimuthal ordering of charged hadrons at 0.9 and 7 TeV
2017	low- μ	13 TeV collisions at low instananeous luminosity (μ)	Phys.Rev. D86 (2012) 052005
	13 TeV- <i>pp</i>	13 TeV collisions with 25 ns bunch spacing	~
	ALFA	900 GeV collisions (high β^*)	K0 and Lambda production at 0.9 and
	5 TeV- <i>pp</i>	5 TeV collisions	Phys.Rev. D85 (2012) 012001
	XeXe	Collisions with Xenon Ions	
2018	Pb-Pb	Heavy ion collisions at 6369 Z-TeV	
	ALFA	900 GeV collisions (high β^*)	-
	13 TeV-pp	13 TeV collisions with 25 ns bunch spacing	T
	low-µ	13 TeV collisions at low instananeous luminosity (μ)	

And finally: *pp*-collisions at high energy

			= 1uct above 140 fb ⁻¹
Year	Dataset	Description	
			only full Run-2 result:
2015	50ns	13 TeV collisions with 50 ns bunch spacing (First	CMS B _c (2s)
		physics dataset)	CMS 🕴 Data
	13 TeV-pp	13 TeV collisions with 25 ns bunch spacing	60 = L = 140 fb ⁻¹
	5 TeV- <i>pp</i>	5 TeV collisions	a = b = b = b = b = b = b = b = b = b =
	Pb-Pb	Heavy ion collisions at 6369 Z-TeV	
2016	5 TeV- <i>p</i> - <i>Pb</i>	proton-nucleus collisions at 5 TeV	
	8 TeV- <i>p</i> - <i>Pb</i>	proton-nucleus collisions at 8 TeV	
	13 TeV- <i>pp</i>	13 TeV collisions with 25 ns bunch spacing	
	low-µ	13 TeV collisions at low instananeous luminosity (μ)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
2017	low- μ	13 TeV collisions at low instananeous luminosity (μ)	
	13 TeV- <i>pp</i>	13 TeV collisions with 25 ns bunch spacing	ATLAS: Resolved low mass
	ALFA	900 GeV collisions (high β^*)	dijet resonance search with
	5 TeV-pp	5 TeV collisions	= 13R WILL OUTD (2013-2017)
	XeXe	Collisions with Xenon Ions	$\begin{array}{c c c c c c c c c c c c c c c c c c c $
2018	Pb-Pb	Heavy ion collisions at 6369 Z-TeV	10°
	ALFA	900 GeV collisions (high β^*)	10° — — — Data, 79.8 b°.', """"""""""""""""""""""""""""""""""""
	13 TeV- <i>pp</i>	13 TeV collisions with 25 ns bunch spacing	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$
	low-µ	13 TeV collisions at low instananeous luminosity (μ)	

300

400 500 600 700

-2 200 1000 m_{ii} [GeV]

But so far: What we have is the Standard Model

С

Production of Z-boson pairs

Not just one process – no one-fits-it-all approach possible!

arXiv:1902.05892

Selection of events

> Rough sketch of requirements

- Leptons with > 5 / 20 / 25 / 20 GeV
- Same-flavour opposite-charge pairs
 → smallest overall |m_z m_µ|
- $m_{\parallel} > 5 \text{ GeV} \rightarrow \text{reject J/}\Psi$
- ΔR_I > 0.1 (0.2) for same (opposite) flavour leptons
 - \rightarrow reject electrons from muon brems
- Depending on what you want to study:
 - → **ZZ:** select two on-shell Z's: $66 < m_z < 116$ GeV
 - → Lineshape: select one on-shell Z (50<m₁₂<106 GeV) and one off-shell Z (m34<115GeV with a lower bound optimized to reject τ -lepton)
 - → Higgs: select the Higgs mass window (not covered here)

ZZ production: Total cross sections

> ATLAS and CMS agree very well – NNLO calculation needed

- ATLAS: 46.2 +/- 1.5 (stat) +/- 1.15 (syst) +/- 1.5 (lumi) → theo: 42.9 +/- 1.7 pb
- CMS: 40.9 +/- 1.3 (stat) +/- 1.4 (syst) +/- 1.0 (lumi) → theo: 36.0 +/- 0.85 pb
 - → measurement starts to be systematics dominated
- Excess for 4e (ATLAS, 2.5 σ) not confirmed by CMS (though also more 4e than expected)

ZZ production: Differential distributions with ATLAS

> Reasonable agreement for various distributions with jets

 Important test with implications for other diboson production processes usually measured using jet vetos (→ e.g. WW)

Exclusive jets in dibosons

https://arxiv.org/abs/1902.05759

pT distributions

> Is it in the description of the recoil of the boson system?

 Best prediction has the gg-initiated contribution multiplied by a global NLO correction factor of 1.67.
 An NLO EW correction factor is applied in each bin. The contribution from EW-ZZ j j generated with Sherpa is added.

 $d\sigma_{WW}^{fid}$ / dp_T [fb/GeV]

Pred. / Data

1.4

1.2

0.8

0.4

ATLAS

14⊢

10

\s = 8 TeV, 20.3 fb⁻¹

60

40

80

100

120

140

500

Powheg Powheg+Resumm MC@NLO

The M₄₁ lineshape (unfolded)

Impact of theoretical progress on WW (8 TeV)

The

Of

University

Sheffield.

Interpretation

- Extracted from the unfolded distributions
- > Test of the versality of the approach
 - Variation of off-shell Higgs production, or gluon-induced ZZ production,
 - (-75% / +200% and -100% / +400% respectively)
 - \rightarrow true lineshape very well reproduced using the SM-based response matrix
 - Injection of additional scalar resonance (with mass= 200, 400 and 900 GeV)
 - \rightarrow Bias can be as large as the dominant statistical uncertainty

arXiv:1902.05892

Reinterpretations of these unfolded data: A model

- Interpretation also outside ATLAS possible
- > Fast and easy model testing

https://arxiv.org/abs/1606.05296 Contour – Butterworth et al. https://arxiv.org/abs/1803.10379 Les Houches 2017

- > Here: Two Higgs-Doublet model to explain ALEPH excess at m_{uu} = 30 GeV
 - Dominant processes: h^+h^- , $h^\pm h$, $h^\pm \eta$ production decaying to $h^\pm \rightarrow \mu^\pm \nu$; $h \rightarrow \mu^+ \mu^-$
 - "Primary" search channel: WW, WZ comparing the leptonic branching fractions
 - Turns out: most excluded by m4l lineshape measurement
 - Dominating decays at the mass range considered: $h^{\pm} \rightarrow hW$ and $h \rightarrow \mu^{+}\mu^{-}$
 - Despite actual resonance at 30 GeV, wrong pairing leads to selection in analysis
 - Neat tool to test models early on and avoid surprises!
 - Other example: V+jets as constraint for DM

Where to go next?

- > Just finished data taking -140 fb⁻¹ translates into huge data set (physically!) >60 TB of di-lepton skimmed data *only*
 - Received first luminosity calculation just this week (so all numbers above are wrong)
 - No final calibrations \rightarrow and precision needs time (can be >130-150 NP for analysis with more than one type of object)

- > So what is to be expected?
 - Observations/measurements on small, specific data sets
 - Generic searches for resonances

Of

Generic searches for resonances

Generic search for resonance in a (falling) distribution

Not necessarily connected a priori with a striking theoretical motivation

- (Feb 2016) ~ 170 papers
 - ~165 spin-0 resonance
 - ~5 spin-2 resonance
 - ~1 spin-1 resonance
 - ~5 parent resonance/kinematic edge

Generic searches for resonances

- Narrow width approximation (NWA)
 - width << mass (here width < 0.5% of m_{H})
 - Decay_products lighter, m<<M</p>
 - M<< √s
 - Interference often neglected
- High-mass Higgs decaying to ZZ or WW (decaying to leptons)
- Often reliant on assumption of generic falling backgound shape and existence of pronounced peak
- Can be difficult to reinterpret

- Generic search for deviations in distributions sensitive to new physics effects
- Could be sensitive to much higher energies scales compared to resonance searches
- Detects also new physics without resonances or very broad resonances

A more general look at the data: EFT

> In a more general formulation:

$$\sigma = \sigma^{\rm SM} + \sum_{i} \left(\frac{c_i^{(6)}}{\Lambda^2} \sigma_i^{(6 \times \rm SM)} + \text{h.c.} \right) + \sum_{ij} \frac{c_i^{(6)} c_j^{(6)*}}{\Lambda^4} \sigma_{ij}^{(6 \times 6)} + \sum_{j} \left(\frac{c_j^{(8)}}{\Lambda^4} \sigma_j^{(8 \times \rm SM)} + \text{h.c.} \right) + \dots$$

- > Expansion of new physics in inverse of energy scale $1/\Lambda$
- Introduce new operators σ_i (respecting SM symmetries) of energy dimension n > 4, suppressed by increasing powers of Λ
- > Captures low-energy effect of UV theory beyond Λ for $\Lambda >>\sqrt{s}$
- > Operator basis not unique, different conventions in use
- > One lepton number violating dim-5 operator (but focus on dim-6 / dim-8)
- > 2499 operators at dimension six, assuming flavour symmetry < 100
- > Constrain EFT coefficients \Rightarrow constrain large classes of UV theories

The University

Sheffield.

Current status of EFT constraints in dibosons

For Run-1: Constraints set traditionally in anomalous coupling framework and EFT in HISZ basis (using DimO6 model by C. Degrande)

Targeting high-energy tails, often dominated by squared terms

Shattering the Standard Model?

> Test for general SM extensions without results

 Independent of basis used: Zero hints for hidden new physics in charged Multibosons ...

> LHC results superseeding all previous experiments

Shattering the Standard Model?

> Same for pure aQGC transversal parameters

> Future potential for improvements obvious

- Combination (between channels)
- Updates to \sqrt{s} = 13 GeV

Combination (between experiments)

Jan 2018				(-	Still few 13
		Channel	Limits	J Ldt	Is	
$f_{T,0}/\Lambda^4$		Ζγ	[-3.8e+00, 3.4e+00]	19.7 fb ⁻¹	8 leV	Tev results
.,	 	Ζγ	[-3.4e+00, 2.9e+00]	19.2 fb ⁻¹	8 lev	
	 	Wγ	[-5.4e+00, 5.6e+00]	19.7 fb ⁻¹	8 TeV	
	н	ss WW	[-6.2e-01, 6.5e-01]	35.9 fb ⁻¹	13 TeV	
	H	ZZ	[-4.6e-01, 4.4e-01]	35.9 fb ⁻¹	13 TeV	
$f_{T,1}/\Lambda^4$		Ζγ	[-4.4e+00, 4.4e+00]	19.7 fb ⁻¹	8 TeV	
1,1	 	Wγ	[-3.7e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV	
		ss WW	[-2.1e+00, 2.4e+00]	19.4 fb ⁻¹	8 TeV	
	н	ss WW	[-2.8e-01, 3.1e-01]	35.9 fb ⁻¹	13 TeV	
	н	ZZ	[-6.1e-01, 6.1e-01]	35.9 fb ⁻¹	13 TeV 🦰	
f_{-a}/Λ^4	 	Zγ	[-9.9e+00, 9.0e+00]	19.7 fb ⁻¹	8 TeV	
1,271		Wγ	[-1.1e+01, 1.2e+01]	19.7 fb ⁻¹	8 TeV	
	 	ss WW	[-5.9e+00, 7.1e+00]	19.4 fb ⁻¹	8 TeV	
	H	ss WW	[-8.9e-01, 1.0e+00]	35.9 fb ⁻¹	13 TeV	
	H	ZZ	[-1.2e+00, 1.2e+00]	35.9 fb ⁻¹	13 TeV	
f/Λ^4	 	Ζγγ	[-9.3e+00, 9.1e+00]	20.3 fb ⁻¹	8 TeV	
'T,5 / 1	 	Wγ	[-3.8e+00, 3.8e+00]	19.7 fb ⁻¹	8 TeV	
$f_{T.6} / \Lambda^4$		Wγ	[-2.8e+00, 3.0e+00]	19.7 fb ⁻¹	8 TeV	
$f_{T,7}/\Lambda^4$	 	Wγ	[-7.3e+00, 7.7e+00]	19.7 fb ⁻¹	8 TeV	
f / A 4	—	Ζγ	[-1.8e+00, 1.8e+00]	19.7 fb ⁻¹	8 TeV	
T,8 //1	H	Zγ	[-1.8e+00, 1.8e+00]	20.2 fb ⁻¹	8 TeV	
	н	ZZ	[-8.4e-01, 8.4e-01]	35.9 fb ⁻¹	13 TeV 🗲	
f / A 4	 	Ζγγ	[-7.4e+00, 7.4e+00]	20.3 fb ⁻¹	8 TeV	
T,9 / A	 	Ζγ	[-4.0e+00, 4.0e+00]	19.7 fb ⁻¹	8 TeV	
	 	Zγ	[-3.9e+00, 3.9e+00]	20.2 fb ⁻¹	8 TeV	
	H-1-1	ZZ	[-1.8e+00, 1.8e+00]	35.9 fb ⁻¹	13 TeV 🗲	
-20	0	20		40		inar Durham 21.02.2019 30
		20	GC Limite	95% CI	[Τ_0]/-41	
		ac		00/0 O.L		

Problems in current EFT approaches are obvious

- > Many un(cor)related operators
 - Can be compared, NOT combined
- > Valid for specific scenarios \rightarrow Difficult for EFT/BSM re-interpretation
 - → Difficult to "interface" with theorists

> A solution: Common Fiducial BSM/EFT cross section

- > Can be a first point of reference for any further limit setting fits (i.e. proof that the limits agree)
- > easier to combine (i.e. everyone knows what to expect and how to use it)
- > Experimental work is rather low (once phase space is fixed)
- > Little model dependence for fiducial and differential cross-sections
- > Need a region that both Atlas and CMS can either measure or extrapolate to with minimal theory dependence + common binning for distributions.

Universitv

Sheffield.

Investigate uncommon operators (e.g. odd-ones: arXiv:1808.06577 [hep-ph])

First suggestion in scope of LHC EWWG

> Trying to compile Full-Run2 recommendations for experiments

	Dibo	son Production		Vec	torboson Fusion
Final state	Object	Selection requirements	Final state	Object	Selection requirements
WW	leptons	$n_{\rm T} > 25 {\rm GeV} n < 2.5$	Z VBF /	leptons	$p_{\mathrm{T,lead}}$ >25 GeV, $ \eta < 2.5$
		$(\sum \overrightarrow{z}) > 20 \text{ CeV}$	Zjj	jets	$p_{\mathrm{T,j1}}$ >55 GeV, $p_{\mathrm{T,j1}}$ >40 GeV, $ \eta < 4.5$
	neutrinos	$(\sum p_{\nu}) > 30 \text{ GeV}$		bosons	$\Delta(m_Z, m_{\ell\ell}) < 10~{ m GeV}$
	jets	no jets with $p_{ m T}>$ 30 GeV and within $ \eta <5.0$		further jets	$p_{\rm T} > 25$ GeV, none in interval between leptons
	final BSM region	$m_{\ell\ell}$: 380-600 GeV, >600 GeV		event	$p_{\rm T}^{\rm balance} < 0.15 \text{ (see Eq. ??)}$
WZ	leptons	$p_{ m T, lead}$ >25 GeV, $p_{ m T}$ >15 GeV, $ \eta < 2.5$		final BSM region	m_{jj} : 0.8-1.2 TeV, >1.2 TeV
	neutrinos	$(\sum \vec{p}_{\mu}) > 30 \text{ GeV}$		vecto	orboson Scattering
	iets	no <i>b</i> -jets with $n_{\rm T} > 30$ GeV and within $ n < 5.0$	Final state	Object	Selection requirements
	bosons	$m = m > 30$ GeV (see Eq. 22) $\Lambda(m = m m) < 15$	WW VBS/	leptons	$p_{\rm T} > 20$ GeV, $ \eta < 2.5$, same-sign
	bosons	$m_{\mathrm{T},W} > 50$ GeV (see Eq. 1.), $\Delta(m_Z, m_{\ell\ell}) < 15$	VV VV JJ	Jets	$p_{T,j1} > 30 \text{ GeV}, p_{T,j1} > 30 \text{ GeV}, \eta < 4.5,$
	C I DCM		come_cion	final BSM region	$\Delta \eta_{jj} > 2.5$ $m \approx 0.25 0.5 \text{ TeV} > 0.5 \text{ TeV}$
	final BSM region	$m_{\mathrm{T},WZ}$: 380-600 GeV, >600 GeV (see Eq. ??)	Z VBS /	lentons	m_{jj} . 0.25-0.5 TeV
ZZ	leptons	$p_{\rm T}$ >25 / 15 / 10 GeV (leading leptons), $ \eta < 2.5$	Zvii	nhotons	$F_{\rm T} > 55, \eta < 2.5$ $F_{\rm T} > 75, \eta < 2.5, \Delta \mathbf{R}(\ell/i, \gamma) > 0.4$
	bosons	$\Delta(m_Z,m_{\ell\ell})<\!\!25~{ m GeV}$	2 155	bosons	$\Delta(m_{Z}, m_{\ell\ell}) < 10 \text{ GeV}$
	final BSM region	m_{WZ} : 0.8-1.0 TeV, >1.0 TeV		iets	$p_{T,i1} > 30$ GeV, $p_{T,i1} > 30$ GeV, $ \eta < 4.5$,
$W\gamma$	leptons	$p_{\rm T} > 35, \eta < 2.5$		•	$\Delta \eta_{ii} > 3.0$
	photons	$E_{\rm T}>25, \eta <2.5, \Delta { m R}(\ell,\gamma)>0.7$		final BSM region	m_{jj} >0.5 TeV
	neutrinos	$(\sum \vec{p}_{\nu}) > 30 \text{ GeV}$	WZ VBS /	leptons	$p_{\rm T,lead}$ >25 GeV, $p_{\rm T}$ >15 GeV, $ \eta <2.5$
	bosons	$m_{\rm T}W > 50 {\rm GeV}$		neutrinos	$(\sum \overrightarrow{p}_{\nu}) > 30 \text{ GeV}$
	final BSM region	$p_{\rm Trai}$: 25-60 GeV 60-90 GeV 90-150 GeV >150		jets	$p_{T,j1}$ >55 GeV, $p_{T,j1}$ >40 GeV, $ \eta < 4.5$
	initial District region	$F_{1,\gamma}^{\gamma}$. 25 00 GeV, 00 90 GeV, 90 150 GeV, 9150		bosons	$\Delta(m_Z,m_{\ell\ell})$ <25 GeV
$Z(\rightarrow \ell \ell)$	lontong	m ≥ 25 m ≤ 0.5		further jets	$p_{\rm T}$ >25 GeV, none in interval between leptons
$Z(\rightarrow \ell\ell)\gamma$	leptons	$p_{\rm T} > 55, \eta < 2.5$		event	$p_{\rm T}^{\rm balance}$ <0.15 (see Eq. ??)
	pnotons	$E_{\rm T} > 25, \eta < 2.5, \Delta \mathbf{R}(\ell, \gamma) > 0.4$		final BSM region	m_{WZ} : 0.8-1.0 TeV, >1.0 TeV
	bosons	$\Delta(m_Z, m_{\ell\ell}) < 10 \text{ GeV}$	ZZ VBS /	leptons	$p_{\rm T}$ >25 / 15 / 10 GeV (leading leptons), $ \eta < 2.5$
	final BSM region	$p_{T,\gamma}$: 100-250 GeV, >250 GeV	ZZjj	jets	$p_{\rm T,j1} > 55 \text{ GeV}, p_{\rm T,j1} > 40 \text{ GeV}, \eta < 4.5$
$Z(\rightarrow \nu \nu)\gamma$	photons	$E_{\rm T}>25, \eta <2.5, \Delta { m R}(\ell,\gamma)>0.4$		bosons fourth our inter	$\Delta(m_Z, m_{\ell\ell}) < 25 \text{ GeV}$
	neutrinos	$(\sum \vec{p}_{\nu}) > 30 \text{ GeV}$		iurther jets	$p_{\rm T} > 25$ GeV, none in interval between leptons
	final BSM region	$n_{\rm T} = 100-250 {\rm GeV} > 250 {\rm GeV}$		event	$p_{\rm T} = <0.15$ (see Eq. ??)
	initial Doivi region	$p_{1,\gamma}$. 100 250 007, >250 007		iniai bowi region	m_{WZ} : 0.6-1.0 lev, >1.0 lev

The

Of

University

Sheffield.

> Work in progress with R. Gomez Ambrosio

Beyond dimension-8: Vector-boson scattering

Scowing number of VBS processes observed (WW, WZ)

- pT lepton > 27 GeV, MET>30 GeV 2 jets with pT > 65 GeV and pT > 35 GeV
- > Highest p T jets with $m_{ii} > 500$ GeV and $|\Delta y_{ii}| > 2$
- Likelihood fit over 30 data points (including control regions for WZ production)

Sherpa VBS samples with non-optimal setting of the color flow for PS on top of VBS-like scattering processes \rightarrow excess of central emissions from the parton shower.

ATL-PHYS-PUB-2019-004

Observed significance of 6.9 (exp. 4.6)

Signal is EW and QCD-EW interference

background of 69 +/- 10

Beyond dimension-8: Vector-boson scattering: WZ

- > All leptons > 15 GeV
- > at least one lepton with pT>27 GeV
- > 2 OS leptons within 10 GeV of m_z ,
 - 3rd lepton > 27 GeV
- > mT(Ŵ)>30 GeV

- > QCD/EW interference is part of the measured signal
- Interference impact included as shape uncertainty on signal
- > Size of interference: +10% of EW WZjj

WZjj Event selection		
Jet multiplicity	≥ 2	
$p_{\rm T}$ of two tagging jets	> 40 GeV	
$ \eta $ of two tagging jets	< 4.5	
η of two tagging jets	opposite sign	
m_{ii}	> 150 GeV	

Beyond dimension-8: Vector-boson scattering: WZ

Fit in 3 control and 1 signal regio

> 5.3 σ observed (3.2 σ expected)

Process	Fitted normalisation
WZjj-QCD	0.56 ± 0.16
$t\bar{t} + V$	1.07 ± 0.23
ZZ-QCD	1.34 ± 0.24

	Cross section in fb
$\sigma^{fid}_{WZjj-EW}$	$0.57 \stackrel{+0.14}{_{-0.13}}$ (stat) $\stackrel{+0.05}{_{-0.04}}$ (exp.syst.) $\stackrel{+0.05}{_{-0.04}}$ (mod.syst.) $\stackrel{+0.01}{_{-0.01}}$ (lumi)
$\sigma^{fid,Sherpa}_{WZjj-EW}$	$0.321 \pm 0.002 \text{ (stat)} \pm 0.005 \text{ (PDF)} \stackrel{+0.027}{_{-0.023}} \text{ (scale)}$
$\sigma^{fid, MadGraph}_{WZjj-EW}$	$0.366 \pm 0.004 \text{ (stat)}$

Inclusive (Wzjj QCD+EW) cross section slightly smaller than predicted

Beyond dimension-8: Vector-boson scattering: WZ

> First look at differential distributions

Conclusions

- > A wealth of data still to be expected from LHC Run-2
 - The work has just begun!
- > More data \rightarrow more complications:
 - What do we need to measure?
 - How do we need to measure it?
- If the first searches for generic resonance fail to deliver (real) results → look beyond "peaks" towards generic effective field theories
- > Multiboson and VBS measurements in ATLAS well established
 - Unfolded results available for most processes
 - Reinterpretation possible
- > For the future: \rightarrow More measurements to come
 - \rightarrow investigate (common) benchmarks
 - \rightarrow define (common) strategies

BACKUP

Lower bound optimization for the m4l lineshape

> Z $\rightarrow \tau\tau$: decays into leptons accompanied by neutrinos

 $\rightarrow\,$ generally lower invariant mass compared to Z $\rightarrow\,$ ee or Z $\rightarrow\,\mu\mu$

Higher invariant 4I mass \rightarrow higher mass of second Z (but still, lower edge dominated by tau-leptons)

$$f(m_{4\ell}) = \begin{cases} 5 \text{ GeV}, & \text{for } m_{4\ell} < 100 \text{ GeV} \\ 5 \text{ GeV} + 0.7 \times (m_{4\ell} - 100 \text{ GeV}), & \text{for } 100 \text{ GeV} < m_{4\ell} < 110 \text{ GeV} \\ 12 \text{ GeV}, & \text{for } 110 \text{ GeV} < m_{4\ell} < 140 \text{ GeV} \\ 12 \text{ GeV} + 0.76 \times (m_{4\ell} - 140 \text{ GeV}), & \text{for } 140 \text{ GeV} < m_{4\ell} < 190 \text{ GeV} \\ 50 \text{ GeV}, & \text{for } m_{4\ell} > 190 \text{ GeV} \end{cases} \end{cases}$$

The squared matrix elements are computed at leading-order QCD precision using the MCFM [18] program version 8.0. The strong coupling constant is evaluated at the scale of half the four-lepton invariant mass. The Higgs boson mass is set to $m_H = 125.0$ GeV, and its width to the Standard Model prediction for this mass. Given the leading-order QCD precision, the incoming parton

The

Of

University

Sheffield.

Average squared matrix element for process X for the given m4l of that event

momenta are approximated by assuming the four-lepton centre-of-mass system is produced at rest.

The pair production of two Z bosons via the $q\bar{q} \rightarrow 4\ell$ process was simulated with the SHERPA 2.2.2 event generator [25]. Matrix elements were calculated for up to one parton at next-to-leading order (NLO) in QCD and up to three partons at leading order (LO) using Comix [26] and OpenLoops [27], and merged with the SHERPA parton shower [28] according to the ME+PS@NLO prescription [29]. The NNPDF3.0NNLO PDF set [30] was used, and the QCD renormalisation and factorisation scales were set to $m_{4\ell}/2$. The total cross-section from this calculation agrees within scale uncertainties with an NNLO QCD prediction obtained using the MATRIX program [31-34]. A reweighting for virtual NLO EW effects [35, 36] was applied as a function of the four-lepton invariant mass, $m_{4\ell}$, which modifies the differential cross-section by between +3% (for $m_{4\ell} \sim 130$ GeV) and -20% for $m_{4\ell} > 800$ GeV. The real higher-order electroweak contribution to 4ℓ production in association with two jets (which includes vector-boson scattering) is not included in the sample discussed above but it was modelled separately using SHERPA 2.2.2 with the NNPDF3.0NNLO PDF set. A second $q\bar{q} \rightarrow 4\ell$ sample was generated at NLO precision in QCD using POWHEG-BOX v2 [37-39] configured with the CT10 PDF set [40] and interfaced to Pythia 8.186 [41, 42] for parton showering. A correction to higher-order precision (K-factor), defined for this process as the ratio of the cross-section at NNLO QCD accuracy to the one at NLO QCD accuracy, was obtained using the MATRIX NNLO QCD prediction and applied to this sample as a function of $m_{4\ell}$, modifying the inclusive cross-section by between +10% for $m_{4\ell}$ < 180 GeV and +25% for $m_{4\ell}$ > 800 GeV. The reweighting for virtual NLO EW effects discussed above for the SHERPA case was also applied to this sample.

The purely gluon-initiated ZZ production process enters at next-to-next-to-leading order (NNLO) in $\alpha_{\rm S}$. It was modelled using SHERPA 2.2.2 [43], at LO precision for zero- and one-jet final states, and the NNPDF3.0NNLO PDF set was chosen. This sample includes the box diagram, the s-channel process proceeding via a Higgs boson, and the interference between the two. Recently, a NLO QCD calculation for the three components became available [44, 45] allowing $m_{4\ell}$ differential K-factors to be calculated with the $1/m_t$ expansion below $2m_t$, and assuming a massless quark approximation above this threshold. This NLO QCD calculation was used to correct the s-channel process $gg \to H^* \to ZZ^{(*)} \to 4\ell$, the box diagram $gg \rightarrow 4\ell$ and the interference with separate K-factors. These represent significant corrections of the order of +100% to the leading-order cross-section. There are, however, NNLO QCD precision calculations for the off-shell Higgs boson production cross-section [46, 47] which show additional enhancement of the cross-section. Since these corrections are not known differentially in $m_{4\ell}$ for all three components, the prediction for each component is scaled by an additional overall correction factor of 1.2, assumed to be the same for the signal, background and interference. This additional constant scale factor is justified by the approximately constant behaviour of the NNLO/NLO QCD prediction. In addition, a purely leading-order prediction for the $gg \rightarrow 4\ell$ process was obtained using the MCFM program [18] with the CT10 PDF set [40], interfaced to Pythia 8 [41, 42].

Uncertainties

