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MY PHD TOPIC

Studies of electroweak vector (W, Z) boson production at small transverse
momentum (pr )in hadron collisions

prdistribution extensively investigated: a way to discrimate between the naive
parton model and QCD

Bulk of data at small py but fixed-order theory predictions diverge

in the limit p1—>0

do BtV In(M?2/p2 i -
QCD and = o (A [——“( /pT)] +B[—2] +C<p3~)> . (959)
Collider Physics 12 P +

..and that happens to all orders

CAMBRIDGE MONOGRAPHS
ON PARTICLE PHYSICS, NUCLEAR PHYSICS



SUDAKOV FACTORS |

These dominant contributions can be taken into account to all orders in perturbation
theory by means of summing them (resummation) - Sudakov factors

Double Leading Log Approximation (DLLA) [Dokshitzer, Dyakonov, Troyan‘80][Soper‘80][S.Ellis,

Stirling‘80]
1 do s o —a o
- oo dgy.  2mqy q7 AT a7

P2 K
?  derived under assumption of strong ordering: k; ;2 << k; ;2 <<...<< k7 2~ qr?<< Q?

Py

?  the Sudakov factor leads to dampening of the cross section as gr > 0

Transverse momentum conservation can be accounted for properly in Fourier space
[Parisi, Petronzio‘79]
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SUDAKOV FACTORS I

Resummation of all terms at least as singular as 1/q;? [Collins, Soper‘81-‘82][Kodaira,
Trentadue‘82-‘83][Collins, Soper, Sterman’85]

qu

B, coefficient calculated by James and C. Davies
in ‘84, enabling more precise comparisons with
data [Davies, Stirling, Webber‘85]

Further work by [Catani, d’Emilio, Trentadue’88], ResBos collaboration [Balazs, Qiu, Yuan, Nadolsky,
Berger, Cao, Chen,..,’94-...] and [Catani, Grazzini, de Florian, Bozzi, Ferrera, Cieri, Sargsyan,Tommasini‘01-...]
(Hgt, HRES) as well asin the SCET framework [Becher, Neubert‘10][Chiu, Jain, Neill, Rothstein
Echevarria, Scimemi, Idilbi, Ebert, Tackmann, Stewart,..][Li,Zhu‘16][Gehrmann, Liibert, Yang‘18][Chen et

al’18]



WORK ON SUDAKOVS

New work by Keith Ellis and collaborators [«. Ellis, Ross, Veseli‘97] [K.
Ellis, Veseli‘97]

72  Inpractice, resummation in b-space has some drawbacks,
e.g. needs prescriptions on how to deal with the non-
perturbative region of large b and for matching with fixed-
order results, which would be overcome by resummation in
grspace [K. Ellis, Veseli'97]

¥ Extension of the DLLA formula down to and including

2\ 2n—3
allog (2—2) terms, closed analytical form
T



WORK ON SUDAKOVS

New work by Keith Ellis and collaborators [«. Ellis, Ross, Veseli‘97] [K.

Ellis, Veseli‘97]

72  Inpractice, resummation in b-space has some drawbacks,
e.g. needs prescriptions on how to deal with the non-
perturbative region of large b and for matching with fixed-
order results, which would be overcome by resummation in
grspace [K. Ellis, Veseli'97]

7 Extension of the DLLA formula down to and including

02 2n-3

allog (q—z) terms, closed analytical form
T

James’ work with S. Elllis in Seattle

7 Contributions from all soft-collinear but one hard-collinear s
exponentiate, shown directly in pyspace [s. Ellis, Stirling‘80] £

7 Logarithms of , kinematical“origin (i.e. from transverse
—— DLLA

momentum conservation) fill the dip at g; = 0 [s. Eliis, o T X
Fleishon,Stirling‘80] g la n=q3/Q

- 1 N 1 1 1 . 1 .
M -6 -4 -2 )

o\ 2n—4
z Th ey e nte r at a? log (Q_2> Ievel a n d beIOW FIG. 4. Theoretical appr::(gi::atZ)ns to the cross
qT section defined in the text. The long-dashed line is
. . . . . The solid e 1 the BLLA Ba. (11 ‘The dasked line
Same discussion applies to energy-energy correlations in e*e is the corrosponding one-gluon contribution.

collisions



WORK ON SUDAKOVS I

A. Kulesza, W.J. Stirling / Nuclear Physics B 555 (1999) 279-305 281

and which are automatically included in b-space. These terms start to contribute
from the fourth ‘tower’ of logarithms down onwards. The question is whether it
is possible to include sufficient kinematic logarithms using this technique that the
b-space cross section can be adequately approximated by resummation in gy space
in the region of gr relevant to the comparison with data. Furthermore, in this

Toy model with subleading logarithms only due to kinematics, derived from b-space expression
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WORK ON SUDAKOVS I

A. Kulesza, W.J. Stirling / Nuclear Physics B 555 (1999) 279-305 281

and which are automatically included in b-space. These terms start to contribute
from the fourth ‘tower’ of logarithms down onwards. The question is whether it
is possible to include sufficient kinematic logarithms using this technique that the
b-space cross section can be adequately approximated by resummation in gy space

in the region of gr relevant to the comparison with data. Furthermore, in this

More realistic scenario, with subleading logarithms from the matrix element
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WORK ON SUDAKOVS Il

Another approach to resummation of transverse spectra directly in grspace [Frixione, Nason
Ridolfi‘98] (FNR)

We focused on investigating differences between our approach and that of FNR, especially
regarding kinematical logarithms

TP TP rrr e

1/0 OF do/d pi

el IR R L ST M T Gt ey IO PP
6 "5 vy =) =
10 10 10 10 10 1
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WORK ON SUDAKOVS Il

Another approach to resummation of transverse spectra directly in grspace [Frixione, Nason
Ridolfi‘98] (FNR)

We focused on investigating differences between our approach and that of FNR, especially
regarding kinematical logarithms

TP TP rrr e
F

Recent renewed interest in
resummation in momentum space:
[Monni, Re, Torrielli‘16][Bizon et al.’17]

7 up to N3LL+NNLO accuracy

el IR R L ST M T Gt ey IO PP
6 "5 vy =) =
10 10 10 10 10 1



APPLICATIONS

[AK, Stirling‘03]

T T
b space, g=1.67 Gevg

b space, g=5.64 GeV. -
pr space, 4=0.032GeV 2 -------
Pt space, a=0.060GeV"

[AK, Stirling‘01]
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Comparison between CDF data on Z production and theoretical predictions ->DataonY production used to determine

the NP contribution



[de Florian, Ferrera,
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Grazzini, Tommasini‘11]
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APPLICATIONS

[AK, Stirling‘03]

T T
b space, g=1.67 Gevg

b space, g=5.64 GeV. -
pr space, 4=0.032GeV 2 -------
Pt space, a=0.060GeV"

pr (GeV)

Higgs boson pr distributions at the LHC, as predicted by the b space and pr space

NP _ e—gb’-’

FNP =1 — exp[-ap7]

-> Data on Y production used to determine
the NP contribution



DOUBLE PARTON SCATTERING

Substantial part of my collaborative work with James

Started after a workshop at CERN which we both attended - talk by D. Treleani on DPS background
to Higgs production at the LHC

James had (of course!) also worked on the DPS in the past [Halzen, Hoyer, Stirling‘87]

James’ idea was to consider production of same sign W's as a probe of DPS [AK, Stirling‘00]

Single Parton _._%_.di Double Parton
Scattering - VS Scattering >WW (%) >VM
O(adaiy) 5 O(aiy)



DOUBLE PARTON SCATTERING

Substantial part of my collaborative work with James

Started after a workshop at CERN which we both attended - talk by D. Treleani on DPS
background to Higgs production at the LHC

cMs 77.41b' (13 TeV)
James had (of course!) also worked on the [ Fe{Observed Predictions:
[ stat -s===== PYTHIA8 (CP5)
James‘ idea was to consider production of s [ syst — — Factorization approach

total  stat syst

Single Parton . i p“u‘+e’u'l E 196 +0.74 (+054 ,+051) pb
Scattering g VS |

) o - p + e HEH 136 +0.46 (+ 0.33, + 0.32) pb
O(azagyy) T | :
|

wit +etyt | HESH | 1.41+0.40 (+ 0.28 , + 0.28) pb

IIIlIIIIIIIIIEIIIIIIIIIIIIIIIIIIIIII

0 1 2 3 4 5 6

Inclusive Gy5q yn (PD)

Now, CMS measures it! (Moriond 2019)

More work followed [Gaunt, Kom, AK, Stirling“11] [Kom, AK, Stirling“11]—» see Jo’s talk
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JAMES AS SUPERVISOR

7 It was an extreme privilege (and
luck) to be a PhD student, and later
a collaborator of James. | am
indebted to him for teaching me
particle physics and showing the
brilliance of research work

7 James was the most kind and
supportive, all the way through my
PhD and later on in my career

James Stirling Memorial

A. Kulesza, Sudakovs
Conference, 17.09.19
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JAMES AS SUPERVISOR

collinear divergences,}%t, there should be no obstacle f6f obtaining reliable perturbative re-
sults. This is, however, only true when all Lorentz invariants defining the process are large
and comparable, except those of the particle masses. If the above mentioned condition does
not apply, the convergence of the fixed order expansion, even for e IR safe quantities,
may be spoiled due to e.g. soft gluon emission effects. The theoretical predictions can be
improved in these cases by evaluating soft gluon contributions to high orders and possibly
resumming them to all orders in a. In this section, following the approach of [11], we presént

how large soft gluon contributions can arise and sketch the main idea behind resummation.

de ) (&Y s

Iy

1.6.1 Soft gluon emission

e
Let us revisit emission of real and virtual gluons from the quark lines, previously discussed

for the case (;f ete” anmhlla,mon in Section 1.4.1. Since the nature of this emission is
universal we expect to draw conclusmna of a general character. However, different types
of QCD observables require slightly different fermahsm of the soft gluon resummauon [12].
In this section we will illustrate the treatment of the soft gluon radiation orf The example
of hadronic collisions at threshold. Minor modifications of this treatment are required to
handle soft gluon contributions to other observables, like e"#fr et'“eveut shapes or transverse

momentum distributions py of systems produ(‘ed with hlgh mass and small pr.

Consxder a quark emitting a real gluon. Let 1-2 dcnotP the energy fraction radiated

e
(o
0 the real gluon emission contribution

in trhe hard’ subprouzss Exactly as shown in (1.4.38), tl
“is divergent in the IR limit. Assuming a regularizing lower cut- off k on the gluon energy
aumy [le

frdctxon one ﬁnds ‘real sof “gluon emission probability

where C is a coefficient depending on the process. On the rotte to Eq\. (1.6.48), the same
1/1 — z factor
A

integration structure as in (1.4.38) is rediscovered. Consequently, the origi
in (1.6.48) can be traced back to the integration over (soft) gluon encrgyv,;,x;llercas the log-
arithmic/factor In (1/1 — z) arises due to integration ovcr”c‘ollinear spectrum. Calculations
for the virtual emission probability are undertaken in a siiﬂilar way, yielding

z)/

C[a’zi

)
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collinear divergences,}%t, there should be no obstacle f6f obtaining reliable perturbative re-
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Let us revisit emission of real and virtual gluons from the quark lines, previously discussed

Chapter 1

for the case (;f ete” anmhlla,mon in Section 1.4.1. Since the nature of this emission is
universal we expect to draw conclusmna of a general character. However, different types
v of QCD observables require slightly different fermahsm(of the soft gluon resummauon [12].
Elements Of Q CD < In this section we will illustrate the treatment of the soft gluon radiation orf The example
of hadronic collisions at threshold. Minor modifications of this treatment are required to
handle soft gluon contributions to other observables, like e"#fr et'“eveut shapes or transverse

momentum distributions py of systems produ(‘ed with hlgh mass and small pr.
&, Consxder a quark emitting a real gluon. Let 1-2 dcnotP the energy fraction radiated
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where C is a coefficient depending on the process. On the rotte to Eq\. (1.6.48), the same
1/1 — z factor
A

integration structure as in (1.4.38) is rediscovered. Consequently, the origi

B g 5 ) (1.6.48) can be traced back to the integration over (soft) gluon encrgyv,;,x;llercas the log-
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{ 1A i Ul coOWrL ON =4 ‘,’l\’ 7 shmic/factor In (1/1 — 2) arises due to integration over collinear spectrum. Calculations
the virtual emission probability are undertaken in a similar way, yielding
o W 5 ~ Qe dwr (2 Cr
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