Electroweak phenomena

Eleni Vryonidou

James Stirling Memorial Conference IPPP, 17/9/2019

2008: Summer student in the theory group in Cambridge, James arrived in Cambridge 2009: Master project in the group → accepted for a PhD with James

2008: Summer student in the theory group in Cambridge, James arrived in Cambridge 2009: Master project in the group → accepted for a PhD with James

2009-2013: PhD = an interesting set of projects...

Eikonal regime of gravity-induced scattering at higher energy proton colliders

W.J. Stirling, E. Vryonidou, J.D. Wells

2008: Summer student in the theory group in Cambridge, James arrived in Cambridge 2009: Master project in the group → accepted for a PhD with James

Eikonal regime of gravity-induced scattering at higher		
	NLO QCD Corrections to Graviton Induced Deep Inelastic Scattering	
W.J. Stirling, E. Vryonidou, J.D. Wells		
	W.J. Stirling, E. Vryonidou	

2008: Summer student in the theory group in Cambridge, James arrived in Cambridge 2009: Master project in the group → accepted for a PhD with James

Eikonal regime of gravity-ind energy proton colliders	uced scattering at highe	er
	NLO QCD Corrections Inelastic Scattering	to Graviton Induced Deep
W.J. Stirling, E. Vryonidou, J.D. Wells		Effect of spin-3/2 top quark excitation on $t\bar{t}$ production at the LHC
	W.J. Stirling, E. Vryonidou	
		W.J. Stirling, E. Vryonidou

2008: Summer student in the theory group in Cambridge, James arrived in Cambridge 2009: Master project in the group → accepted for a PhD with James

Eikonal regime of gravity-indu energy proton colliders	uced scattering at high	er		
	NLO QCD Corrections Inelastic Scattering	s to Graviton Induced Deep		
W.J. Stirling, E. Vryonidou, J.D. Wells		Effect of spin-3/2 top opproduction at the LHC	quark excitation on $tar{t}$	
	W.J. Stirling, E. Vryonidou		Electroweak gauge boson pola	risation at the LHC
		W.J. Stirling, E. Vryonidou	W.J. Stirling, E. Vryonidou	

2008: Summer student in the theory group in Cambridge, James arrived in Cambridge 2009: Master project in the group → accepted for a PhD with James

2008: Summer student in the theory group in Cambridge, James arrived in Cambridge 2009: Master project in the group → accepted for a PhD with James

2009-2013: PhD = an interesting set of projects...

energy proton colliders	NLO QCD Correction	s to Graviton Induced Deep		
W.J. Stirling, E. Vryonidou, J.D. Wells		Effect of spin-3/2 top of production at the LHC	quark excitation on $tar{t}$	
	W.J. Stirling, E. Vryonidou		Electroweak gauge boson polarisation at th	e LHC
		W.J. Stirling, E. Vryonidou	W.J. Stirling, E. Vryonidou	
Charm production in associati W	on with an electroweak g	auge boson at the LHC	Electroweak corrections and Bloch-Nordsied violations in 2-to-2 processes at the LHC	:k

W.J. Stirling, E. Vryonidou

W+charm as a probe of the strange PDF

Cross-section ratios are more sensitive:

$$R_c^{\pm} = \frac{\sigma(W^+ + \bar{c})}{\sigma(W^- + c)}$$

$$R_c^{\pm} = 1$$
 at the Tevatron $R_c^{\pm} < 1$ at the LHC

$$R_{c} = \frac{\sigma(W + c)}{\sigma(W + \text{jet})}$$

Sensitive to strange plus anti-strange

W. J. Stirling and EV Phys.Rev.Lett. 109 (2012) 082002

Comparisons of different PDF sets

Ratio	R_c^{\pm}	R_{c}
CT10	$0.953^{+0.009}_{-0.007}$	$0.124_{-0.012}^{+0.021}$
MSTW2008NLO	$0.921\substack{+0.022\\-0.033}$	$0.116\substack{+0.002\\-0.002}$
NNPDF2.1NLO	$0.944{\pm}0.008$	$0.104 {\pm} 0.005$
GJR08	$0.933 {\pm} 0.003$	$0.099 {\pm} 0.002$
ABKM09	$0.933 {\pm} 0.002$	$0.116 {\pm} 0.003$

d-contribution suppressed by factor of 20

- •NNPDF has a very small strange asymmetry
- •CT10 no asymmetry
- •MSTW larger asymmetry

W. J. Stirling and EV Phys.Rev.Lett. 109 (2012) 082002

Impact of LHC measurements

Precise 13TeV measurement more promising

What we can learn from Z plus charm

$$R_c^Z = \frac{\sigma(Z+c)}{\sigma(Z+jet)}$$

PDF set	R_c^Z
CT10	$0.0619\substack{+0.0032\\-0.0032}$
MSTW2008NLO	$0.0640\substack{+0.0014\\-0.0016}$
NNPDF2.1NLO	$0.0660 {\pm} 0.0013$
GJR08	$0.0611 {\pm} 0.0011$
ABKM09	$0.0605 {\pm} 0.0019$

NNPDF collaboration arXiv:1605.06515

$$R_c^{\pm}(Z) = \frac{\sigma(Z + \bar{c})}{\sigma(Z + c)}$$

A probe of intrinsic charm?

W. J. Stirling and EV Phys.Rev.Lett. 109 (2012) 082002

Gauge boson polarisation at the LHC

Electroweak gauge boson polarisation at the LHC

Only LH quarks and RH antiquarks couple to W (V-A) In the proton: quark more likely to have more momentum than the antiquark \longrightarrow W moves in the quark direction \longrightarrow LH W⁺(73%)

$$\frac{1}{\sigma}\frac{d\sigma}{d\cos\theta^*} = \frac{3}{8}(1-\cos\theta^*)^2 f_L + \frac{3}{8}(1+\cos\theta^*)^2 f_R + \frac{3}{4}\sin^2\theta^* f_0$$

$$f_0 = 2 - 5\langle \cos\theta^{*2} \rangle,$$

$$f_L = -\frac{1}{2} - \langle \cos\theta^{*} \rangle + \frac{5}{2} \langle \cos\theta^{*2} \rangle,$$

$$f_R = -\frac{1}{2} + \langle \cos\theta^{*} \rangle + \frac{5}{2} \langle \cos\theta^{*2} \rangle,$$

W polarisation fractions

 θ is the angle in the W rest frame between the charged lepton and the W flight direction in the lab frame

W. J. Stirling and EV JHEP 1207 (2012) 124

W+jets: polarisation fractions

Small differences between W⁺ and W⁻ due to PDF difference of u and d-quarks.

W. J. Stirling and EV JHEP 1207 (2012) 124

W bosons are predominantly lefthanded at high p_T independently of the number of jets as seen also by Bern et al. Phys.Rev.D84:034008,2011

W polarisation in top production

Polarisation is frame dependent and interaction dependent

Conclusions

Thesis submitted in September 2013 Title: Phenomenology of the Standard Model and beyond at hadron colliders Extremely lucky to have James

as my supervisor

