How to include LHCb exclusive J/ψ data in global PDF analyses

arXiv 1908.08398

Chris Flett, Stephen Jones, Alan Martin, Misha Ryskin Thomas Teubner

 $pp \rightarrow p + J/\psi + p$

PDF4LHC meeting IPPP, Durham September, 2019

pp → p + J/ ψ + p LHCb with 2 < y < 4.5 can probe gluon down to x ~ 3 x 10⁻⁶

exclusive J/ψ , Y [Q=M_v/2 (scale)]

Why are these LHCb data not used in global PDF fits ??

 $\gamma p \rightarrow J/\psi p$

LHCb "data"

1806.04079

interference between diagrams is negligible

Problems of using exclusive J/ψ data in global PDF fits?

1. Process described by GPD's

 \rightarrow however not a problem for 1 >> x >> x' ~ 0

 $GPD(X,\xi) = PDF(x) \otimes Shuvaev(\xi,x,x')$ to $O(x \sim 2\xi)$ hep-

2. Bad convergence of LO, NLO,... pert. series

additional gluons =
$$\langle n \rangle \simeq \frac{\alpha_s N_C}{\pi} \ln(1/\xi) \Delta \ln \mu_F^2 \sim 5$$

whereas **NLO** allows the addition of only 1 gluon !

Prob. to emit g in some $\Delta \mu_F$ enhanced by large longit. phase space ln(1/ ξ) at low x

So why is the JMRT "NLO" prediction so reasonable? 1307.7099

It uses $k_T fact^n$ scheme which resums the $ln(1/\xi)$ diagrams

hep-ph/9902410

An aside to explain:

k_T factⁿ procedure

Obtain approx NLO corr^{ns} to coeff. fns by performing explicit k_{τ} integration in the last step of evolution, and using an input PDF with resummed $(\alpha_{s}\ln(1/\xi)\ln\mu_{F}^{2})^{n}$ terms arising from ladder diag^s. Not the complete NLO, but includes most important p

CNLO NLO J/ψ **X+**ξ **Χ-**ξ F_q also NLO_g coeff. fn.

Need gluon PDF unintegrated over k_{τ}

 $f(x,k_T^2) = \partial \left[xg(x,k_T^2)T(k_T^2,\mu^2) \right] / \partial \ln k_T^2$

known Sudakov factor T so no additional gluons > k_{T} emitted

We saw why it is a problem at low ξ

gluons emitted =
$$\langle n \rangle \simeq \frac{\alpha_s N_C}{\pi} \ln(1/\xi) \Delta \ln \mu_F^2 \sim 5$$

for $\xi << 1$ and reasonable variation of μ_F

whereas NLO only allows emission of one gluon !

however can resum $(\alpha_s \ln(1/\xi) \ln\mu_F^2)^n$ terms and move into LO contrib. by choosing $\mu_F = m_c$ (see JMRT, 1507.06942)

$$A(\mu_{f}) = C^{LO} \otimes GPD(\mu_{F}) + C^{NLO}_{rem}(\mu_{F}) \otimes GPD(\mu_{f})$$
Use explicit NLO to calculate small remainder C_{rem}.
Residual dependence on scale μ_{f} is small

Aside: choice of renormalization scale

Choose $\mu_R = \mu_F$. Two reasons:

- 1. Corresponds to BLM prescription --- eliminates NLO $\beta_0 ln(\mu_R/\mu_F)$ term
- 2. New q loop in g propagator appears twice: (a) part for scales $\mu < \mu_F$ by virtual comp^t of LO splitting in DGLAP evolution.

(b) part for scales $\mu > \mu_R$ from running α_s behaviour after regularⁿ of UV divergence.

Not to miss part and/or to avoid double counting take

 $\mu_{R} = \mu_{F}$

 Q_0^2/μ_F^2 power corrns.Start DGLAP evol. at Q_0 At LO everything below Q_0 is included in input PDF(Q_0)At NLO the contribn from $|q^2| < Q_0^2$ is double countingNeed to subtract NLO($|q^2| < Q_0^2$) contribn for both q & gSee appendix of 1610.02272

Subtractⁿ of NLO($|q^2| < Q_0^2$) plus choice $\mu_F = M_{\psi}/2$ (no double counting)(resum of double logs)

provides reasonable framework to include the exculsive LHCb J/ψ data in the NLO global PDF analyses to explore the gluon PDF in the low x regime for the first time.

We compare predictions of 3 global PDF sets with LHCb data: NNPDF3.0, MMHT14, CT14 The contribution from q PDFs is negligible compared to that of g

 $\sigma(\gamma p \rightarrow J/\psi + p)$ nb

uncert. PDFs >> data uncert. NLO gluon at $Q^2=2.4$ GeV² fixed by LHCb J/ψ data down to $x = 3 \times 10^{-6}$ fixed by HERA J/ψ data for $10^{-4} < x < 10^{-3}$

LHCb exclusive J/ψ (and Y) data remove the huge uncertainties in the gluon PDF at very low x ~ 10⁻⁵ and Q² = m_c² (m_b²)

Will improve precision of gluon up to $Q^2 \sim 10$ (or 100) GeV², however should not effect the global parton sets predictions for heavy objects at the LHC

Recall distribution of gluons as $x \rightarrow 0$ governs high energy asymptotics of scattering amplitude. That is, important for BFKL programme in the low x domain --- important for understanding confinement and saturation