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1. Introduction

We make a probabilistic inference about a parameter of a sampling distribution by specifying a
probability distribution that corresponds to the distribution of our belief in different values of the
parameter. Such a distribution is always conditional upon information at hand that is relevant to
the inferred parameter. When new pieces of information arrive, the distribution can sequentially be
updated by using the well-known Bayes’ Theorem.

The problems arise, however, when the Theorem is used not only for updating the assigned
probability distribution, but also at the starting point ofthe inference, i.e., in attempts to assign the
probability distribution that is later to be updated. For then, we must specify the so-callednon-
informative prior probability distribution, reflecting our belief in different values of the inferred
parameter when we are in a state of complete ignorance about these values. But since all probability
distributions are, by definition, conditional upon the relevant information, the non-informative prior
distribution, conditional upon the complete lack of such information, is simplya contradiction in
terms. Apart from the problems on the conceptual level, the non-informative prior distributions have
also been representing an insurmountable practical problem, since the question about the explicit
form of these distributions remains unanswered (for a survey of the topic see, for example, Kass and
Wasserman, 1996, and the references quoted therein).

The difficulties with prior distributions have been servingas the main argument against sub-
jecting the possible systems for inference about the parameters to the axioms of probability. As
realized long ago by Jeffreys (1961,§ 3.1, p. 120), ”a succession of authors have said that the prior
probability is nonsense and therefore that the principle ofinverse probability, which cannot work
without it, is nonsense too.” Fisher (1922), for example, wrote: ”During the rapid development
of practical statistics in the past few decades, the theoretical foundations of the subject have been
involved in great obscurity. This obscurity is centred in the so-called ’inverse’ methods. . . . The
inverse probability is a mistake (perhaps the only mistake to which the mathematical world has so
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deeply committed itself)”. Here, the inverse probability stands for the probability, assigned to the
certain value of an inferred parameter.

In this way two, at first glance fundamentally distinct, schools of inductive reasoning emerged.
The first one, usually referred to as theBayesian schooldue to the central role of the Bayes’ Theo-
rem in the process of inference, recognizes probability as adegree of reasonable belief and applies
probability theory in the course of inductive reasoning. The second one, usually referred to as the
frequentist schooldue to its strict frequency interpretation of probability,advocates the usage of
the calculus of probability only for treatment of so-calledrandom phenomena. The aim of the fre-
quentist school is to avoid the supposed mistakes and inconsistencies of the probabilistic inductive
inference, so they relegate the problems of inductive inference, e.g., the problem of inference about
parameters, to a new field,statistical inference.

The purpose of the present article is twofold. Our first and main goal is to demonstrate that the
problems, both the conceptual and the practical ones, of thenon-informative prior distributionscan
be solved and that a consistent theory of probabilistic inference about the parameters of sampling
distributions can be deduced from very general Principles of scientific reasoning. Second, we are
aiming at a complete reconciliation between the frequentist and the Bayesian approaches to the
parametric inference.

2. Direct probabilities

2.1. Sampling variates and their distributions
Probabilityp(xi|I) ≡ P (x = xi|I) for a sampling(or random) variatex from a discretesample
spaceX to take a valuexi is defined as a long run relative frequency,

p(xi|I) = lim
N0→∞

Ni

N0
,

whereN0 is the total number of recorded values ofx, while Ni is the number of the outcomes
x = xi. On the other hand, for (absolutely) continuous sampling distributions, with sample spaces
coinciding with subintervals of real numbers,X ⊆ R, p(xi|I) denotes the probabilityP

(
x ∈

(xi, xi + dx)|I
)

for x to take a value in an interval(xi, xi + dx), and can be expressed by a non-
negative functionf(xi|I), calledthe probability density function(pdf),

p(xi|I) ≡ f(xi|I) dx .

Every probability distributionp(x|I) isconditionaluponthe(state of) informationorknowledge
I about the variatex. Let I◦ denote a family of sampling distributions and letθ be a parameter
whose value specifies a unique distribution within the family. Then, for parameters from a discrete
parameter spaceΘ, our knowledgeI = θjI◦ about the distributionp(x|I) consists of the known
family I◦ and the valueθ = θj of the parameter. Similarly, for parameters from the parameter spaces
Θ = (θa, θb) ⊆ R, the sampling distribution from a familyI◦ is uniquely determined by knowing
that an (infinitesimal) interval(θj , θj + dθ) contains the so-calledtrue valueof the parameter. For
example, a sampling distribution of a variatet from the exponential familyI◦ is uniquely determined
by the value of the parameter in the interval(τ, τ + dτ).

ASSUMPTION1. In the present paper, we restrict our considerations to sampling distributions
whose parameter spaces are (possibly infinite) subintervals of positive length of real numbers,
Θ ⊆ R. For m-dimensional parameters,Θ ⊆ R

m are Cartesian products ofm such intervals.
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Second, we require the sampling distributions be continuous functions of their parameters. Third,
the sampling distributions are to be strictly positive for all x ∈ X and for allθ ∈ Θ, i.e.,

p(x|θI◦) > 0 ; ∀ x ∈ X and ∀ θ ∈ Θ

for discrete sampling distributions, and

f(x|θI◦) > 0 ; ∀ x ∈ X and ∀ θ ∈ Θ

for continuous sampling distributions.

For example, Gaussian (normal) distribution with the pdff(x|µσI◦) is strictly positive for all real
x andµ and for all positiveσ, while binomial distributionp(n|θn0I◦) with positive integern0 and
with integern, 0 ≤ n ≤ n0, is strictly positive only if the parameter spaceΘ = (0, 1) is open on
both sides.

Sampling probability distributions are subject to theaxioms of conditional probability. First,
every joint probabilityp(x0y0|θI◦) ≡ P

(
x ∈ (x0, x0 + dx) ∧ y ∈ (y0, y0 + dy)|θI◦

)
can be

decomposed according to the so-calledproduct rule:

p(x0y0|θI◦) = p(x0|θI◦) p(y0|x0θI◦) = p(y0|θI◦) p(x0|y0θI◦) ,

wherep(y0|x0θI◦) is the probability for the sampling variatey to take a value in the interval
(y0, y0 + dy), given the familyI◦ of the sampling distribution ofx andy, the value of the pa-
rameter of the family in an interval(θ, θ + dθ), and the sampling variatex being observed in an
interval(x0, x0 + dx). The product rule can also be expressed in terms of the appropriate pdf’s

f(xy|θI◦) = f(x|θI◦) f(y|xθI◦) = f(y|θI◦) f(x|yθI◦) , (1)

which for independentx andy reduces to

f(xy|θI◦) = f(x|θI◦) f(y|θI◦) . (2)

Second, every sampling probability distribution is subject to the normalization
∫

X

f(x′|θI◦) dx
′ = 1 , (3)

where the integration is performed over the entire sample spaceX .
Third, suppose there exists a one-to-one transformations of a scalar sampling variatex, y ≡

s(x). The corresponding pdf’s ofx andy are then related as

f(y|θI ′
◦
) = f(x|θI◦)

∣∣s′(x)
∣∣−1

, (4)

wheres′(x) ≡ dy/dx, while for multidimensional variatesx andy the derivative must be replaced
by the corresponding JacobianJ ≡ ∂y/∂x. By using the symbolI ′

◦
instead ofI◦ on the left-hand

side of (4) we stress that the form (the family) of the sampling distribution may in general be altered
by the transformation of a sampling variate.

Besides of the pdf’s, distributions of sampling variates can equivalently be presented by the
(cumulative) distribution functions(cdf’s). The cdf of a sampling variatex from a continuous
sample spaceX = (xa, xb) is defined as

F (x, θ, I◦) ≡

∫ x

xa

f(x′|θI◦) dx
′ , (5)
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or, inversely,
f(x|θI◦) ≡ F1(x, θ, I◦) , (6)

whereFi denotes differentiation with respect to thei-th argument ofF (we adhere to this notation
throughout the present paper, whatever the function and thearguments may be). A cdf coincides
with the probability of the sampling variate to take the value less or equal tox. Consequently, the
cdf is a nondecreasing function ofx whose values are limited within

F (xa, θ, I◦) = 0 and F (xb, θ, I◦) = 1 .

2.2. Location, scale and dispersion parameters
A parameterµ of a sampling distribution is a location parameter, and a parameterσ is a dispersion
parameter, if the pdf ofx takes the form

f(x|µσI◦) =
1

σ
φ
(x− µ

σ

)
, (7)

with the ranges ofx andµ, (xa, xb) and(µa, µb), stretching over the entire real axis, and with the
range ofσ, (σa, σb), coinciding with(0,∞).

According to the product rule (2), a bivariate pdf of two independent random variates,x(1) and
x(2), both being subject to the same pdf of the form (7), is equal tothe product of univariate pdf’s,
f(x(1)|µσI◦) andf(x(2)|µσI◦):

f(x(1)x(2)|µσI◦) = f(x(1)|µσI◦) f(x(2)|µσI◦) =
1

σ2
φ
(x(1) − µ

σ

)
φ
(x(2) − µ

σ

)
.

The pdf of transformed variatesx(1) andx(2), x̄ ands,

x̄ ≡
x(1) + x(2)

2
and s ≡

x(1) − x(2)

2
; x̄, s ∈ (−∞,∞) ,

can be calculated according to (4):

f(x̄s|µσI ′
◦
) = f

(
x(1)(x̄, s)x(2)(x̄, s)|µσI◦

) ∣∣J
∣∣−1

=
2

σ2
φ
( x̄− µ

σ
+
s

σ

)
φ
( x̄− µ

σ
−
s

σ

)

≡
1

σ2
φ̃
( x̄− µ

σ
,
s

σ

)
.

(8)

When inferring the parameters of a sampling distribution ofthe form (7), it may happen that
the value of one of the two parameters is known to a high precision. Then, the parameter with the
precisely determined value isfixedand we only make an inference about the remaining one. Let
first the dispersion parameterσ be fixed, say to 1, so that the pdf ofx, given the possible value ofµ
and the fixedσ,

f(x|µσI◦) =
1

σ
φ
(x− µ

σ

)
= φ(x− µ) , (9)

is a function ofx andµ only. The fixed parameter (σ in the present case) is usually (though not
always) omitted from explicit expressions.

According to (5) and (9), the cdf ofx reads:

F (x, µ, σ, I◦) =

∫ x

−∞

f(x′|µσI◦) dx
′ =

∫ x

−∞

φ(x′−µ) dx′ =

∫ x−µ

−∞

φ(u) du = Φ(x−µ) . (10)
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Note that the formΦ(x − µ) of the above cdf implies the corresponding pdf to be of the form (9),
i.e., impliesµ to be a location parameter of a sampling probability distribution ofx. Indeed:

f(x|µσI◦) =
∂

∂x
F (x, µ, σ, I◦) =

∂

∂x
Φ(x− µ) =

d

du
Φ(u)

∂u

∂x
=

d

du
Φ(u) = φ(u) ,

whereu ≡ x−µ. Since the integrand in (10), i.e., the pdf ofx, is a positive function, and the upper
bounds of the integral are strictly decreasing with the increase in the parameter, the cdf is obviously
strictly decreasing inµ.

If, on the other hand,µ is fixed, whileσ is not, the sample spaceX = (−∞,∞) can be split
into

X1 ≡ (µ,∞) , X2 ≡ (−∞, µ) and X3 ≡ {µ} ,

and the pdf ofx, givenσ and a fixedµ,

f(x|σµI◦) =
1

σ
φ
(x− µ

σ

)
, (11)

can be split into two pdf’s,

f (1,2)(x|σµI◦) ≡
1

C(1,2)
f(x|σµI◦) ; x ∈ X1,2 , (12)

whereC(1,2) are the appropriate normalization constants

C(1,2) =

∞(µ)∫

µ(−∞)

f(x′|σµI◦) dx
′ =

∞(0)∫

0(−∞)

φ(u) du .

In this way, the problem of inferring a dispersion parametercan be split into two separate problems.
Dispersion parameters of sampling distributions with the sample space being bound either to the
positive or to the negative half of the real axis are referredto as thescaleparameters.

The reasons for discardingX3 in the above definitions are given below in this section, as well
as in§ 4.4 and§ 4.7. Here we would just like to point out that since the probability measure ofX3,
i.e., of a single point within a continuous interval, is zero(i.e., the probability for observing exactly
x = µ is zero), this can always be done with no possible loss of generality.

Any sampling probability distribution determined by a scale parameterσ and a fixed location
parameterµ, can be further transformed into a probability distribution determined by a location
parameterν (see, for example, Ferguson, 1967,§4.4, p. 144):

ν = lnσ ,

and a fixed dispersion parameterλ, sayλ = 1. Namely, substitutions

y1,2 = ln {±(x− µ)}

yield:

f (1,2)(y1,2|νλ0I◦) = f (1,2)(x|σµI◦)
∣∣∣
dy1,2

dx

∣∣∣
−1

∝ ey1,2−ν φ
(
ey1,2−ν

)
≡ φ̃(y1,2 − ν) . (13)

Note, however, that the corresponding variatey3 for x = µ cannot be defined.
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The cdf’sF (1,2)(x, µ, σ, I◦), corresponding tof (1,2)(x|σµI◦), read:

F (1,2)(x, µ, σ, I◦) =

x∫

µ(−∞)

f (1,2)(x′|σµI◦) dx
′ ∝

x∫

µ(−∞)

1

σ
φ
(x′ − µ

σ

)
dx′ =

(x−µ)/σ∫

0(−∞)

φ(u) du .

WhileF (1)(x, µ, σ) is monotonically decreasing with increasing value ofσ, F (2)(x, µ, σ) is mono-
tonically increasing.

Some of the most important continuous sampling distributions are determined by one or more
parameters of the above mentioned types (see Eadie et al., 1971,§4.2, pp. 58-83). In addition, all
distributions determined by either location, dispersion or scale parameters share a very important
property: they all belong to theinvariant families of distributions.

2.3. Invariant distributions
Let

f(x|θI◦) = φ(x, θ) (14)

be a pdf of a random variablex from a continuous sample spaceX that is determined by the value
of parameterθ from the parameter spaceΘ. Let there exista groupG of transformationsga of the
sample space into itself:

ga : X −−−−→ X ,

ga : x −−−−→ ga(x) ≡ y ,
(15)

where indexa denotes a particular element of the group. SinceG is a group, it is closed under
composition of transformations, i.e., a compositiongc of every pair of transformationsga, gb ∈ G,
gc = gbga, such that

gc(x) = gbga(x) = gb[ga(x)
]
,

is also contained inG. In addition, the group also contains an identityge such that

ge(x) = x , ∀ x ∈ X ,

and the inverse transformationg−1
a for anyga such that

g−1
a ga = gag

−1
a = ge .

As a consequence, the transformationsga are one-to-one, i.e.,ga(x1) = ga(x2) impliesx1 = x2,
andontoX , i.e., on (entire)X and to (entire)X : for everyx1 ∈ X andga ∈ G there exists an
x2 ∈ X such thatga(x2) = x1 (see, for example, Ferguson, 1967,§4.1, p. 143). The sample space
X is said to beinvariant under the groupG

Since the transformationy = ga(x) is one-to-one, the pdf of the transformed variate according
to (4) reads:

f(y|θI ′
◦
) = f(x|θI◦)

∣∣g′a(x)
∣∣−1

= φ(x, θ)
∣∣g′a(x)

∣∣−1
.

In addition toG, let there exist also a set̄G of transformations̄ga of the parameter spaceΘ into
itself,

ḡa : Θ −−−−→ Θ ,

ḡa : θ −−−−→ ḡa(θ) ≡ ν .



Probabilistic parametric inference 7

Then, the pdf ofy can be re-expressed in terms of the parameterν, instead ofθ,

f(y|νI ′′
◦
) = φ(x, θ)

∣∣g′a(x)
∣∣−1

= φ
(
g−1

a (y), ḡ−1
a (ν)

)∣∣g′a(x)
∣∣−1

≡ φ̃
(
ga(x), ḡa(θ)

)
.

If for all x ∈ X, andθ ∈ Θ, and for everyga ∈ G there exists̄ga ∈ Ḡ such that

φ̃
(
ga(x), ḡa(θ)) = φ

(
ga(x), ḡa(θ)

)
, (16)

the family of distributionsf(x|θI◦) is said to beinvariant under the groupG (Ferguson, 1967,§4.1,
p. 144; Stuart et al., 1999,§23.10, pp. 300-301).

If a family of distributions is invariant underG, then the set̄G of transformations̄ga is also a
group, usually referred to asthe induced group(Stuart et al., 1999,§23.10, p. 300). Namely, accord-
ing to the definition of invariance, if the pdf ofx is given byφ(x, θ), the pdf forga(x) is given by
φ
(
ga(x), ḡa(θ)

)
. Hence, the pdf ofgb

(
ga(x)

)
= gbga(x) is given by bothφ

(
gb(ga(x)), ḡb(ḡa(θ))

)

andφ
(
gbga(x), gbga(θ)

)
. From the equality of the two it follows that

gbga = ḡbḡa .

This shows that̄G is closed under composition. It also shows thatḠ is closed under inverses if we
let gb = g−1

a and note that̄ge is the identity inḠ.
As for G andX , the parameter spaceΘ is invariant under the induced group̄G. The invariance

of the sample and the parameter spaces under groupsG andḠ, respectively, is therefore inherent to
every invariance of a sampling probability distribution under a groupG.

For example, a sampling distribution ofx̄ and s (8), determined by the values of a location
parameterµ and a dispersion parameterσ, is invariant under the group of simultaneous location and
scale transformations:

ga,b :

{
x̄ −−−−→ ga,b(x̄) = ax̄+ b

s −−−−→ ga,b(s) = as
,

ḡa,b :

{
µ −−−−→ ḡa,b(µ) = aµ+ b

σ −−−−→ ḡa,b(σ) = aσ
,

(17)

where
a ∈ (0,∞) and b ∈ (−∞,∞) .

By fixing the dispersion parameter, we are left with the remaining symmetry of the sampling distri-
bution under simultaneous translations ofx andµ by an arbitrary real numberb:

gb : x −−−−→ gb(x) = x+ b ,

ḡb : µ −−−−→ ḡb(µ) = µ+ b .
(18)

When, on the other hand, the location parameter is fixed whilethe dispersion of the distribution is
unknown, the appropriate pdf’sf(x|σµI◦) (11) andf (1,2)(x|σµI◦) (12) are still invariant under the
scale transformation:

ga : x −−−−→ ga(x) = ax+ (1 − a)µ

ḡa : σ −−−−→ ḡa(σ) = aσ .

The above transformation of the sampling variatex is identical to the transformation

x− µ −−−−→ a(x− µ)

of the difference between the sampling variatex and the fixed location parameterµ.
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LEMMA 1. Let a distribution of a sampling variatex, parameterized byθ, be invariant underG,
with Ḡ being the corresponding induced group. Then, the distribution of y ≡ s(x), parameterized
by ν ≡ s̄(θ), is invariant underH = sGs−1, while H̄ = s̄Ḡs̄−1 is the appropriate induced group.
Here,s and s̄ are arbitrary continuous and differentiable one-to-one transformations ofx andθ,
respectively.

2.4. Invariance under Lie groups
Let F (x, θ, I◦) be the cdf of a sampling variatex, subject to the distribution (14). The cdf of
y = s(x), givenν = s̄(θ), reads:

F (y, ν, I ′
◦
) = F

(
s(x), s̄(θ), I ′

◦

)
=

∫ y

ya

f(y′|νI ′
◦
) dy′ =

∫ s(x)

ya

φ̃
(
s(x′), s̄(θ)

)
d[s(x′)] ,

whereya is the lower bound of the range ofy, while s ands̄ are arbitrary continuous and differen-
tiable one-to-one functions. Then,

LEMMA 2. The lower and the upper bound of the range ofx, xa andxb, become transformed
into the bounds ofy, ya andyb:

ya =

{
s(xa) ; s′(x) > 0

s(xb) ; s′(x) < 0
and yb =

{
s(xb) ; s′(x) > 0

s(xa) ; s′(x) < 0
,

and the cdf ofy, givenν, is related to the cdf ofx, givenθ, as:

F (y, ν, I ′
◦
) = F

(
s(x), s̄(θ), I ′

◦

)
=

{
F (x, θ, I◦) ; s′(x) > 0

1 − F (x, θ, I◦) ; s′(x) < 0
. (19)

COROLLARY. Let a sampling distribution with the cdfF (x, θ, I◦) be invariant underG. Then,
the cdf ofga(x) can be expressed as

F
(
ga(x), ḡa(θ), I◦

)
=

{
F (x, θ, I◦) ; g′a(x) > 0

1 − F (x, θ, I◦) ; g′a(x) < 0
; ∀ ga ∈ G . (20)

Note that for invariant distributions the informationI ′
◦

thatF
(
ga(x), ḡa(θ), I ′

◦

)
is based upon (the

family that the sampling distribution belongs to), is identical to the informationI◦ of F (x, θ, I◦),

F
(
ga(x), ḡa(θ), I ′

◦

)
= F

(
ga(x), ḡa(θ), I◦

)
,

so that the parametera entersF
(
ga(x), ḡa(θ), I◦

)
only throughga(x) andḡa(θ), but not through

I◦, i.e.,I◦ 6= I◦(a).
Let nowG be aLie groupof transformations (15), so that the partial derivative

∂

∂a
ga(x)

exists for everyga ∈ G and everyx ∈ X (see, for example, Elliot and Dawber, 1986,§7.1-7.2,
pp. 126-130). Here,a is a scalar parameter of the group whileX is a set of real scalar variates
(objects of group transformations). Under these circumstances, we state the following
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LEMMA 3. For all x ∈ X for which

∂

∂a
ga(x)

∣∣∣
a=e

(21)

vanishes, all group transformations are trivial, i.e.,

ga(x) = x ; ∀ ga ∈ G .

Clearly, if (21) vanishes for allx ∈ X , then the action of the groupG on the entireX is trivial:

ga(x) = x ; ∀ ga ∈ G and ∀ x ∈ X .

LEMMA 4. LetF (x, θ, I◦) be a cdf of a strictly positive continuous sampling distribution that
is invariant under a Lie groupG whose action is not identically trivial on the entire samplespace
X . In addition, letF (x, θ, I◦) be differentiable in the second argument (differentiability in the first
argument is guaranteed by definition(6)). Then, the partial derivative

∂

∂a
ḡa(θ)

∣∣∣
a=e

(22)

does not vanish for anyθ ∈ Θ.

An important statement - an Existence Theorem - can be deduced from the above Lemmata. Let
therefore a probability distribution of a scalar sampling variatex be invariant under a Lie groupG
(consequently,̄G is also a Lie group). Then, differentiation of (20) with respect toa yields

F1

(
ga(x), ḡa(θ), I◦

) ∂

∂a
ga(x) + F2

(
ga(x), ḡa(θ), I◦

) ∂

∂a
ḡa(θ) = 0 .

On the subspacẽX ⊆ X with non-vanishing derivative (21) (derivative (22) is strictly different
from zero by Lemma 4), the above differential equation reduces to

F1(x, θ, I◦) s̄
′(θ) + F2(x, θ, I◦) s

′(x) = 0 , (23)

where the derivativess′(x) ands̄′(θ) of functionss(x) ands̄(θ) are defined as:

s′(x) ≡
ds(x)

dx
≡

[
∂

∂a
ga(x)

∣∣∣
a=e

]
−1

and s̄′(θ) ≡
ds̄(θ)

dθ
≡

[
∂

∂a
ḡa(θ)

∣∣∣
a=e

]
−1

. (24)

By defining a functionG(x, θ),
G(x, θ) ≡ s(x) − s̄(θ) , (25)

(23) can be further rewritten as

F1(x, θ, I◦)G2(x, θ) − F2(x, θ, I◦)G1(x, θ) = 0 ,

or as a functional determinant (see Aczél, 1966,§7.2.1, p. 325),
∣∣∣∣
F1(x, θ, I◦) F2(x, θ, I◦)
G1(x, θ) G2(x, θ)

∣∣∣∣ = 0 .

The Jacobian vanishes for allx ∈ X andθ ∈ Θ if and only if the cdfF (x, θ, I◦) is a function of a
single variableG(x, θ) (25) (see, for example, Courant, 1962,§1, p. 5),

F (x, θ, I◦) = Φ[G(x, θ)] = Φ[s(x) − s̄(θ)] = Φ(y − µ) , (26)
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where we introduced
y ≡ s(x) and µ ≡ s̄(θ) .

Then, by equation (19), the cdfF (y, µ, I ′
◦
) is of the form

F (y, µ, I ′
◦
) =

{
Φ(y − µ) ; s′(x) > 0

Φ̃(y − µ) ; s′(x) < 0
,

where
Φ̃(y − µ) ≡ 1 − Φ(y − µ) .

That is,µ is a location parameter of the sampling distribution ofy (see eq. (10)), and the above
reasoning can be summarized as

THEOREM 1. Letf(x|θI◦) be a pdf of a continuous scalar sampling variatex ∈ X andθ ∈ Θ
a continuous scalar parameter of the distribution that is invariant under a one-parameter Lie group
G, and let the cdfF (x, θ, I◦) be differentiable inθ. Then, on the subspacẽX ⊆ X where the
derivative(21) does not vanish, the distribution is necessarily reducible(by separate one-to-one
transformationsx → z andθ → µ) to a sampling distribution ofz with the parameterµ being a
location parameter.

In the sequel (Theorem 4) we shall further demonstrate that the subspaceX−X̃ ⊆ X of the sample
space with vanishing derivative (21), is irrelevant to probabilistic parametric inference, since for
the observedx from X − X̃ a pdf cannot be assigned to the inferred parameter of the sampling
distribution.

The following Theorem also proves to be relevant to our derivations:

THEOREM 2. If a sampling distribution(9) of x, determined by a location parameterµ and a
fixed dispersion parameterσ, is invariant under a Lie groupG, thenG is the group of translations.

3. Inverse probabilities

3.1. Plausibilities and inverse probabilities
Let now information about a random variatex consist only of a familyI◦ of possible distributions
of x, while the true value of the parameterθ that uniquely determines the sampling distribution, is
unknown. Then, an inference about the true distribution ofx is equivalent to an inference about the
parameterθ of the familyI◦.

An inference about the parameter is made by specifying a realnumber, called (degree of)
plausibility, (θ|x1x2 . . . I◦), representing our degree of belief that, given a set of observations
x ∈ (x1, x1 + dx), x ∈ (x2, x2 + dx), . . . of the sampling variate, an interval(θ, θ + dθ) cov-
ers the true value of the parameter. Cox (1946) showed that a system for manipulating plausibilities
is either isomorphic to the probability system or inconsistent with very general requirements, re-
ferred to as the Cox-Pólya-Jaynes Desiderata (see, for example, Jaynes, 2003,§ 1.7, pp. 17-19, or
Van Horn, 2003). Motivated by the Cox’s Theorem, we therefore once and for all choose proba-
bilities p(θ|x1x2 . . . I◦) among all possible plausibility functions(θ|x1x2 . . . I◦) to represent our
degree of belief in particular values of inferred parameters:

ASSUMPTION2. The so-calledinverse probabilities, p(θ|x1x2 . . . I◦), and the so-calleddirect
(or sampling)probabilitiesp(x|θI◦), are subjected to identical rules, i.e., to the aforementioned
axioms of conditional probability.
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These, expressed in terms of non-negative functionsf(θ|x1x2 . . . I◦), calledthe probability density
functions(pdf’s) for the inferred parameters, include the product rule,

f(θλ|x1x2 . . . I◦) = f(θ|x1x2 . . . I◦) f(λ|θx1x2 . . . I◦)

= f(λ|x1x2 . . . I◦) f(θ|λx1x2 . . . I◦) ,
(27)

the requirement of normalization,
∫

Θ

f(θ′|x1x2 . . . I◦) dθ
′ = 1 , (28)

and the rule for transformations of the pdf’s, induced by one-to-one transformations of their argu-
ments,

f(ν|xI ′
◦
) = f(θ|xI◦)

∣∣s̄′(θ)|−1 , (29)

whereν ≡ s̄(θ) and s̄′(θ) ≡ dν/dθ, while f(θλ|x1x2 . . . I◦) is a a joint pdf for the parametersθ
andλ of a family I◦ of two-parametric sampling distributions.

Let a familyI◦ contain the (unknown) true distribution of a sampling variatex whose first value
was observed in an interval(x1, x1 + dx), and letp(θ1x2|x1I◦) be the joint probability that an
interval(θ1, θ1 + dθ) covers the true value of the parameterθ of the familyI◦ and that the second
observation of the random variatex, independent of the first one, will be recorded in an interval
(x2, x2 + dx). Then, due to the imposed equivalence of rules for manipulating probabilities of
sampling variates and those for manipulating probabilities for inferred parameters,p(θ1x2|x1I◦)
can be decomposed as

p(θ1x2|x1I◦) = p(θ1|x1I◦) p(x2|θ1I◦) = p(x2|x1I◦) p(θ1|x1x2I◦) ,

so that the product rule forf(θx2|x1I◦) reads

f(θx2|x1I◦) = f(θ|x1I◦) f(x2|θI◦) = f(x2|x1I◦) f(θ|x1x2I◦) . (30)

We add this product rule to the axioms, listed within the Assumption 2.

ASSUMPTION3. In the same way as we did for the sampling distributions (see Assumption 1),
we impose continuity inθ also to the pdf ’sf(θ|x1x2 . . . I◦) for the inferred parameters.

As for the cdf’sF (x, θ, I◦) of sampling variates, we can also define the cdf’sH(x, θ, I◦) for
inferred parameters,

H(x, θ, I◦) ≡

∫ θ

θa

f(θ′|xI◦) dθ
′ ,

or, equivalently,
f(θ|xI◦) ≡ H2(x, θ, I◦) . (31)

By subjecting degrees of plausibility to the axioms of probability, the domain of the probability
calculus, originally being consisted only of sampling variates, has been extended. In other words,
the sampling variates represent only a subset of all possible arguments of probability functionsp
and pdf’sf . It is important, however, to distinguish between the concept of probability distribution
of a sampling variate, and the concept of probability distribution for an inferred parameter. By
definition, the probability for a sampling variatex to take a value in an interval(x1, x1 + dx)
coincides with the long run relative frequency of occurrence of x in that interval. The probability
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distribution for a parameter, on the other hand, only represents a distribution of our belief in different
values of the inferred parameter within the parameter space. In a vast majority of situations, the
inferred parameter is assumed to be fixed (though unknown), so that in generalp(θ|x1x2 . . . I◦)
doesnot coincide with the frequency distribution of the true valuesof θ. The conceptual difference
becomes of high practical importance when the interpretation of verifiable predictions, based on the
probability distributions forθ, is concerned. We will come back to this important point in Section 5.

3.2. The procedure of marginalization and the Bayes’ Theorem
We can make use of the product rules (27) and (30) for deducingthe procedure of marginaliza-
tion and the Bayes’ Theorem. Let us therefore integrate the pdf f(θλ|x1x2 . . . I◦) (27) over ei-
ther of the spacesΘ andΛ of the two inferred parametersθ andλ, respectively. With the pdf’s
f(λ|θx1x2 . . . I◦) andf(θ|λx1x2 . . . I◦) being properly normalized, we obtain

∫

Θ

f(θ′λ|x1x2 . . . I◦) dθ
′ = f(λ|x1x2 . . . I◦) ,

∫

Λ

f(θλ′|x1x2 . . . I◦) dλ
′ = f(θ|x1x2 . . . I◦) ,

(32)

wheref(λ|x1x2 . . . I◦) andf(θ|x1x2 . . . I◦) are the so-calledmarginal pdf ’s.
The Bayes’ Theorem (Bayes, 1763; Laplace, 1774), on the other hand, is obtained simply by

rearranging the product rule (30):

f(θ|x1x2I◦) =
f(θ|x1I◦) f(x2|θI◦)

f(x2|x1I◦)
. (33)

The Theorem is also referred to asthe principle of inverse probability(see Jeffreys, 1961,§1.22,
p. 28) and is interpreted in the following way (O’Hagan, 1994, § 1.3, p. 2). We are interested in
the probability distribution forθ and begin with the initial orprior pdf f(θ|x1I◦), representing the
distribution of our belief in different values ofθ prior to taking evidencex2 into account, while the
posteriorpdf f(θ|x1x2I◦) represents the distribution of our belief posterior to adding evidencex2

to our previous information aboutθ. According to Bayes’ Theorem, the only consistent way for
updating the probability distribution, assigned to the inferred parameter, is by multiplying the prior
pdf by the so-calledlikelihood densityf(x2|θI◦), corresponding to the probability for observing
x ∈ (x2, x2 + dx), given the true value of the parameter in the interval(θ, θ + dθ).

The denominatorf(x2|x2I◦) is obtainedvia the normalization requirement (28),

f(x2|x1I◦) =

∫

Θ

f(θ′|x1I◦) f(x2|θ
′I◦) dθ

′ ≡ ζθ(x1, x2) ,

and is independent of the value of the inferred parameter.

3.3. The difference between an assignment and an update of a probability distribution
While being a unique tool for sequentialupdatingof a pdff(θ|x1I◦), assigned to an inferred param-
eterθ prior to its updating, Bayes’ Theorem says nothing aboutassigningthe pdff(θ|x1I◦) that is
later to be updated. Consequently, the existing system of the adopted rules (27-30) for manipulating
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the pdf’s for inferred parameters, together with the applications (32) and (33) of these rules, need be
amended in order to allow for assignments of probability distributions to the parameters, with such
assignments representing natural and indispensable starting points in every sequential updating of
probability distributions.

The set of rules for assigning probability distributions toinferred parameters is based on the two
fundamental Principles of scientific reasoning(Popper, 1959,§24, pp. 91-92):

I (Principle of Consistency) The theory of inference about the parameters of sampling distributions
must be internally consistent. In particular, if within therules of the theory, a conclusion can
be reasoned out in more than one way, then every possible way must lead to the same result.
Similarly, identical states of knowledge about a problem that is solvable within the theory,
must always lead to identical solutions of the problem.

II (Operational Principle) The theory must specify operations that ensure falsifiability of its pre-
dictions.

In what follows, the entire system for assigning inverse probabilities is deduced exclusively by
observing these two rules.

3.4. Consistency Theorem
Suppose that before we made the first observation of a sampling variatex, we had been completely
ignorant about the value of the parameterθ that determines the distribution ofx: we had only known
the familyI◦ of sampling distributions that the distribution ofx belongs to. In this context we can
prove the following proposition, henceforth referred to asthe Consistency Theorem:

THEOREM 3. Suppose that a sampling variatex from a strictly positive continuous distribution
has been observed in an (infinitesimal) interval(x,x+ dx), and that, based on the observation and
on informationI◦ about the form of the sampling distribution, a pdff(θ|xI◦) can be assigned to
the parameterθ of the distribution. When positive the pdf must be, in order to meet the Consistency
Principle I, directly proportional to the likelihood density f(x|θI◦),

f(θ|xI◦) =
π(θ)

ηθ(x)
f(x|θI◦) , (34)

whereπ(θ) is the so-calledconsistency factor, whileηθ(x) is the normalization factorthat is deter-
mined by invoking normalization(28)of the pdf, assigned toθ:

ηθ(x) =

∫

Θ

π(θ′) f(x|θ′I◦) dθ
′ . (35)

For thoseθ for which f(θ|xI◦) vanishes, however, the pdf must be zero regardless the recorded
valuex of the sampling variate.

Since bothf(x|θI◦) andf(θ|xI◦) are assumed to be continuous inθ (recall Assumptions 1 and
3), π(θ) is also continuous.In addition we note thatthe consistency factor can only be determined
up to an arbitrary constant factor, sayk. That is, multiplyingπ(θ) by k clearly implies multiplica-
tion of ηθ(x) by the same factor, which then cancels out in the ratio on the right-hand side of (34).
The factorsπ(θ) may therefore be either strictly positive or strictly negative, but mustnot switch
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sign within Θ, since the latter would imply negative values for pdf’sf(θ|xI◦) whose values are
non-negative by definition.

For discrete sampling variates, the Consistency Theorem isobtained simply by replacing the likeli-
hood densityf(x|θI◦), both in (34) and in (35), with the corresponding likelihoodp(x|θI◦). Note,
however, that the consistency factors cannot be uniquely determined in such problems (see§ 4.3 and
§ 5.1 below), so it is impossible to make consistent and calibrated probabilistic inferences about the
parameters of discrete sampling distributions.

The form of the Consistency Theorem (34) is remarkably similar to that of Bayes’ Theorem (33): in
both Theorems, within a specified modelI◦, the complete information about the inferred parameter
θ of the model that can be extracted from a measurementx, is contained in the value of the appro-
priate likelihood density,f(x|θI◦). But there is also a fundamental andvery important difference
between the two Theorems: whilef(θ|x1I◦) in Bayes’ Theorem represents the pdf forθ prior to
including observationx ∈ (x2, x2 + dx) in our inference aboutθ, the consistency factorπ(θ) in the
Consistency Theorem is just a proportionality coefficient between the pdf forθ and the appropriate
likelihood density.

In the sequel we show how and under what conditions the basic Principles of scientific reasoning
uniquely determine a consistency factorπ(θ). The form of the latter depends on the only relevant
information that we possess before the first datumx ∈ (x1, x1 +dx) is collected: it depends only on
the specified familyI◦ of possible sampling distributions ofx. Therefore, in this particular concept,
the Principle of Consistency reads:

Inferences about the parameters of sampling distributionswhose forms, sample spaces and
parameter spaces are identical, must be made by using the consistency factors of the forms
that are identical up to multiplication constants.

Note that the above formulation of the Principle of Consistency coincides with thePrinciple of
Relative Invariance, stated by Hartigan (1964).

4. Determination of the consistency factors

4.1. Consistency factors under transformations of the inferred parameters

Let f(x|θI◦) of the form (14) be a sampling pdf ofx whose parameterθ we would like to infer
by specifying the pdff(θ|xI◦). We saw in the foregoing section that when this can be done in a
consistent way, the pdf forθ must take the form (34). Lets be a one-to-one transformation of the
sampling variatex, y = s(x), so that the pdf (34) forθ can be expressed as

f
(
θ|s(x)I ′

◦

)
=

∣∣s′(x)
∣∣

ηθ(x)
π(θ)φ(x, θ)

∣∣s′(x)
∣∣−1

=

∣∣s′(x)
∣∣

ηθ(x)
π(θ) f(y|θI ′

◦
) ,

where

f
(
y|θI ′

◦

)
≡ φ(x, θ)

∣∣s′(x)
∣∣−1

.

Let there also exist a one-to-one transformations̄ of the parameterθ, ν = s̄(θ). According to
(29), the pdf’s forν andθ are related as

f(ν|xI ′′
◦
) = f(θ|xI◦)

∣∣s̄′(θ)
∣∣−1

,
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so that

f
(
s̄(θ)|x(y)I ′′′

◦

)
=

∣∣s′(x)
∣∣

ηθ(x)

π(θ)∣∣s̄′(θ)
∣∣ φ(x, θ)

∣∣s′(x)
∣∣−1

=

∣∣s′(x)
∣∣

ηθ(x)

π(θ)∣∣s̄′(θ)
∣∣ φ̃

(
s(x), s̄(θ)

)

=
π̃[s̄(θ)]

η̃ν [s(x)]
φ̃
(
s(x), s̄(θ)

)
,

(36)

where:
f(y|νI ′′′

◦
) = φ̃

(
s(x), s̄(θ)

)
≡ φ(x, θ)

∣∣s′(x)
∣∣−1

,

π̃[s̄(θ)] ≡ k̃ π(θ)
∣∣s̄′(θ)

∣∣−1
(37)

and, fors̄′(θ) > 0,

η̃ν [s(x)] ≡ k̃
ηθ(x)∣∣s′(x)

∣∣ =

∫ s̄(θb)

s̄(θa)

π̃[s̄(θ′)] f
(
s(x)|s̄(θ′)I ′′′

◦

)
d[s̄(θ′)] , (38)

while for s̄′(θ) < 0 the limits of the above integral are to be interchanged. Whendealing with
multidimensional parameters, the derivative

∣∣s̄′(θ)
∣∣ in (37) must be substituted by the appropriate

Jacobian. Thus, the transformations of consistency factors, induced by transformations of parame-
ters, are very similar to those of pdf’s (4) and (29).

By using two different symbols,π and π̃, it is stressed that the consistency factors forθ and
for the transformed parameters̄(θ) may, in general, be different functions. However, fors(x) =
ga(x) with ga being an element of a groupG of transformations, for the sampling distribution
being invariant underG, and for s̄(θ) = ḡa(θ) with ḡa being an element of the corresponding
induced group̄G, the form of the consistency factor must also be invariant underḠ: according to the
Consistency Principle,π andπ̃ must be the same functions up to an arbitrary multiplicationfactor,
sayk(a):

π̃[ḡa(θ)] =
π[ḡa(θ)]

k(a)
. (39)

Note that in general the value of the multiplication constant k, up to which the above invariant
consistency factor is uniquely determined, may depend on the value of the transformation parameter
a. When combined with (37), (39) implies:

π[ḡa(θ)] = k(a)π(θ)
∣∣ḡ′a(θ)

∣∣−1
, (40)

with k̃ being contained ink(a). The above functional equation forπ(θ) is the cornerstone of the
entire theory of consistentassignmentof probabilities to parameters of sampling distributions.

When a sampling distribution, determined by a two-dimensional parameterθ =
(
θ(1), θ(2)

)
,

is invariant under a two-parametric groupG of transformationsga,b, the corresponding functional
equation for the consistency factorπ(θ(1), θ(2)) reads:

π[ḡa,b(θ
(1)), ḡa,b(θ

(2))] = k(a, b)π(θ(1), θ(2)) |J |−1 , (41)

where

J ≡
∂
(
ḡa,b(θ

(1)), ḡa,b(θ
(2))

)

∂
(
θ(1), θ(2)

) .
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We will come across the above functional equation in§ 4.6, during a simultaneous inference about
a location and a dispersion parameter.

When equation (39) holds, the normalization factorη̃ν [ga(x)] is equal (up to the usual factor
k(a)) to ηθ[ga(x)] (indexa in ga andḡa denotes particular elements of transformation groups, while
in xa andθa it indicates the lower bounds of the sample and the parameterspace, respectively),

η̃ν [ga(x)] =

∫ ḡa(θb)

ḡa(θa)

1

k(a)
π[ḡa(θ′)]φ

(
ga(x), ḡa(θ′)

)
d[ḡa(θ′)] =

ηθ[ga(x)]

k(a)
. (42)

Consequently, the pdf for the parameterθ of a sampling distribution that is invariant underG, is
invariant under̄G. For if ψ(x, θ) denotes the pdf (68) forθ, givenx, and ifψ̃

(
ga(x), ḡa(θ)

)
denotes

the pdf (36) for̄ga(θ), givenga(x), then the invariance of the sampling distribution, combined with
the equations (39) and (42), implies

ψ̃
(
ga(x), ḡa(θ)

)
= ψ

(
ga(x), ḡa(θ)

)
,

the latter coinciding with the definition (16) of invariant distributions. Then, according to Lemma 2
and equation (20), the cdf forθ,H(x, θ, I◦), is also invariant under̄G, so that

H
(
ga(x), ḡa(θ), I◦

)
=

{
H(x, θ, I◦) ; ḡ′a(θ) > 0

1 −H(x, θ, I◦) ; ḡ′a(θ) < 0
. (43)

4.2. On consistency of the adopted rules
We obtained equation (37) as a direct consequence of the rule(29) for transformations of pdf’s
f(θ|xI◦), induced by one-to-one transformations of inferred parameters, while (40) was deduced
by applying the Consistency Principle. As a test of consistency of the two rules, we shall verify the
compatibility of the two equations.

In the same way as we obtained the functional equation (40) for π(θ), we arrive also at the
corresponding equation for the consistency factorπ̃(ν) for ν ≡ s̄(θ),

π̃[h̄a(ν)] = l(a) π̃(ν)
∣∣h̄′a(ν)

∣∣−1
, (44)

where, due to Lemma 1,̄ha = s̄ḡas̄
−1, so that̄ha(ν) = s̄[ḡa(θ)], h̄′a(ν) = s̄′[ḡa(θ)] ḡ′a(θ) [s̄′(ν)]−1

andπ̃[h̄a(ν)] = π̃{s̄[ga(θ)]}. The latter can then be rewritten by invoking (37) and (40),

π̃[h̄a(ν)] = k̃ k(a)π(θ)
∣∣g′a(θ)

∣∣−1 ∣∣s′[ga(θ)]
∣∣−1

,

which, when inserted to (44), impliesk(a) = l(a). That is, equations (37) and (40) are perfectly
compatible if in equation (40) the same proportionality factor k(a) is used for all parameters that
are relatedvia one-to-one transformations.

4.3. Invariance under a discrete group of transformations
Under what circumstances does a unique solution of the functional equation (40) exist? Let us
consider a problem with a sampling distribution being invariant under a discrete group of transfor-
mations

ga : x −−−−→ ga(x) = ax ,

ḡa : θ −−−−→ ḡa(θ) = aθ ,
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wherea can only take two values,
a = {1,−1}

for both groups,G and Ḡ. That is, the considered distribution possesses parity under simultane-
ous inversion of the sample space and the parameter space coordinates. By combining functional
equations

π[ḡa(θ)] = k(a)π(θ) and π[ḡ2
a(θ)] = k(a)π[ḡa(θ)] ,

we obtain fora = −1

π(−θ) = k(a = −1)π(θ) and π(θ) = k2(a = −1)π(θ) ,

so that
k2(a = −1) = 1 .

This, when inability ofπ to switch sign is invoked (see§ 3.4), further implies

π(−θ) = π(θ) . (45)

That is, the consistency factor that corresponds to a sampling distribution being invariant under
simultaneous inversions of sampling and parameter space coordinates, must itself havepositive
parity under the inversion of the parameter space coordinates. Butapart from this, it can take any
form and so in this case the solution of (40) is clearlynot unique.

It is not difficult to understand that this is a common featureof all solutions based on invariance
of the sampling distributions underdiscretegroups. If the symmetry group is discrete, the sample
and the parameter spaces break up in intervals, the so-called fundamental regionsor domainsof the
group (Wigner, 1959,§ 19.1, p. 210; Jaynes, 2003,§10.9, p. 332), with no connections in terms of
group transformations within the points of the same interval. We are then free to choose the form
of π(θ) in one of these intervals (e.g., we can chooseπ(θ) for the positive values ofθ in the above
example), so it is evident thatit is impossible to determine uniquely the form of consistency factors
for problems that are invariant only under discrete groups of transformations. This is also why it
is impossible to make consistent probabilistic inferencesabout the parameters of discrete sampling
distributions.

4.4. Consistency factors and homogenous parameter spaces
If, on the other hand, for everyθ1 andθ2 from a parameter spaceΘ there exists an elementḡa

from a groupḠ of transformations such thatθ2 = ḡa(θ1) (i.e., if all points ofΘ are connectedvia
transformations̄ga), then the fundamental domain of the parameter space reduces to a single point
and we say thatΘ is a homogenous space for the groupḠ, or equivalently, that the entireΘ is a
singleḠ-orbit. In what follows we show that homogeneity of parameter spaces for Lie groups plays
a decisive role in determination of consistency factors by using symmetry arguments.

According to the Existence Theorem 1 of§ 2.4, on the subspacẽX ⊆ X with non-vanishing
derivative (21), every sampling distribution of a continuous sampling variatex that is invariant under
a single-parametric Lie groupG, is necessarily reducible (by separate transformationsx → y and
θ → µ) to a sampling distribution ofz with the parameterµ being a location parameter. For the
subspacẽX ⊆ X it is therefore sufficient to determine the consistency factor π̃(µ) for µ, which
can subsequently be transformed (by means of (37)) to the corresponding consistency factorπ(θ)
for the original parameterθ. Note, however, that implications of Theorem 1 may be extended to the
subspacesX − X̃ ⊆ X with vanishing derivative (21):
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THEOREM 4. Consider a continuous scalar sampling variatex with the cdfF (x, θ, I◦) that
is differentiable in the second argument, and with the corresponding pdff(x|θI◦) that is strictly
positive and invariant under a Lie groupG whose action is not identically trivial on entireX . Then,
for the observedx ∈ X − X̃ ⊆ X with vanishing derivative(21), the probability distribution
whose cdfH(x, θ, I◦) is differentiable in the first argument, cannot be assigned to θ. (Existence of
derivativesF1(x, θ, I◦) andH2(x, θ, I◦) is assured by definitions(6) and (31), respectively.)

Reducibility of the sampling distribution ofx to a distribution that is determined by a location pa-
rameterµ, is therefore a necessary condition that is to be met in orderto solve (40) exclusively by
using symmetry arguments. The only Lie group of invariant transformations of sampling distribu-
tions, determined by the location parameters, is the one of translations (Theorem 2) and the space of
the location parameters, consisting of the entire real axis, is homogenous for that group. Below we
shall demonstrate that the axioms of probability, imposed to inverse probabilities (Assumption 2),
together with the Principle of Consistency, uniquely determine the consistency factors for location
parameters. In this way, the reducibility of a problem of parametric inference to the inference about
a location parameter will be proved also a sufficient condition for a consistent probabilistic para-
metric inference.

4.5. Inference about location parameters
We saw in§ 2.3 that a sampling distribution, parameterized by a location parameterµ and by a
fixed dispersion parameterσ, is invariant under the group of translations (18). Then, the functional
equation (40) for the appropriate consistency factorπ(µ|σ) for µ reads:

π(µ+ b|σ) = k(b)π(µ|σ) ; ∀ µ, b ∈ R , (46)

with the notationπ(µ|σ) stressing that the dispersion parameter is being fixed.

LEMMA 5. By settingπ(0) = 1,

π(µ|σ) = exp{−q(σ)µ} (47)

becomes the most general solution of(46).

Note that at this point the value of the constantq in (47) may, at least in principle, depend on the
value of the fixed parameterσ.

For sampling distributions, symmetric under simultaneousinversions of the sampling and the param-
eter space, equation (45) impliesq = 0, i.e., implies uniform consistency factors for location pa-
rameters. This argument was used by Hartigan (1964) to determine a unique form of the so-called
non-informative prior distributions in problems of inference about the location parameter of a Gaus-
sian distribution withσ being fixed. However, in§4.6 we demonstrate thatq must vanish also in
problems without the space-inversion symmetry.

Based on a measured valuex1, the pdf for a location parameterµ therefore reads:

f(µ|x1σI◦) =
π(µ|σ)

ηµ(x1, σ)
f(x1|µσI◦) =

e−q(σ) µ

ηµ(x1, σ)

1

σ
φ
(x1 − µ

σ

)
.

Now, as an example, we want to update our inference about the parameterµ by including additional
informationx2 in our inference, wherex2 is a result of a measurement ofx that is also subject to
the same sampling distribution and independent ofx1. We can write the likelihood density ofx2,

f(x2|µσx1I◦) = f(x2|µσI◦) =
1

σ
φ
(x2 − µ

σ

)
,
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and the updated pdf forµ,

f(µ|x1x2σI◦) ∝ f(µ|x1σI◦) f(x2|µσI◦)

∝ π(µ|σ) f(x1|µσI◦) f(x2|µσI◦)

= π(µ|σ) f(x1x2|µσI◦) ,

(48)

where the update is made in accordance with Bayes’ Theorem (33). According to (8), the pdf for
µ (48) can equivalently be expressed in terms of the likelihood densityf(x̄s|µσI◦) of the variates
x̄ ≡ (x1 + x2)/2 ands ≡ (x1 − x2)/2:

f(µ|σx̄sI◦) =
π(µ|σ)

ζµ(x̄, s, σ)
f(x̄s|µσI◦) =

e−q(σ) µ

ζµ(x̄, s, σ)

1

σ2
φ̃
( x̄− µ

σ
,
s

σ

)
. (49)

The findings of the present example will become of particularimportance in the following two
subsections, where we determine the form of the consistencyfactorsπ(µ, σ) for simultaneous esti-
mation of a location and a dispersion parameter, andπ(σ|µ) for estimation of a dispersion parameter
with µ being fixed.

4.6. Simultaneous inference about a location and a dispersion parameter
By fixing neither the location nor the dispersion parameter,an inference about the two parameters is
invariant under a simultaneous location and scale transformation (17). The symmetry of the problem
implies the following form of the functional equation (41) for the appropriate consistency factors
π(µ, σ):

π(aµ+ b, aσ) = h(b, a)π(µ, σ) ; ∀ µ, b ∈ R and ∀ σ, a ∈ R
+ , (50)

where

h(b, a) ≡ k(a, b)

∣∣∣∣
∂(aµ+ b, aσ)

∂(µ, σ)

∣∣∣∣
−1

=
k(a, b)

a2
.

LEMMA 6.
π(µ, σ) = σ−r (51)

is the most general solution of(50), compatible with a conditionπ(0, 1) = 1.

The pdf forµ andσ, givenx̄ ands, therefore reads:

f(µσ|x̄sI◦) =
π(µ, σ)

ηµ,σ(x̄, s)
f(x̄s|µσI◦) =

σ−(r+2)

ηµ,σ(x̄, s)
φ̃
( x̄− µ

σ
,
s

σ

)
. (52)

Then, according to the product rule (27), the pdf (52) can be written as

f(µσ|x̄sI◦) = f(µ|σx̄sI◦) f(σ|x̄sI◦) , (53)

wheref(σ|x̄sI◦) is a marginal pdf (see equation (32)),

f(σ|x̄sI◦) =

∫
∞

−∞

f(µ′σ|x̄sI◦) dµ
′ =

σ−r

ηµ,σ(x̄, s)

∫
∞

−∞

f(x̄s|µ′σI◦) dµ
′ ,

while f(µ|σx̄sI◦) denotes the pdf (49) forµ with the value of the dispersion parameter assumed to
be fixed atσ. Expressingf(µσ|x̄sI◦) andf(µ|σx̄sI◦) in equation (53) in terms of (52) and (49)
yields

σ−r

ηµ,σ(x̄, s)
=

π(µ|σ)

ζµ(x̄, s, σ)
f(σ|x̄sI◦) ,
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implying π(µ|σ) (47) to be independent ofµ. Consequently, the value ofq(σ) in (47) must iden-
tically be zero, so that the consistency factor forµ, given fixed dispersion parameterσ, must be a
constant, e.g.,

π(µ|σ) = 1 , (54)

regardless the explicit form of the sampling distribution,as well as the value of the fixed dispersion
parameterσ.

4.7. Inference about dispersion parameters
As for π(µ|σ) in the previous subsection, also the consistency factorsπ(σ|µ) andπ(µ, σ) need
be uniquely determined. In§ 2.2 and§2.3 we stressed that an assignment of a pdf to a dispersion
parameterσ, given datumx and a fixed location parameterµ, can be split into two separate assign-
ments of (the same) scale parameter, each of the latter two being further reducible to an assignment
of a pdf to a location parameters̄(σ) = lnσ, given a fixed dispersion parameter (see equation (13)).
Then, according to the findings of the previous section (see eq. (54)), we can immediately write the
appropriate consistency factor fors̄(σ):

π̃[s̄(σ)|µ] = 1 ,

so that (37) implies the factor for the original parameterσ to be of the form

π(σ|µ) = π̃[s̄(σ)|µ]
∣∣s̄′(σ)

∣∣ = σ−1 , (55)

again regardless the explicit form of the particular sampling distribution, as well as the value of the
fixed location parameterµ.

The general form ofπ(σ|µ) ∝ σ−r(µ) could have been obtained by solving functional equation (40)
for scale transformations̄ga(σ) = aσ,

π(aσ|µ) = h(a) π(σ|µ) ,

where

h(a) ≡
k(a)

a
.

When the observedx is equal toµ, the pdf, assigned toσ,

f(σ|µxI◦) =
π(σ|µ)

ησ(x,µ)
f(x = µ|µσI◦) =

1

σr+1

φ(0)

ησ(x, µ)
,

cannot be normalized since the integral

ησ(x, µ) =

Z

∞

0

π(σ|µ) f(x = µ|µσ′I◦) dσ′ = φ(0)

Z

∞

0

dσ′

σ′r+1

clearly doesnot exist for any realr. This, for if x = µ the dispersion parameterσ cannot be reduced
to a location parameter (recall§ 2.3), is in perfect agreement with Theorem 4.

In the limit of complete prior ignorance about its value, thepdf for thescaleparameterσ, given
fixedµ and observedx1 6= µ, therefore reads:

f(σ|µx1I
′

◦
) ∝ π(σ|µ) ×

{
f (1)(x1|µσI

′

◦
) ;x1 > µ

f (2)(x1|µσI
′

◦
) ;x1 < µ

,
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which is equivalent to the pdf for thedispersionparameterσ,

f(σ|µx1I◦) ∝ π(σ|µ) f(x1|µσI◦) =
1

σ2
φ
(x1 − µ

σ

)
∀x1 6= µ .

Following the steps of the example at the end of§4.5, we update the pdf for the dispersion param-
eterσ by including a resultx2 of an additional measurement in our inference. The updated pdf,
expressed in terms of̄x ands, reads:

f(σ|µx̄sI◦) =
π(σ|µ)

ζσ(x̄, s, µ)
f(x̄s|µσI◦) =

σ−3

ζσ(x̄, s, µ)
φ̃
( x̄− µ

σ
,
s

σ

)
. (56)

The value ofr in the consistency factorπ(µ, σ) (52) is then uniquely determined by invoking
the product rule (27) that relates the pdf’sf(µσ|x̄sI◦) andf(σ|µx̄sI◦) as:

f(µσ|x̄sI◦) = f(σ|µx̄sI◦) f(µ|x̄sI◦) , (57)

with the marginal distributionf(µ|x̄sI◦) standing for

f(µ|x̄sI◦) =

∫
∞

0

f(µσ′|x̄sI◦) dσ
′ =

1

ηµ,σ(x̄, s)

∫
∞

0

(σ′)−r f(x̄s|µσ′I◦) dσ
′ .

Expressingf(µσ|x̄sI◦) andf(σ|µx̄sI◦) in (57) according to (52) and (56) yields

σ−r

ηµ,σ(x̄, s)
=

σ−1

ζσ(x̄, s, µ)
f(µ|x̄sI◦) ,

which, since it is to be true for allσ ∈ (0,∞), impliesr = 1, i.e., implies the consistency factor
π(µ, σ) to be

π(µ, σ) = σ−1 . (58)

Throughout Subsections 4.5–4.7 we thus proved

THEOREM 5. Axioms of probability (Assumption 2) and the Principle of Consistency combined
determine the form of consistency factorsπ(µ|σ), π(σ|µ) andπ(µ, σ) uniquely up to an arbitrary
multiplication constant:

π(µ|σ) = 1 and π(σ|µ) = π(µ, σ) = σ−1 .

4.8. On uniqueness and integrability of consistency factors
Provided the sampling distribution (7) is normalizable, itis straightforward to verify that all the
pdf’s, involved in the derivations of the consistency factors, are normalizable and thus satisfy the
basic requirements (3) and (28), imposed to probability distributions. No requirement of normaliz-
ability, however, has ever been imposed to consistency factors, since the factors conceptually differ
from pdf’s. Moreover,

THEOREM 6. None of the consistency factorsπ(θ) for scalar parametersθ that can be deduced
exclusively on the grounds of invariance of the sampling pdf’s under Lie groups of transformations,
is normalizable, demonstrating in this way unambiguously that the factors donotrepresent any kind
of probability distribution, neither the sampling one nor that of our belief.
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The second important property of consistency factors that we want to address, is uniqueness:

THEOREM 7. The consistency factors for inference about a parameterθ are unique in that if a
family I◦ of sampling distributions(14) is invariant under two Lie groups, sayG andH, then the
two groups lead to the consistency factorsπg(θ) andπh(θ) that are identical up to a multiplication
constant,

πh(θ) = k πg(θ) . (59)

5. Calibration

Thus far, the theory of plausible inference about parameters has been developed by following only
the Principle of Consistency, while the implications of theOperational PrincipleII have not yet been
considered. According to the latter, in order to exceed the level of a mere speculation, our theory
of inference about parameters must be exposed, i.e., must beable to make predictions that can be
verified (or falsified) by experiments.

Let therefore several valuesxi of a scalar random variatex be sampled from a familyI◦ (14)
of sampling distributions. The valueθi of the scalar parameterθ of the family may arbitrarily vary
from one sampling to another. The predictions of the theory are then made in terms of probabilities

P
(
θ ∈ (θi,1, θi,2)|xiI◦

)
=

∫ θi,2

θi,1

f(θ′|xiI◦) dθ
′ = δ (60)

that given measured valuexi of the sampling variate, an interval(θi,1, θi,2) contains the actual value
θi of the parameter.

The interval for the inference of a particular valueθi is not unique: it can be the shortest of all possible
intervals, the central interval withP (θi ≤ θi,1|xiI◦) = P (θi > θi,2|xiI◦) = (1 − δ)/2, the lower-
most interval withθi,1 = θa, the upper-most interval withθi,2 = θb, or any other interval as long as
the probability (60) is equal toδ.

Our probability judgments are said to becalibratedif the fraction of inferences with the specified in-
terval(θi,1, θi,2) covering the true valueθi of the parameter in the particular samplingxi, coincides
with δ.

For sampling distributions whose cdfF (x, θ, I◦) is either strictly increasing or strictly decreas-
ing in θ, a necessary and sufficient condition for calibrated inferences reads (Fisher, 1956,§ 3.6,
p. 70):

f(θ|xI◦) = ∓F2(x, θ, I◦) , (61)

where the upper (lower) sign is for cdf’s that are strictly decreasing (increasing) inθ. It is easy to
verify that for the pdf’s, assigned to location and scale parameters by using the consistency factors
(54) and (55), the condition (61) is satisfied.

5.1. Lindley’s Theorem
The probability distributions for location, scale or dispersion parameters that were assigned by
following the Consistency Principle, passed an important test: they are all calibrated. The question
can be raised whether there are any other types of parametersthat are also in accordance with the
calibration requirement (61)? We restrict the answer only to parameters whose pdf can be assigned
according to the Consistency Theorem (34). By combining thetwo equations we obtain:

π(θ)F1(x, θ, I◦) ± ηθ(x)F2(x, θ, I◦) = 0 , (62)
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where the upper (lower) sign stands for cdf’s which are strictly decreasing (increasing) inθ. By
defining functionG(x, θ) as a difference (sum),

G(x, θ) ≡ s(x) ∓ s̄(θ) ,

with s(x) ands̄(θ) being related toπ(θ) andηθ(x) as

s′(x) = ηθ(x) and s̄′(θ) = π(θ) ,

equation (62) can be rewritten as

F1(x, θ, I◦)G2(x, θ) − F2(x, θ, I◦)G1(x, θ) = 0 ,

with G1(x, θ) = ηθ(x) andG2(x, θ) = π(θ) being strictly positive functions (see§3.4). But as we
saw in§ 2.3, the general solution of such a differential functionalequation implies a cdfF (y, µ, I ′

◦
)

of the form
F (y, µ, I ′

◦
) = Φ(y − µ) ,

corresponding to a cdf ofy ≡ s(x) with µ ≡ ±s̄(θ) being a location parameter (10). Therefore,
in the limit of complete prior ignorance,an inference about a parameterθ that is subject to the
calibration condition(61), is necessarily reducible to an inference about a location parameter.
Note that this result was first obtained by Lindley (1958) by combining the calibration condition
(61) and the Bayes’ Theorem with a prior pdff(θ|I◦) which is independent of datax.

Imagine that for a particular parameterization of a sampling variatex and the corresponding
parameterθ, sayy ≡ s(x) andµ ≡ s̄(θ), a calibrated inference abouts̄(θ) exists, i.e., the cdf of
s(x), F

(
s(x), s(θ), I ′

◦

)
, solves equation (62),

π̃[s̄(θ)]F1

(
s(x), s̄(θ), I ′

◦

)
± η̃µ[s(x)]F2

(
s(x), s̄(θ), I ′

◦

)
= 0 . (63)

Here, π̃[s̄(θ)] is the consistency factor for̄s(θ), while η̃µ[s(x)] is the appropriate normalization
factor forf

(
s̄(θ)|s(x)I ′

◦

)
. By differentiating equation (19) separately with respectto x andθ, (63)

can be expressed in terms ofF1,2(x, θ, I◦), instead ofF1,2

(
s(x), s̄(θ), I ′

◦

)
:

π̃[s̄(θ)]
∣∣s̄(θ)

∣∣F1(x, θ, I◦) ± η̃µ[s(x)]
∣∣s(x)

∣∣F2(x, θ, I◦) = 0 . (64)

Inference aboutθ will thus be calibrated (cf. (64) and (62)) if and only if

π̃[s̄(θ)] = π(θ)
∣∣s̄(θ)

∣∣−1
and η̃µ[s(x)] = ηθ(x)

∣∣s(x)
∣∣−1

,

which coincides with the rules (37) and (38) for transformation of the consistency and normalization
factors, with the arbitrary constantk̃ in (37) and (38) being set to unity. Calibration of inference
about a parameter of a sampling distribution is therefore invariant under arbitrary one-to-one trans-
formations of the sampling variate and the inferred parameter.

Then, since every problem of inference about a parameterθ that is uniquely solvable within the
Principle of Consistency, is reducible to an inference about a location parameterµ = s̄(θ), and
since the uniform consistency and normalization factorsπ̃[s̄(θ)] andη̃µ[s(x)] provide a calibrated
inference aboutµ, the inference aboutθ will also be automatically calibrated.

The Principle of Consistency and the Operational Principleare thus equivalent concepts for
determination of the consistency factors. First, they are applicable under identical circumstances,
i.e., when the problem of inference is reducible to a problemof inference about a location parameter.
Second, the consistency factor that solves the functional equation (40), based on the requirement of
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consistency, is identical to the solution of the calibration requirement (62). The equivalence of the
two Principles speaks in favour of complete reconciliationbetween the (objective) Bayesian school
and the frequentist school of inference, the former paying attention primarily to logical consistency
and the latter stressing the importance of verifiable predictions.

In order to avoid a frequent misunderstanding we should stress that a pdf, assigned to an inferred
parameterθi, doesnot necessarily imply that the parameter is distributed according to f(θi|xiI◦):
whatis distributed is our belief in different values ofθ within the parameter spaceΘ. In practice, the
inferred parameters are usually fixed while unknown, but canalso, at least in principle, arbitrarily
vary from one inference to another. In general, the assignedf(θi|xiI◦) will therefore differ from
the true distribution of the parametersθi. Still, the calibrated pdf’sf(θi|xiI◦) will correctly predict
the fractionδ (60) of the confidence intervals(θi,1, θi,2), covering the true valuesθi.

5.2. Calibration and symmetry preserved under updating
In previous subsections we saw that a calibrated assignmentof probability distribution to an inferred
scalar parameterθ can be assured ifθ is reducible to a location parameterµ. The calibration of the
probability distributions, assigned to the inferred parameters, is preserved under updating:

THEOREM 8. Every updating of a calibrated probability distribution for an inferred parameter
that is performed in accordance with Bayes’ Theorem, preserves the calibration of the distribution.
The preservation of calibration can be connected to the preserved translation invariance under the
updating.

5.3. Predictive distributions
Imagine now a slightly different problem. Letx = (x1, x2, . . . , xn) be a sequence of recorded
values of a continuous sampling variatex with the pdff(x|θI◦). In the present subsection we are
interested in predicting values of the sampling variate that are yet to be observed, rather than in
inferring the (unknown) value of the parameterθ of its distribution. That is, given the collectedx,
we are aiming at assigning a pdff(xn+1|xI◦) to the possible values ofxn+1.

Suppose that the familyI◦ is reducible to a familyI ′
◦

that is parameterized by a location param-
eter, so that the consistency factorπ(θ) can uniquely be determined, and that a pdf, based onx, can
be assigned toθ:

f(θ|xI◦) =
π(θ)

ζθ(x)
f(x|θI◦) =

π(θ)

ζθ(x)

n∏

i=1

f(xi|θI◦) .

Then, the joint pdff(θxn+1|xI◦) can be factorized (cf. equation (30)),

f(θxn+1|xI◦) = f(θ|xI◦) f(xn+1|θxI◦) = f(θ|xI◦) f(xn+1|θI◦) ,

and the pdff(xn+1|xI◦) can be obtained simply by a convolution, i.e., by the marginalization of
f(θxn+1|xI◦),

f(xn+1|xI◦) =

∫

Θ

f(θ′xn+1|xI◦) dθ
′ . (65)

It is important to note thatf(xn+1|xI◦) stands for the distribution of our degree of belief in
different values ofxn+1: in the context of the prediction of the future value ofx, xn+1 is not a
sampling variate, so thatf(xn+1|xI◦) will in general differ from the observed distribution of the
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future values of the sampling variatex. However, in the same way as for Theorem8, we can prove
that the future values ofx, predicted according to (65), will still be calibrated: theprobabilities

P (xn+1 ∈ (xc, xd)|xI◦) =

∫ xd

xc

f(x′n+1|xI◦) dx
′

n+1

will always coincide with the relative frequency of intervals (xc, xd), covering the observed future
values ofx in the long run.

6. Conclusions

This article presents a theory of probabilistic inference about the parameters of sampling distribu-
tions. A special attention has been payed to assignment of probability distributions to the inferred
parameters, with such an assignment representing natural and indispensable starting point in every
inference about the parameters. In order to be internally consistent, the assignments must be made
in accordance with the Consistency Theorem (34). The form ofthe Theorem is very similar to the
form of Bayes’ Theorem (33) that is used forupdatingthe assigned probability distributions, but we
stressed an important difference between the two. While in Bayes’ Theorem the prior probability
f(θ|x1I◦) represents a distribution of credibility among different values of the inferred parameter
θ, π(θ) in the Consistency Theorem is just a proportionality factorthatby no meansrepresents any
kind of probability distribution.

The requirement of consistency uniquely determines the form of the consistency factors only in
those inferences that are reducible to inferences about location parameters of sampling distributions.
Since, according to Lindley’s Theorem, correct verifiable predictions can only be assured under
the very same condition, the requirement of reducibility does not restrict the class of sampling
distributions with possible consistent and calibrated inference about their parameters.

The theory is operational in the sense that it is verifiable from long range consequences. Within
the theory, all inferences are calibrated: in the long run, the fraction of the confidence intervals, con-
structed on the basis of (posterior) probabilities, that cover the true values of the inferred parameters,
always coincides with the probability contents, assigned to these intervals. This is a very important
feature that permits for a reconciliation between the frequentist and the Bayesian approaches to in-
ference, probably the same kind of reconciliation that Kendall (1949) had in mind: “Neither party
can avoid ideas of the other in order to set up and justify a comprehensive theory.” In this way,
the distinction between thetheory of probabilityand that ofstatistical inferencemay be removed,
leaving a logical unity and simplicity.
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Appendix: Proofs of Theorems and Lemmata

A.1. Proof of LEMMA 1
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If a pdf of a sampling variatex is of the formφ(x, θ), the assumed invariance of the distribution
underG implies the same type of distribution,φ

(
ga(x), ḡa(θ)

)
, of ga(x), for all ga ∈ G andḡa ∈ Ḡ.

The distribution of the transformed variatey, on the other hand, reads

f(y|νI ′
◦
) = φ(x, θ)

∣∣s′(x)
∣∣−1

≡ φ̃(y, ν) . (66)

Then, since

ha(y) = s{ga[s−1(y)]} = s[ga(x)] and h̄a(ν) = s̄{ḡa[s̄−1(ν)]} = s̄[ḡa(θ)] (67)

for all ha ∈ H andh̄a ∈ H̄, the pdf ofha(y), givenh̄a(ν), f
(
ha(y)|h̄a(ν)I ′′

◦

)
, is equal to

f
(
s[ga(x)]|s̄[ḡa(θ)]I ′′

◦

)
= φ

(
ga(x), ḡa(θ)

) ∣∣s′[ga(x)]
∣∣−1

,

which, by (66) and (67), is further equal tõφ
(
s[ga(x)], s̄[ḡa(θ)]

)
= φ̃

(
ha(y), h̄a(ν)

)
.

2

A.2. Proof of LEMMA 2
Indeed:

F
(
s(x), s̄(θ), I ′

◦

)
− F

(
s(xa), s̄(θ), I ′

◦

)
=

∫ s(x)

s(xa)

f
(
y′|s̄(θ)I ′

◦

)
dy′

=

∫ s(x)

s(xa)

φ(x′, θ)
∣∣s′(x′)

∣∣−1
d[s(x′)]

= ±

∫ x

xa

φ(x′, θ) dx′

= ±F (x, θ, I◦) ,

where the positive and the negative sign correspond tos′(x) > 0 and tos′(x) < 0, respectively.
Settingx to the upper boundxb of its range, the above equation reads:

F
(
s(xb), s̄(θ), I

′

◦

)
− F

(
s(xa), s̄(θ), I ′

◦

)
= ±F (xb, θ, I

′

◦
) = ±1 .

Since the cdf’s are limited within[0, 1], this completes the proof of the Lemma by implying

F
(
s(xa), s̄(θ), I ′

◦

)
=

{
0 ; g′(x) > 0

1 ; g′(x) < 0
and F

(
s(xb), s̄(θ), I

′

◦

)
=

{
1 ; g′(x) > 0

0 ; g′(x) < 0
.

2

A.3. Proof of LEMMA 3
Let g( · , b ◦ a) ≡ gb◦a ∈ G denote a composition of group elementsg( · , a) ≡ ga andg( · , b) ≡ gb,
such that

g(x, b ◦ a) = g[g(x, a), b] .

When differentiated with respect toa, the above equation reads:

g2(x, b ◦ a)
d

da
(b ◦ a) = g1[g(x, a), b] g2(x, a) ,

with existence of the derivative of(b ◦ a) being guaranteed by the requirement onG to be a Lie
group (see, for example, Elliot and Dawber, 1986,§ 7.1, p. 126). Since the above equation is valid
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for arbitrarya andb, it is also to be valid forb = a−1 (here,a−1 is the index of the inverse ofga),
so that

g2(x, c)
∣∣∣
c=e

∂

∂a
(b ◦ a)

∣∣∣
b=a−1

= g1[g(x, a), b]
∣∣∣
b=a−1

g2(x, a) ,

wherec ≡ b ◦ a. The left-hand side of the above equation is identically zero due to the premise of
the Lemma,

g2(x, c)
∣∣∣
c=e

≡
∂

∂c
gc(x)

∣∣∣
c=e

= 0 .

On the right-hand side, however, the first term,

g1[g(x, a), b]
∣∣∣
b=a−1

= g1(y, a
−1) =

∂

∂y
ga−1(y) 6= 0 ,

is non-vanishing for all admissible values of the indexa and of the variatey ≡ ga(x) ∈ X (all
group transformations (15) are necessarily one-to-one – recall § 2.3), so that

g2(x, a) =
∂

∂a
ga(x) = 0

is implied for all permissiblea, i.e.,ga(x) is permitted to be a function ofx only, sayh(x). When
ge(x) = x is invoked, this further meansh(x) = x and the Lemma is proved.

2

A.4. Proof of LEMMA 4
The proof of the Lemma is accomplished byreductio ad absurdumso let suppose that there exists a
value ofθ0 ∈ Θ for which the partial derivative (22) vanishes. Then, sincethe sampling distribution
is invariant underG, equation (20) applies which, when differentiated with respect toa and set
afterwardsa = e, yields

F1(x, θ, I◦)
∂

∂a
ga(x)

∣∣∣
a=e

= −F2(x, θ, I◦)
∂

∂a
ḡa(θ)

∣∣∣
a=e

.

The second term on right-hand side of the above equation vanishes forθ = θ0 which, when strict
positivity ofF1(x, θ, I◦) = f(x|θI◦) is invoked, implies

∂

∂a
ga(x)

∣∣∣
a=e

= 0 ; ∀ x ∈ X .

This means, according to Lemma 3, that all transformationsga ∈ G of X are trivial, which is in
direct contradiction with the premises of the Lemma, so thatthe proof is completed.

2

A.5. Proof of THEOREM 2
The assumed invariance of distribution (9) implies the existence ofy ≡ ga(x) andν ≡ ḡa(θ), such
that

f(y|νI◦) = φ(y − ν) ,

with ga andḡa being elements of the groupG and the corresponding induced groupḠ, respectively.
Then, due to equation (10), the cdf ofy reads

F (y, ν, σ, I◦) = Φ(y − ν) .
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In addition, according to Lemma 2, the cdf (10) ofx and that ofy are related as

Φ(y − ν) =

{
Φ(x − µ) ; g′a(x) > 0

1 − Φ(x − µ) ; g′a(x) < 0
.

If differentiated with respect toa, the relation between the cdf’s yields

Φ′(y − ν)

[
∂

∂a
ga(x) −

∂

∂a
ḡa(µ)

]
= 0 ,

implying
∂

∂a
ga(x) =

∂

∂a
ḡa(µ)

for all y andν with non-vanishingΦ′(y − ν) = f(y|νσI◦). Then, the two derivatives can only
depend ona, but not onx or µ. Parameterizing this dependence byh′(a) ≡ dh(a)/da yields

ga(x) = h(a) + k(x) and ḡa(µ) = h(a) + l(µ) ,

which, whena is set to indexe of the unity element, further gives

k(x) = x− h(e) and l(µ) = µ− h(e) .

Finally, since the elements of the groupsG andḠ can be re-enumerated according tob ≡ h(a)−h(e),
we obtain

gb(x) = x+ b and ḡb(µ) = µ+ b ,

while the invariance of the sample and the parameter spaces impliesX = (−∞,∞) andΘ =
(−∞,∞).

2

A.6. Proof of THEOREM 3
Let the pdf ofx givenθ = θ1, f(x|θ1I◦), be denoted byφ(x, θ1), and let the pdf forθ at θ = θ1,
given the observationx ∈ (x1, x1+dx), whose general form we would like to determine, be denoted
byψ(x1, θ1):

ψ(x1, θ1) ≡ f(θ1|x1I◦) . (68)

In addition, let another value ofx, independent of the first one, be recorded in an interval(x2, x2 +
dx), with the appropriate likelihood density being

f(x2|θ1x1I◦) = f(x2|θ1I◦) = φ(x2, θ1) .

In § 3.2 we saw that the only way of updating pdf forθ that is consistent with the adopted rules,
in particular with the product rule (30), is the one in accordance with Bayes’ Theorem (33). With
f(θ|x1I◦) taking the role of the prior pdf forθ, the pdf posterior to includingx2 into our reasoning
aboutθ is thus written as:

f(θ1|x1x2I◦) =
ψ(x1, θ1)φ(x2, θ1)

ζθ(x1, x2)
, (69)

with the normalization constantζθ(x1, x2) being

ζθ(x1, x2) =

∫

Θ

ψ(x1, θ
′)φ(x2, θ

′) dθ′ .
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Nothing prevents us from reversing the order of taking the two pieces of information,x1 and
x2, into account, which results in the following pdf forθ:

f(θ1|x2x1I◦) =
ψ(x2, θ1)φ(x1, θ1)

ζθ(x2, x1)
. (70)

Moreover, the Consistency PrincipleI requires equality of the two results, (69) and (70):

f(θ1|x1x2I◦) = f(θ1|x2x1I◦) ,

i.e., it requires
ψ(x1, θ1)φ(x2, θ1)

ζθ(x1, x2)
=
ψ(x2, θ1)φ(x1, θ1)

ζθ(x2, x1)
. (71)

We distinguish two cases:
CASE 1. None of the pdf’s, assigned to the inferred parameter, vanishes in (71). Then, due to

the imposed continuity ofψ(x, θ) (Assumptions 3), and due to the normalization condition (28),
there existsθ2 6= θ1 for which none of the terms in

ψ(x1, θ2)φ(x2, θ2)

ζθ(x1, x2)
=
ψ(x2, θ2)φ(x1, θ2)

ζθ(x2, x1)
(72)

vanishes, either. Dividing equations (71) and (72) resultsin

κ(x1, θ1)

κ(x1, θ2)
=
κ(x2, θ1)

κ(x2, θ2)
, (73)

where

κ(x, θ) ≡
ψ(x, θ)

φ(x, θ)
.

Clearly, in order to ensure equality in (73) for all possiblevalues ofx1 andx2, the left-hand and
the right-hand side of the equation must be independent ofx1 andx2, respectively, but may depend
on the valuesθ1 andθ2 of the parameterθ. Taking this dependence into account by introducing a
functionh(θ1, θ2), we obtain

κ(x, θ1)

κ(x, θ2)
= h(θ1, θ2) ,

further implying factorizability ofh(θ1, θ2),

h(θ1, θ2) ≡
π(θ1)

π(θ2)
,

so that
κ(x, θ1)

π(θ1)
=
κ(x, θ2)

π(θ2)
≡

1

η(x)
,

and finally

ψ(x, θ) =
π(θ)

ηθ(x)
φ(x, θ) ,

which, when written in terms of generic pdf’s, reduces to (34).
CASE 2. One of the two pdf’s assigned to the inferred parameter, e.g.,ψ(x2, θ1), is zero. Then,

according to (71),ψ(x1, θ1) must vanish for allx1 ∈ X .
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Note that within the theorem and its proof, bothx andθ may be multi-dimensional variates.
2

A.7. Proof of THEOREM 4
Suppose for a moment that a pdf forθ, f(θ|x0I◦), can be assigned toθ ∈ Θ based onx0 ∈

X − X̃ ⊆ X for which the partial derivative (21) vanishes. Then, sincethe sampling distribution
is invariant under a Lie groupG of transformations, the distribution assigned toθ is invariant under
the induced Lie group̄G so that the equation (43), concerning the cdfH(x0, θ, I◦) for θ, is valid.
When differentiated with respect toa and set afterwardsa = e, (43) further implies

H1(x0, θ, I◦)
∂

∂a
ga(x0)

∣∣∣
a=e

= −H2(x0, θ, I◦)
∂

∂a
ḡa(θ)

∣∣∣
a=e

; ∀ θ ∈ Θ ,

whose left-hand side vanishes due to the premise, adopted atthe beginning of the proof. Since, by
Lemma 4, the second term on the right-hand side does not vanish anywhere onΘ,H2(x0, θ, I◦) =
f(θ|x0I◦) must vanish for allθ ∈ Θ, which is incompatible with the normalization requirement
(28). Therefore, the assumed existence off(θ|x0I◦), based onx0 with vanishing derivative (21),
inevitably leads to inconsistencies and is thus ruled out.

2

A.8. Proof of LEMMA 5
The consistency factors can only be determined up to an arbitrary multiplication constant, so that
no generality is lost by choosing the factor such thatπ(0|σ) = 1. In addition, if (46) is to be true
for all µ, b ∈ (−∞,∞), it must also be true forb = −µ when it reads

π(0) = k(−µ)π(µ|σ) = 1 .

By construction, consistency factors donot vanish anywhere where defined (recall Theorem 3 and
its proof). Non-vanishingπ(µ|σ) thus implies

k(b) =
1

π(−b|σ)
,

which, when inserted to (46), further yields

π(u + v|σ) = π(u|σ)π(v|σ) ,

whereu ≡ x + b andv ≡ −b. The latter functional equation is of Cauchy’s type (Cauchy, 1897,
Part 1, Chapter V,§ I, pp. 98-105; see also Aczél, 1966,§ 2.1.1-2.1.2, pp. 31-42) and its most gen-
eral continuous solutions are

π(µ|σ) = exp{−q µ} and π(µ|σ) = 0 ,

whereq is an arbitrary constant. Finally, the latter of the two solutions is ruled out by requirement
(28).

2

A.9. Proof of LEMMA 6
For b = −aµ equation (50) reads

π(0, aσ) = h(−aµ, a)π(µ, σ) (74)
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which, fora = σ−1, further reduces to

π(0, 1) = h
(
−µσ−1, σ−1

)
π(µ, σ) .

Choosingπ(0, 1) = 1 leads to

h(u, v) =
1

π (−uv−1, v−1)
; ∀ u ∈ R and ∀ v ∈ R

+ ,

which, when inserted to (74), yields

π(µ, σ) = π
(
µ, a−1

)
π(0, aσ) .

By settinga = 1 we obtain
π(µ, σ) = Ξ(µ)Ω(σ) ,

where
Ξ(µ) ≡ π(µ, 1) and Ω(σ) ≡ π(0, σ) .

That is,π(µ, σ) is factorizable and, consequently,h(b, a) is factorizable, too:

h(b, a) =
1

Ξ (−ba−1) Ω (a−1)
.

Applying the factorizability to (50) and settinga = σ−1 andb = 0 then yields

Ξ
(
µσ−1

)
= Ξ(µ) ,

which impliesΞ(µ) be a constant, e.g.,Ξ(µ) = 1, and so

π(µ, σ) = Ω(σ) and h(b, a) =
1

Ω (a−1)
.

As a result, (50) reduces to
Ω(uv) = Ω(u)Ω(v)

(u ≡ aσ andv ≡ a−1), which is again a Cauchy’s functional equation (Cauchy, 1897, Part 1,
Chapter V,§ I, pp. 104-105) whose most general continuous solutions are

Ω(σ) = σ−r and Ω(σ) = 0

(r is an arbitrary real constant). As before, the trivial solution Ω(σ) = 0 is ruled out by invoking
normalization requirement (28).

2

A.10. Proof of THEOREM 6
To verify the Theorem, suppose for a moment that the oppositeis true, i.e., that

∫

Θ

π(θ′) dθ′ <∞ . (75)

Then, according to Theorems 1 and 4, every scalar parameterθ, with the corresponding consistency
factor determined uniquely by the underlying symmetry under a Lie group of transformations, is
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reducible to a location parameterµ = s̄(θ), with the two consistency factors,π(θ) and π̃(µ|σ),
being related according to (37),

π̃(µ|σ) dµ = k π(θ) dθ ,

wherek is an arbitrary (finite) constant. The supposed existence ofthe integral (75) thus implies
integrability ofπ̃(µ) over the corresponding parameter spaceM :

∫

M

π̃(µ′|σ) dµ′ = k

∫

Θ

π(θ′) dθ′ <∞ . (76)

If, on the other hand,̃π(µ|σ) can be determined exclusively by invoking the translation symmetry,
the domainM of π̃(µ|σ) must be invariant under the group of translations, i.e., it must range over
the entire real axis. But then, sinceπ̃(µ|σ) ∝ 1, the integral

∫

M

π̃(µ′|σ) dµ′ =

∫
∞

−∞

dµ′ (77)

clearly doesnotexist. By realizing an evident contradiction between (76) and (77), we can conclude
that the supposed normalizability of consistency factors (75) inevitably leads to inconsistencies and
is thus ruled out.

2

A.11. Proof of THEOREM 7
Recall Theorems 1 and 4, stating that if a consistency factoris to be deduced solely by invoking
invariance of a sampling pdff(θ|xI◦), the problem of inference must be deducible by one-to-one
transformations to an inference about a location parameter(recall also (24) and (26)). Lety = y(x),
µ = µ(θ), z = z(x) andν = ν(θ) be such transformations, the former two corresponding to the
invariance of the pdf underG, and the latter two to the invariance underH, so that, according to
(26),

F (x, θ, I◦) = Φ(y − µ) = Φ̃(z − ν) . (78)

By transitivity of one-to-one relations,z = z(y) andν = ν(µ) are also one-to-one. Consequently,
by differentiating (78) separately with respect toy andµ, and by dividing the two resulting equa-
tions, we obtain

∂z

∂y
=
∂ν

∂µ
.

If this is to be true for ally andµ, it must further be equal to a constant, sayc.
Above we learned that sampling distributions (9), determined by location parameters, can only

be invariant under one Lie group, that of translations (Theorem2), and that such an invariance
uniquely determines the form of the consistency factors (54). Consequently,̃πg(µ|σµ) exists and is
unique, and so is̃πh(ν|σν). The two consistency factors are relatedvia (37),

π̃h(ν|σν) = k̃ π̃g(µ|σµ)
∣∣∣
∂ν

∂µ

∣∣∣
−1

=
k̃

|c|
π̃g(µ|σµ) . (79)

The factors̃πg(µ|σµ) andπg(θ), as well as the factors̃πh(ν|σν) andπh(θ), are also related by the
same equation (37):

π̃g(µ|σµ) = k1 πg(θ)

∣∣∣∣
∂µ

∂θ

∣∣∣∣
−1

, (80)

π̃h(ν|σν ) = k2 πh(θ)

∣∣∣∣
∂ν

∂θ

∣∣∣∣
−1

. (81)
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By invoking (79) and
∂ν

∂θ
=
∂ν

∂µ

∂µ

∂θ
= c

∂µ

∂θ
,

(81) can be rewritten as

k̃ π̃g(µ|σµ) = k2 πh(θ)

∣∣∣∣
∂µ

∂θ

∣∣∣∣
−1

,

which, when divided by (80), finally yields (59).
2

A.12. Proof of THEOREM 8
It is enough to prove the Theorem for the location parameterµ of the sampling distribution of the
form (9), where the dispersion parameterσ is fixed, sayσ = 1. Suppose, therefore, that we have
collected a setx = (x1, x2, . . . , xn) (n ≥ 2) of independent measurements from (9). By using the
Consistency Theorem (34) for the assignment of a pdf to the inferred parameterµ, and the Bayes’
Theorem (33) for its sequential updating, we obtain

f(µ|xσI◦) ∝ π(µ|σ) f(x|µσI◦) , (82)

where

f(x|µσI◦) =

n∏

i=1

f(xi|µσI◦) =

n∏

i=1

φ(xi − µ) ,

while the appropriate consistency factorπ(µ|σ) is independent of eitherµ or σ (54).
We introducen linear combinations,̄x ands = (s1, . . . , sn−1), of the measured setx,

x̄ ≡
1

n

n∑

j=1

xj and si ≡ xi − x̄ ; i = 1, . . . , n− 1 ,

so that

xi − µ = x̄− µ+ si ; i = 1, . . . , n− 1

xn − µ = x̄− µ−
n−1∑

j=1

sj .

Since

f(x|µσI◦) ∝ f(x̄s|µσI◦) ∝ φ

(
x̄− µ−

n−1∑

j=1

sj

)
·

n−1∏

i=1

φ(x̄ − µ+ si) (83)

the pdf (82) can be rewritten in terms ofx̄ ands:

f(µ|x̄sσI◦) =
π(µ|σ)

ζµ(x̄, s, σ)
f(x̄s|µσI◦) .

According to the product rule (1), the likelihood densityf(x̄s|µσI◦) can be decomposed as

f(x̄s|µσI◦) = f(s|µσI◦) f(x̄|sµσI◦) .
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By introducingu ≡ x̄′ − µ, it becomes obvious thatf(s|µσI◦) is independent ofµ,

f(s|µσI◦) =

∫
∞

−∞

f(x̄′s|µσI◦) dx̄
′ =

∫
∞

−∞

φ

(
u−

n−1∑

j=1

sj

)
·

n−1∏

i=1

φ(u + si) du = f(s|σI◦) ,

and can be included in the normalization constantζµ(x̄, s, σ):

f(µ|x̄sσI◦) =
π(µ|σ)

ζµ(x̄, s, σ)
f(s|σI◦) f(x̄|sµσI◦) ≡

π(µ|σ)

ζ̃µ(x̄, s, σ)
f(x̄|sµσI◦) .

The remaining likelihood density,f(x̄|sµσI◦), is of the form

f(x̄|sµσI◦) =
f(x̄s|µσI◦)

f(s|µσI◦)
∝ φ

(
x̄− µ−

n−1∑

j=1

sj

)
·

n−1∏

i=1

φ(x̄ − µ+ si) ≡ φ̃(x̄− µ, s) ,

so that the updated pdf forµ reads

f(µ|x̄sσI◦) ∝ π(µ|σ) f(x̄|sµσI◦) = π(µ|σ) φ̃(x̄− µ, s) . (84)

The cdf ofx̄, givenµ, s andσ,

F (x̄, µ, s, σ, I◦) =

∫ x̄

−∞

f(x̄′|sµσI◦) dx̄
′ =

∫ x̄

−∞

φ̃(x̄′ − µ, s) dx̄′ ,

can be explicitly written as

F (x̄, µ, s, σ, I◦) =

∫ x̄−µ

−∞

φ̃(u, s) du ≡ Φ(x̄ − µ, s) .

Then, equation (84) can be rewritten as

F2(x̄, µ, s, σ, I◦) = −
π(µ|σ)

ζ̃µ(x̄, s, σ)
F1(x̄, µ, s, σ, I◦) ,

which, with the appropriateπ(µ|σ) = ζ̃µ(x̄, s, σ) ∝ 1, satisfies the calibration condition (62).
Note that the updated pdf forµ is in general also a function ofs, i.e., except for some very

special sampling distributions like, for example, the Gaussian,x̄ is not a sufficient statisticfor µ.
However, the pdf is calibrated foreverypossibles, so that the proof of invariance of the calibration
under updating is completed.

The preservation of calibration can also be connected to thepreserved translation invariance of
inference under updating. Namely, simultaneous location transformations

xi −−−−→ xi + b ; i = 1, . . . , n ; b ∈ (−∞,∞) , (85)

imply

x̄ −−−−→ x̄+ b ,

s −−−−→ s ,

so that (83) is clearly invariant under simultaneous translations (85) of the measured values of the
sampling variate, and of the inferred parameter,

µ −−−−→ µ+ b .
2
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