

Measurements of Drell-Yan cross sections at 13 TeV with CMS

James Stirling Memorial Conference September, 2019

> Aram Apyan For the CMS Collaboration

Introduction

- PDF's are an important or dominant uncertainty to precision measurements at the LHC (e.g. $sin^2\theta_W$ and W mass)
- Measurements of W and Z production at the LHC can constrain PDFs in the relevant phase space
 - In-situ constraints can also be used to constrain PDFs in the context of the measurements themselves (e.g. CMS weak mixing angle measurement) CMS Nominal PDF 18.8 fb⁻¹ (8 TeV)

 Purpose of this talk is to show a short summary on the differential Drel-Yan cross section measurements using dilepton events in CMS with 13 TeV 18/09/19 2

Precise measurements of Z pT

- Precise measurements Z boson cross sections using dilepton events
 - Clean experimental signature
 - Very low background levels
- Recent CMS Z boson differential cross section measurement at 13 TeV
 - arXiv:1909.04133
 - d σ /dpT, d σ /d|Y|, d² σ /dpTd|Y|, d σ /d ϕ *
 - Making use of full 2016 dataset at 13 TeV (35.9 fb⁻¹)
 - Unprecedented precision in CMS
- Measurement of the differential Drell-Yan cross section at 13 TeV
 - arXiv:1812.10529
 - $d\sigma/dM$
 - Making use of 2015 dataset at 13 TeV (up to 2.8 fb⁻¹)
 - The range of x covered by this measurement is $10^{-4} < x < 1.0$

Fiducial definition

- Fiducial definition at generation level (GEN):
 - making use of so-called dressed leptons
 - accounting for photons in $\Delta R_{\ell,\gamma} < 0.1$
 - two opposite-sign same-flavor leptons (electrons or muons)
 - $p_{\mathrm{T}}^{\ell_1,\ell_2} > 25 \,\,\mathrm{GeV}$, $|\eta^{\ell_1,\ell_2}| < 2.4$
 - $\bullet ||m_{\ell\ell} m_{\rm Z}| < 15 \,\, {\rm GeV}$
 - tested that muon and electron cross sections agree better than the sample statistical precision with this definition
 - Backgrounds
 - VV resonant background from simulation
 - Nonresonant background from data (top, W+jets, etc.)

Final state	Data	$Z \to \ell \ell$	Resonant background	Nonresonant background
μμ	$20.4 imes10^6$	$20.7 imes 10^{6}$	$30 imes 10^3$	$41 imes 10^3$
ee	12.1×10^{6}	12.0×10^{6}	$19 imes 10^3$	$26 imes 10^3$

Systematic uncertainties

- Integrated luminosity
 - Current uncertainty is 2.5%
 - Possible room of improvement on this for ATLAS/CMS?
 - Negligible impact in normalized cross section measurements $1/\sigma~d\sigma/$ dpT,...
- Lepton triggers reconstruction and identification
 - Largest experimental uncertainty at low-pT after luminosity
 - Measured using Tag&Probe techniques where the effects due to signal and background modeling are taken into account
 - Large effort to achieve the required precision
- Precise understanding of calibration and resolution of final state leptons
 - Relevant on differential measurements
- Simulated sample size
 - Relevant for unfolding at high-pT

Summary of systematic uncertainties

- Bin width of 1 GeV below 15 GeV for the pT measurement
- Limited by luminosity
- Identification and trigger
- Reconstruction
 - Detector trigger pre-fire
 - Mainly affects ee in forward region
- Momentum resolution
 - Large at high-pT for µµ
- Unfolding
 - Size of simulated sample
 - AMC@NLO/Powheg unfolding
- Background estimation
- Data statistics

18/09/19

Summary of systematic uncertainties

- Precise normalized cross sections/shape (limited by lepton efficiencies)
- Limited by luminosity
- Identification and trigger
- Reconstruction
 - Detector trigger pre-fire
 - Mainly affects ee in forwar region
- Momentum resolution
 - Large at high-pT for µµ
- Unfolding
 - Size of simulated sample
 - AMC@NLO/Powheg unfoldir
- Background estimation
- Data statistics

18/09/19

φ* systematic uncertainties

• An alternative probe of pT of the Z

$$\phi^* = \tan\left(\frac{\pi - \Delta\phi}{2}\right) \sin(\theta^*_{\eta})$$
$$\cos(\theta^*_{\eta}) = \tanh(\frac{\eta^- - \eta^+}{2}),$$

$$\phi^* \sim p_{\mathrm{T}}^Z / m_{\ell\ell}$$

- $\bullet \ \phi^*$ resolution better that of pT
 - Depends only on angular directions
 - Excellent spatial resolution of CMS inner tracking detector
 - Bin width of 10⁻³ roughly corresponds to 0.1 GeV bin width in Z pT

С

Inclusive results

Sour	$Z \rightarrow$	μµ ('	%)	$Z \rightarrow ee$ (%)			
Lumino	r 2	2.5		2.5				
Muon reconstruc	().4						
Muon selection	().7						
Muon momer	().1						
Electron reconstru				0.9				
Electron selection				1.0				
Electron mome				0.2				
Background e	0.1			0.1				
Total (excluding	0.8			1.4				
Cross section	$\sigma \mathcal{B}$ [pl	$\sigma \mathcal{B} [pb]$						
$\sigma_{\mathrm{Z} ightarrow \mu \mu}$	694	\pm	6	(syst)	\pm	17	(lumi)	
$\sigma_{ m Z ightarrow ee}$	712	\pm	10	(syst)	\pm	18	(lumi)	
$\sigma_{Z \to \ell \ell}$	699	\pm	5	(syst)	\pm	17	(lumi)	

- Theoretical predictions (uncertainties include QCD scale and PDF):
 - 682 ± 55 pb (AMC@NLO with NNPDF3.0), NLO in QCD
 - 719 ± 8 pb (FEWZ with NNPDF3.1), NNLO in QCD

pT measurements

- Measurement compared to several theory predictions
- AMC@NLO with NNPDF3.0
 - Up to 2 hard parton emissions at matrix element
- Powheg with NNPDF3.0
 - Up to 1 hard parton emissions at matrix element
- MINLO with NNPDF3.1
 - JHEP05, (2013) 082
 - 7-point scale variation
 - Large uncertainties confirmed by authors (fundamentally different scale prescription)

18/09/19

|Y| measurements

- Measurement compared to several theory predictions
- AMC@NLO with NNPDF3.0
 - Up to 2 hard parton emissions at matrix element
- Powheg with NNPDF3.0
 - Up to 1 hard parton emissions at matrix element
- FEWZ with NNPDF3.1
 - Fixed order prediction
 - NNLO accuracy

Good agreement between electron and muon final states
 ^{18/09/19} Only the combined results shown henceforth

High-pT comparisons

- Measurement compared to fixed order calculations
- High-pT sensitive to EW corrections
 - ~0.9 at pT=500 GeV and ~0.8 at pT=800 GeV
- Z+1jet NNLO predictions
 - Phys. Rev. Lett. (2016), 152001
 - Accuracy at $O(\alpha_s^3)$
 - Using N-jettiness subtraction scheme
- FEWZ predictions at NNLO QCD
 - EW corrections included (no FSR)

Low-pT comparisons

- Measurement compared to predictions with analytic resummation
- Resbos CP with CT14 PDF set
 - NNLL accuracy
 - Only statistical uncertainties are shown for the prediction
- Geneva predictions
 - Phys. Rev. D 92 (2015), 094020
 - NNLL+NNLO matched with Parton shower
 - Dedicated parton shower tune needed for very low pT 18/09/19

φ* results

- Measurement compared to several theory predictions
- AMC@NLO with NNPDF3.0
 - Up to 2 hard parton emissions at matrix element
- Powheg with NNPDF3.0
 - Up to 1 hard parton emissions at matrix element
- MINLO with NNPDF3.1
 - JHEP05, (2013) 082
 - 7-point scale variation
 - Large uncertainties confirmed by authors (fundamentally different scale prescription)

14

Normalized results

15

pT vs. |Y| measurements

- Measurement of pT in bins of |Y|
 - 0< |Y|<0.4, 0.4< |Y|<0.8, 0.8< |Y|<1.2, 1.2< |Y|<1.6, 1.6< |Y|<2.4
 - Absolute and normalized cross sections

Drell-Yan measurement

- Measurement of the differential Drell-Yan cross section at 13 TeV
 - arXiv:1812.10529, do/dM
 - Dilepton invariant mass in the range 15 to 3000 GeV (leading lepton pT>22 (30) GeV and subheading lepton pT > 10 GeV

Summary

- Measurements of W and Z production cross sections with CMS
 - Targeting constraints on PDFs in the relevant phase space for precision electroweak measurements
- Precise measurements of the Z differential cross sections with CMS
 - d σ /dpT, d σ /d|Y|, d² σ /dpTd|Y|, d σ /d ϕ *
 - Normalized cross section uncertainties are smaller than ~0.5% for $\phi^*{<}0.5$ and pT<50 GeV
 - The paper is submitted to JHEP and the HepData (including dressed and born level results) will come in time of publication
- Interesting new measurements at 13 TeV are expected in the coming months and years
 - Stay tuned...

ADDITIONAL MATERIAL

Unfolding and binning

Using TUnfold method to perform the unfolding, as officially suggested

- *p*^Z_T (in GeV): {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 25, 28, 32, 37, 43, 52, 65, 85, 120, 160, 190, 220, 250, 300, 400, 500, 800, 1500}
- ▶ $|y^{Z}|$: {0.0, 0.2, 0.4, 0.6, 0.8, 1.0, 1.2, 1.4, 1.6, 1.8, 2.0, 2.2, 2.4}
- $\phi^*: \{1 \cdot 10^{-3}, 2 \cdot 10^{-3}, 3 \cdot 10^{-3}, 4 \cdot 10^{-3}, 5 \cdot 10^{-3}, 6 \cdot 10^{-3}, 7 \cdot 10^{-3}, 8 \cdot 10^{-3}, 9 \cdot 10^{-3}, 1 \cdot 10^{-2}, 2 \cdot 10^{-2}, 3 \cdot 10^{-2}, 4 \cdot 10^{-2}, 5 \cdot 10^{-2}, 6 \cdot 10^{-2}, 7 \cdot 10^{-2}, 8 \cdot 10^{-2}, 9 \cdot 10^{-2}, 1 \cdot 10^{-1}, 2 \cdot 10^{-1}, 3 \cdot 10^{-1}, 4 \cdot 10^{-1}, 5 \cdot 10^{-1}, 6 \cdot 10^{-1}, 7 \cdot 10^{-1}, 8 \cdot 10^{-1}, 9 \cdot 10^{-1}, 1, 3, 5, 7, 10, 20, 30, 50 \}$
- *p*^Z_T in |*y*^Z| regions (in GeV): {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 16, 18, 20, 22, 25, 28, 32, 37, 43, 52, 65, 85, 120, 160, 190, 220, 250, 300, 400, 1500}