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Recommended reading:

R. D. Cousins, "Why Isn't Every Physicist a Bayesian?”,
Amer. J. Phys. 63 (1995) 398.

"Physicists embarking on seemingly routine error
analyses are finding themselves grappling with major
conceptual issues which have divided the statistical
community for years. .. The lurking controversy can
come as a shock to a graduate student who encounters
a statistical problem at some late stage in writing up
the Ph.D. dissertation.”
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Basic Principles of scientific reasoning (opper, 1959, pp. 91-92):

1. Principle of Consistency: Every theory must be
internally consistent: if a conclusion can be reasoned
out in more than one way, then every possible way must
lead to the same result. Also, identical states of
knowledge in a problem must always lead to identical
solutions of the problem.

. Operational Principle: Every theory must specify
operations that ensure falsifiability of its predictions.
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Direct probabilities (=long term relative frequencies):

p(x,|I):probability for observing x = x, (for observing
x € (x;,x, +dx)), giveninformation /

f(x|I): probability density function (pdf);
p(x[1)=f(x|I)dx

[=01,: I,=family of sampling distributions
¢ =parameter

(cumulative) distribution
function (cdf)

F(x,0,1,) = j f(x'|61,)dx"
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Location and scale parameters:

felul)=Plx—p);  xe(-0,) |
1 € (—0,00) =location parameter

f(x|ol,) =§¢(§j; x & (0,)

o €(0,0) =scale parameter

f(x|ﬂ010)=é¢()%ﬂj; x € (o0, 00)

1 € (—o,0) =location parameter
o €(0,0) =scale (dispersion) parameter
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Examples:

f(x|lpuol))= \/%Gexp{—(xz_g’uz)}—

1 =location parameter
o = scale (dispersion) parameter
I, = Gaussian distribution

0.6 F(x,u,0,1,)

F(x.po.1) = [ f(@luoly)dx
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Axioms of conditional probability:

-every probability distribution is conditional upon the
available (relevant) information.

1. f(x|6I,)=0

2. fxyl|01)=f(x]01) f(y|x01,)
= f(y101,) f (x| y01,)

3. [ f(x]01,)dx =1

-1

4 FO10T) = F(x101)[ 2] 5y =) one-to-one
X
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Example:

1 1 (x f(x|o=11)
f(x|610):—exp{——}:_¢(_j :
o \g 0.4

O O

— o =scale parameter

-1

y=Inx TN 8_3’
i S CPIARY ST s

— eVH) exp{_e(y—u)}
= ¢ (y— 1) = u=location parameter

I, = exponential distribution — 1, distribution not exponential

B Scale parameter reducible to location parameter!
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Parametric inference:

Given measured x e (x,, x, + dx), specify degree of belief

(6, |x1,): 0€(6,,0,+d0)

Probabilistic approach (Bayesian school):

(@] xly)— p@|xly)=f(0]x1,)d0

N. b.: 7(@|x1,) distribution of our belief in different
values of 6, not (I) distribution of 6.
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Axioms of inverse probability:
1. f(0]xI,)>0

2. fOvixly)=f(0|xl,) f(v|Ox],)
=f(v|xly) f(@]|vxi,)

3. [f(0]x1,)do=1

4. f(v|xI,)=f(0|xI,) . v =v(0) one-to-one

v
00

5. f(Ox,|x1y)=f(O|x1,) f(x,]0x 1))
= f (e | x 1y) f (O x,x, 1)
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Pro's for subjecting degrees of belief to the Axioms
of probability:

1. "It is not excluded a priori that the same mathematical
theory may serve two purposes.” (Pélya, 1954, Chapter XV, p. 116)

2. Cox's Theorem: Every theory of plausible inference is either
isomorfic to probability theory or inconsistent with very

general qualitative requirements (e.g., (0<(0,,0,40)|x, 1)) —
(6¢(0,,0,+0)|x,1,) ). (Cox, 1946)

3. Dutch Book Theorem (de Finetti): A "Dutch Book" can be
organized against anyone whose betting coefficients violate
axioms of probability. (Howson and Urbach, 1991)
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Pro's (cont'd):

4. Avoiding adhockeries. (0'Hagan, 2000, p. 20)

5. Powerful tools: marginalization and Bayes' Theorem (Bayes, 1763)

£(0v|xly) = 10| x1,) f(v] 0x1,) = GRS MCARISIS

CHEAESICEIAVICIENE / (| 1,) = | /(¢'v| x1,)d0

SO x 1) f(x,|0x1))= f(x,|x 1) f(O|x,x1,); f(x,[0x1,)=Ff(x,|01,)

B - NOEETARRACEEORACALION | (., |..1,)- [ /(] x1,) f(x,|0'],)d6
SO X 1y) ®

16/01/2007 12




YETI'O7

But..(con's): a) how to assign f(01x,1) ???
b) what are verifiable predictions???

If making use of Bayes' Theorem:

SO, f(x [01,)

O|x1)=—-I ) WG1T0)
TSI =T o) 1 1011,y a0

f(@]1,):non-informative prior (distribution)

“According to Bayesian philosophy it is also possible to make
statements concerning the unknown 6 in the absence of dataq,
and these statements can be summarized in a prior distribution.”
(Villegas, 1980)
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Example: The Principle of Insufficient Reason (Bayes,
Laplace, 1886, p. XVII)

9[1
f@)=C; C" = jf(é"llo)d@': 0,0,
ga

Twofold problem:
a) (0,,6,) infinite (e.g., 6,= )= A |/ (O11,)do

b) f(617) not invariant under non-linear transformations

-1

S # const (=)

V=<92:>f(V|1No)=f(910)2—; T
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"A succession of authors have said that the prior probability
is nonsense and that the principle of inverse probability, which
cannot work without it, is nonsense 100." (Jeffreys, 1961, p. 120)

"During the rapid development of practical statistics in the past
few decades, the theoretical foundations of the subject have
been involved in great obscurity. The obscurity is centred in the
so-called ‘inverse’ methods. ... The inverse probability is a mistake
(perhaps the only mistake to which the mathematical world has
so deeply commited itself)." (Fisher, 1922)
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Long-lasting and fierce controversy:

“The essence of the present theory is that no probability,

direct, prior, or posterior, is simply a frequency.” (Jeffreys,
1961, p. 401)

"Probability is a ratio of frequencies.” (Fisher, 1922, p.326)
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Twofold aim of the lecture:

1. Overcome conceptual and practical problems
concerning assignment of probability distributions
to inferred parameters;

2. Reconcile the Bayesian and the frequentist schools
of parameftric inference.
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Consistency Theorem: How to assign f(fx,1) ?

Assumptions:

a) x,and x,two independent measurements from f(x|617):
f061x,0 1) =1(x,101) and  f(x,1x,6 1) =f(x,101,) ;

b) f(01x,1)) and f(01x,1) can be assigned.

Then (Bayes' Theorem):

f(mxlelo):f(@\xllo)f(leelo) ; f(6,|xlx2[0):f(H\leo)f(xl|9]0)

Sy [ x1y) S x,1y)
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Consistency: H
SO1x,x,1)=f(01x,x,1)

= f(9|x10):m Strikingly similar to Bayes' Bl
7(x) Theorem, but...

n(0): consistency factor; not(!l) probability distribution (e.g., heed
not be normalizable);

n(x): normalization factor 7(x) Efﬂ(ﬁ')f(xle'lo)de'
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Properties of n(6):
1. Determined only up to a multiplication constant (say £);

2. Transformation m(6) — (V) under 8 = v (one-to-one):

fv|xI)= f(0]x],)
2 “(v)=kxn(H)

ov
00 vt
0

Z(v) f(x|vI,)

I))==——
Sl xl) === =

3. Depends on I, (=the only available information before
data (x, x,..) are collected).
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= Consistency: 70 =, = 7)) (a.k.a.The Principle of Relative

Invariance; Hartigan, 1964)

f(t|tl,) = %exp{— 1} = 1¢Gj (r =scale parameter) ;

T T

Example:

g, €G:t > g (t)=at=y; group G: X > X

g, €G:t— g, (r)=ar=v; (induced) group G:© - O

=>f(y|VZ))=f(flflo)Z—Z » » V(%j:f(yh/lo)

= f(t|71) invariant under G = E{CEa =k(a)7r(r)ézh(a)7z(r)
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Similarly:

Distribution ' Inv. transformation ' Functional equation ' Solution
1 (x—u . x >ax+b | |
f(x|ﬂ(710)=—¢( ) i\ H—oau+b w(ap+b,ac)=h(a,b)r(u,0) w,(u,oc)co”’
N9/ o—ao | |
x> x+b i
flpoly)=gle—p) 500 1 murbh =k |z (wee™
fx|uoly)= éqﬁ(gj G w(ac) = h(a)m(o) 7 () oc 5D
r,q :constants
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Product rule and Marginalization: K

7 (p,0)cm, () zg(o)

7, ()<l and 7 (o)ocm, (u,0)co”

Consistency factors determined uniquely (up to an arbitrary
multiplication constant) exclusively by observing the Axioms of
Probability and the Principle of Consistency.
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Examples: Inferring parameters of Gaussian distribution.

x=(x,,X,,...,x,) independent measurements, sampled from

x| poly) = exp{—(x‘“)z}

20°

N2mo

B 1 n 1 n B
an—E x, and SjE—E ()cl.—)cn)2
n i=1 n i=1

a) Both pand o unknown:

F(uo X1y o 75 (1,0) f (x| 1) = s (o) | £ x| oty o o £ (x| o)
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Marginalization:
I'(n/2) (nsz)n/z 1

n

F((n—l)/Z) \/Tsj [nS,ern(Tc,,—y)z]'”z

I (nsz)(n_l)/z 1 ns’
olxl,))= 'o|x1,))du'= L exXpy — —+
f( ‘ 0) J;of(/u | 0) H 2(n_3)/21_,((n_1)/2) (Tn p{ 2(72}

fulx1y)=[ f(uo'|x1,)do'=

b) Only p unknown:

2
T O 20

floxy) oz, ) f(x| oty = 7, (0] [ £ |ualo>ocjzz iexp{— ST }

) Only ¢ unknown:

f(o| pxI,) o< 7y(0) f(x| uol,) o

[n()?— )’ + ns,f]n/z 1 {_ n(x - u)’ +ns, }

n+l eXp
(o)

[(n/2)2"*" 207
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Forn=2, x,=0 and s, =1:

f(ulo=1x1I,)
S(ulxIy)

f(olu=0x1,)
f(o]x1,)
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Comments:

o0

a) Consistency factors not normalizable, e.g., 7 Iﬂ(ﬂ')dﬂ' =

= n(6) hot a probability distributionl!! =

b) Consistency factors for the parameters of distributions
that are invariant under Lie groups of transformations.

= Necessary condition: reducibility of 6to location
parameter (not a disaster; see below). B

Bl - enough to determine n(w).
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“The most striking achievement of physical sciences is prediction.”
n (Pélya, 1954, p. 64)

Calibration (coverage):

* f(01x1,) calibrated if coverage of confidence intervals (6,,6,)
coincides with probability

P(0<(0,6)|x1,)= [ /(0] x1,)d0

» Fiducial theory: f(9|x10)=‘%F(x,6?,Io) (F(x,0,1,)) monotone in 0;

Fisher, 1956, p. 70)
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Important:

1. m(w=1and n (0)=n,(u,0c)=0-" ensure calibrated inferences;
2. Exact calibration = "Dutch Book” impossible;

3. Consistency theorem and Fiducial argument combined =

0 necessarily reducible to a location parameter (Lindley, 1958). B
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Therefore:

The Principle of Consistency and The Operational Principle

are equivalent (identical consistency factors & applicable

under identical circumstances).

= complete reconciliation between the Bayesian and the Frequentist
schools of parameftric inferencell
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Probabilistic parametric inference not universal (e.g., pre-constrained
parameters, counting experiments).

Remedy (under fairly general conditions): "Repetitio est mater
studiorum.” (Latin proverb)

Example: inferring pre-constrained v of an exponential distribution.
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Example: inferring parameter 6 of a binomial distribution

n,eN

p(n|On,I,) = ('fj]@”(l —gyn

neN ;n<n,

n+0.5

nOgﬁnO(l_g) >1 F(”a”Oagalo):Zp(”HnOIO) =
i=0

p=n0, o=n6(1-0)

F(n,ny,0,1)) | F(n,ny,0,1,)
F(n,,u,oxz,) ! F(n,ﬂ»am.
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Conclusions:

Consistency Theorem (instead of Bayes' Theorem) for

assigning f(01x,1));

Equivalence of the Consistency Principle and the
Operational Principle for determination of 7(6):;

Equivalence of the Bayesian and the frequentist
schools of parametric inference.
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Applications:
1. Simple parametric inference;
2. Inference about the parameters of linear models (e.g.,

histogram fitting and partial wave analyses) (stuart, Ord and
Arnold, 1999),

Inference about the parameters of dynamical models: 6=6(¢)
(e.g., Kalman filter (Brown and Hwang, 1983));

4. Predictive distributions (x=(x,x,,...,x,) from f(x101)—
G, 1X1)).
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Warning:

Several "Principles” for determination of f(0117,): the Laplace Principle
of Insufficient Reason (Bayes, 1763; Laplace, 1886, p. XVII), the Principle

of Maximum Entropy (Jaynes, 2003, pp. 343-377), Reference Priors

(Bernardo, 1979), the Principle of Group (Form) Invariance (Harney, 2003),
the Principle of Reduction (dawid, 1977):

a) resulting f(0117,) not unique;
b) "Principles” inconsistent with Axioms of inverse probability;

c) Non-calibrated inferences.
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Which kind of approach has been being

advocated, frequentist or Bayesian?

Depends....
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If:

1. Frequentist =axioms of conditional probability only

applicable to sampling distributions.
2. Bayesian = (non-informative) prior probability

distributions indispensable in the process
of inference.

..Then none of the two.
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If:

1. Frequentist = observing the Operational Principle.

2. (Objective) Bayesian = observing the Principle of
Consistency.

..Then both.
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