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1. Introduction

We make a probabilistic inference about a parameter of a lgagngistribution by specifying a
probability distribution that corresponds to the disttibo of our belief in different values of the
parameter. Such a distribution is always conditional updarimation at hand that is relevant to
the inferred parameter. When new pieces of informatiowarthe distribution can sequentially be
updated by using the well-known Bayes’ Theorem.

The problems arise, however, when the Theorem is used ngtfonupdating the assigned
probability distribution, but also at the starting pointtbé inference, i.e., in attempts to assign the
probability distribution that is later to be updated. Foerthwe must specify the so-callewn-
informative prior probability distributionreflecting our belief in different values of the inferred
parameter when we are in a state of complete ignorance diesé values. But since all probability
distributions are, by definition, conditional upon the valet information, the non-informative prior
distribution, conditional upon the complete lack of sucformation, is simplya contradiction in
terms Apart from the problems on the conceptual level, the ndarimative prior distributions have
also been representing an insurmountable practical proldeice the question about the explicit
form of these distributions remains unanswered (for a supféhe topic see, for example, Kass and
Wasserman, 1996, and the references quoted therein).

The difficulties with prior distributions have been serviag the main argument against sub-
jecting the possible systems for inference about the paeme the axioms of probability. As
realized long ago by Jeffreys (19613.1, p. 120), "a succession of authors have said that the prio
probability is nonsense and therefore that the principleneérse probability, which cannot work
without it, is nonsense t0o.” Fisher (1922), for examplepter "During the rapid development
of practical statistics in the past few decades, the theatdbundations of the subject have been
involved in great obscurity. This obscurity is centred ie go-called ’inverse’ methods. ...The
inverse probability is a mistake (perhaps the only mistakehich the mathematical world has so
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deeply committed itself)”. Here, the inverse probabilitgreds for the probability, assigned to the
certain value of an inferred parameter.

In this way two, at first glance fundamentally distinct, salsoof inductive reasoning emerged.
The first one, usually referred to as tBayesian schoalue to the central role of the Bayes’ Theo-
rem in the process of inference, recognizes probability dsgree of reasonable belief and applies
probability theory in the course of inductive reasoningeBecond one, usually referred to as the
frequentist schootlue to its strict frequency interpretation of probabiliglvocates the usage of
the calculus of probability only for treatment of so-calletidom phenomena he aim of the fre-
quentist school is to avoid the supposed mistakes and istensies of the probabilistic inductive
inference, so they relegate the problems of inductive arfee, e.g., the problem of inference about
parameters, to a new fielstatistical inference

The purpose of the present article is twofold. Our first anéhrgaal is to demonstrate that the
problems, both the conceptual and the practical ones, afahenformative prior distributionsan
be solved and that a consistent theory of probabilisticrérfee about the parameters of sampling
distributions can be deduced from very general Principfecientific reasoning. Second, we are
aiming at a complete reconciliation between the frequeatisl the Bayesian approaches to the
parametric inference.

2. Direct probabilities

2.1. Sampling variates and their distributions
Probabilityp(x;|I) = P(x = =x;|I) for a sampling(or randon) variate = from a discretesample
spaceX to take a value; is defined as a long run relative frequency,
7 I)= li : )

plzifl) = lim N
where N, is the total number of recorded valuesgfwhile IV; is the number of the outcomes
x = x;. On the other hand, fompsolutely continuous sampling distributionwith sample spaces
coinciding with subintervals of real numberX, C R, p(z;|I) denotes the probability?(x €
(zi,x; + dx)|I) for « to take a value in an intervgk;, z; + dz), and can be expressed by a non-
negative functiory (z;|I), calledthe probability density functio(pdf),

p(x;|I) = f(xi|]) dx .

Every probability distributiom(x|I) is conditionaluponthe(state of informationor knowledge
I about the variate. Let I, denote a family of sampling distributions and tebe a parameter
whose value specifies a unique distribution within the fgniihen, for parameters from a discrete
parameter spac®, our knowledgel = 6,1, about the distributiop(x|I) consists of the known
family I, and the valu@ = 0; of the parameter. Similarly, for parameters from the patanspaces
O = (0,,6,) C R, the sampling distribution from a famil, is uniquely determined by knowing
that an (infinitesimal) intervald;, 6, + df) contains the so-calleiue valueof the parameter. For
example, a sampling distribution of a variafeom the exponential family, is uniquely determined
by the value of the parameter in the intervalr + dr).

AsSsSUMPTIONL. Inthe present paper, we restrict our considerations to damglistributions
whose parameter spaces are (possibly infinite) subintsreélpositive length of real numbers,
© C R. For m-dimensional parameter®® C R™ are Cartesian products ah such intervals.
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Second, we require the sampling distributions be contisifanctions of their parameters. Third,
the sampling distributions are to be strictly positive fdira € X and for allé € 0, i.e.,

p(z|0l,) >0 ; VzeX and V€O
for discrete sampling distributions, and

f(z|0l,) >0 ; VzeX and VOeO
for continuous sampling distributions.

For example, Gaussian (normal) distribution with the p@f|uo1,) is strictly positive for all real
x andy and for all positiver, while binomial distributiorp(n|6no1,) with positive integer, and
with integern, 0 < n < ny, is strictly positive only if the parameter spa@e= (0, 1) is open on
both sides.

Sampling probability distributions are subject to #ndoms of conditional probability First,
every joint probabilityp(zoyo|01.) = P(z € (zo,20 + dx) A y € (yo,y0 + dy)|fL,) can be
decomposed according to the so-caleoduct rule

p(z0y0|01s) = p(x0|01s) p(yolzobls) = p(yol01s) p(xolyodls)

where p(yo|zo01,) is the probability for the sampling variate to take a value in the interval
(Yo, yo + dy), given the familyl, of the sampling distribution o andy, the value of the pa-
rameter of the family in an intervdb, 6 + df), and the sampling variate being observed in an
interval (xo, xo + dx). The product rule can also be expressed in terms of the apatepdf’s

f(xyl0lo) = f(2]0L) f(ylz0lo) = f(yl0Lo) f(z|yblo) , €y
which for independent andy reduces to
f(ayl0Lo) = f(x|0L) f(y|0L) - )

Second, every sampling probability distribution is subjed¢he normalization
[ raleryas =1, ®
X

where the integration is performed over the entire sam@eef .
Third, suppose there exists a one-to-one transformatioina scalar sampling variate y =
s(z). The corresponding pdf’s af andy are then related as

FWIOLy) = f(2l0L) |s'(x)| (4)

wheres’(z) = dy/dz, while for multidimensional variates andy the derivative must be replaced
by the corresponding Jacobidn= dy/dx. By using the symbal! instead of, on the left-hand
side of (4) we stress that the form (the family) of the sanmptirstribution may in general be altered
by the transformation of a sampling variate.

Besides of the pdf’s, distributions of sampling variatea eguivalently be presented by the
(cumulative distribution functions(cdf’s). The cdf of a sampling variate from a continuous
sample spac& = (z,, zp) is defined as

‘71

F(z,0,1,) = /m f(2'101,) da’ (5)
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or, inversely,
f(waO)EFl(xaeaIO) ; (6)

whereF; denotes differentiation with respect to théh argument oft” (we adhere to this notation
throughout the present paper, whatever the function andriniements may be). A cdf coincides
with the probability of the sampling variate to take the ealess or equal ta. Consequently, the

cdf is a nondecreasing function ofwhose values are limited within

F(waag,.[o)zo and F(xb,é‘,fo): ]_ .

2.2. Location, scale and dispersion parameters
A parametep, of a sampling distribution is a location parameter, and ap&ters is a dispersion
parameter, if the pdf aof takes the form

Flalnol) = T 6(T1Y ™)
g g
with the ranges ot andy, (x4, xy) and(uq, pp), stretching over the entire real axis, and with the
range ofo, (c,, 03), coinciding with(0, oo).
According to the product rule (2), a bivariate pdf of two ipeadent random variates{") and
z(?), both being subject to the same pdf of the form (7), is equ#iégproduct of univariate pdf’s,
f@Wpols) and f (2| uol,):

1) _ (2 _
FeWa®|uol,) = f(2O|pol,) (@ |uol,) = % o[~ 1 ") o(* : 5

g g
The pdf of transformed variates?) andz(?, z ands,

x(l) _|_ x(2) x(l) — x(2) -~
— and s= — Z,s € (—00,00) ,

can be calculated according to (4):
Fasluoll) = f(zD(z,5) 2@ (3, 8)|uo L) | 7]
2 T—p S T—pn s
() () ®

g g g g
1 ~/2—p s
g g g
When inferring the parameters of a sampling distributionhef form (7), it may happen that
the value of one of the two parameters is known to a high gretisrhen, the parameter with the
precisely determined value fixed and we only make an inference about the remaining one. Let

first the dispersion parameteibe fixed, say to 1, so that the pdfofgiven the possible value of
and the fixedr,

T

Faluots) =~ o(ZL) = o — ) ©)

g
is a function ofz and i only. The fixed parameter(in the present case) is usually (though not
always) omitted from explicit expressions.
According to (5) and (9), the cdf af reads:

T—p

F(z,p0,1.) = / " @ luol,) da’ = / " gy dat = / b(u) du = B(z— ) . (10)

— 00
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Note that the formd(x — 1) of the above cdf implies the corresponding pdf to be of thenf¢(®),
i.e., impliesyu to be a location parameter of a sampling probability distign of z. Indeed:

0 0 ou d
%F(%M,U, L) = %‘1’(33 — )= —‘I’( )8:5 Tu
whereu = x — p. Since the integrand in (10), i.e., the pdfafis a positive function, and the upper
bounds of the integral are strictly decreasing with theease in the parameter, the cdf is obviously
strictly decreasing if.

If, on the other handy is fixed, whiles is not, the sample spacé = (—oo, c0) can be split
into

f(@lpols) = P(u) = ¢(u)

X1 = (:U7OO) ’ X2 = (_OO,/.L) and X3 {,LL}
and the pdf ofz, givenc and a fixedu,

Flalonts) = = o1, 1)

g

can be split into two pdf’s,
Jiss 2)(3;|0',uf ) = 0(1 5 flzlopls); z € Xia, (12)

whereC12) are the appropriate normalization constants

o2 = / f(@|oply) /¢

In this way, the problem of inferring a dispersion paramegar be split into two separate problems.
Dispersion parameters of sampling distributions with thegle space being bound either to the
positive or to the negative half of the real axis are refetoegs thescaleparameters.

The reasons for discarding; in the above definitions are given below in this section, alé we
asin§4.4 and§ 4.7. Here we would just like to point out that since the praligtmeasure ofXs3,
i.e., of a single point within a continuous interval, is z€ére., the probability for observing exactly
x = § IS zero), this can always be done with no possible loss of rgdihe

Any sampling probability distribution determined by a scphrametes and a fixed location
parameter:, can be further transformed into a probability distribatidetermined by a location
parameter (see, for example, Ferguson, 1964,4, p. 144):

v=Ino,
and a fixed dispersion paramefersay\ = 1. Namely, substitutions
yr2 =In{£(z — p)}
yield:
—1 ~
f(l’Q)(y1’2|1/)\oIo) = f(l’z)(x|oulo) ‘%‘ ox eyr2Tv (b(eym_”) =o(y12—v). (13)
X

Note, however, that the corresponding varigidor = = 1 cannot be defined.
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The cdf'sF(2) (z, i, 0, I,), corresponding tg (12 (z|oul, ), read:

T T (z—p)/o
1 -
1;(1,2)(1,’/1170.7 I,) = /f(1’2)(l'l|0/lfo)dx/ O(/— (b(l /‘) da’ = /(b(’u,) du .
g g
p(—o0) p(—o0) 0(~00)

While M (z, 1, o) is monotonically decreasing with increasing valueof () (z, i, o) is mono-
tonically increasing.

Some of the most important continuous sampling distrilmgiare determined by one or more
parameters of the above mentioned types (see Eadie et al,, §l4.2, pp.58-83). In addition, all
distributions determined by either location, dispersiosaale parameters share a very important
property: they all belong to thavariant families of distributions

2.3. Invariant distributions
Let

f(@|0L,) = ¢(x, 0) (14)

be a pdf of a random variablefrom a continuous sample spa&ethat is determined by the value
of parameted from the parameter spaé® Let there exisa groupg of transformationg,, of the
sample space into itself:
Ga: X — X,
(15)

go: ¥ — galx) =y,

where indexa denotes a particular element of the group. Sigcis a group, it is closed under
composition of transformations, i.e., a compositigrof every pair of transformationg,, g, € G,
Je = gv9a, SUCh that

9e(®) = gvga(x) = golga(z)] ,

is also contained ig. In addition, the group also contains an idengitysuch that
ge(x):x,V$EX7
and the inverse transformatigg! for anyg, such that

9a ' 90 = a9 = ge -

As a consequence, the transformatign@re one-to-one, i.eg, (1) = gq(z2) impliesz; = xo,
andonto X, i.e.,on (entire) X andto (entire) X: for everyxz; € X andg, € G there exists an
x9 € X such thay,(z2) = =1 (see, for example, Ferguson, 19674.1, p. 143). The sample space
X is said to benvariant under the grouy

Since the transformation = ¢, () is one-to-one, the pdf of the transformed variate according
to (4) reads:

FWIOI) = F@l0L) g, (@) = o(w,0)|gh(@)| "
In addition toG, let there exist also a sét of transformationgj, of the parameter space into
itself,
Ga: ® —— O,

Ga: 0 —— Gu0)=v.
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Then, the pdf of; can be re-expressed in terms of the parameterstead of,

FlIy) = 6(,0)|g, @) = é(9:" ), 30 ) |94@)| " = 6(9a(®),3a(9)) -
Ifforall z € X, andf € ©, and for everyy, € G there existg), € G such that

(b(ga(x)aga(o)) = ¢(ga(x)7ga(0)) ) (16)
the family of distributionsf (2|01, ) is said to benvariant under the groug (Ferguson, 196%,4.1,
p.144; Stuart et al., 199923.10, pp. 300-301).

If a family of distributions is invariant undeg, then the seg of transformationg, is also a
group, usually referred to déise induced groufStuart et al., 1999;23.10, p. 300). Namely, accord-
ing to the definition of invariance, if the pdf afis given by¢(z, 9), the pdf forg, (z) is given by
¢(ga (.%'), Ja (9)) Hence, the pdf Qd]-b (ga (l’)) = 9v9a (LL') is given by bOtM(gb(ga (.%')), gb(ga (9)))
ando(gsg4(z), 95ga(0)). From the equality of the two it follows that

m = gbga .
This shows thag is closed under composition. It also shows tids closed under inverses if we
let g, = g; ! and note tha, is the identity ingG.

As for G and X, the parameter spaéis invariant under the induced groug. The invariance
of the sample and the parameter spaces under grgumsd G, respectively, is therefore inherent to
every invariance of a sampling probability distributionder a groupg.

For example, a sampling distribution @#fand s (8), determined by the values of a location
parametey and a dispersion parameteris invariant under the group of simultaneous location and
scale transformations:

T —— gop(T)=aZT+b
Ga,b *
5§ —> ga’b(s) =as (17)
) p—— Gas(p) =ap+b
ga,,b :
0 —— Gap(0) =ao
where
a € (0,00) and b € (—o0,0) .
By fixing the dispersion parameter, we are left with the remmaj symmetry of the sampling distri-
bution under simultaneous translationseadndy by an arbitrary real number
g — g(x) =x+Db,
(18)
Go:pp — Gp(p)=p+b.
When, on the other hand, the location parameter is fixed vitialispersion of the distribution is
unknown, the appropriate pdf&z|oul,) (11) andf 2 (z|opl,) (12) are still invariant under the
scale transformation:
Jo: x — Ga(x) =az+(1-a)u
Jo: 0 —— Gu(o) =ao.
The above transformation of the sampling variais identical to the transformation

z—p —— alz—p)

of the difference between the sampling variat@nd the fixed location parameter
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LEmMMA 1. Letadistribution of a sampling variate, parameterized bg, be invariant undeg,
with G being the corresponding induced group. Then, the distidousfy = s(x), parameterized
byv = 5(0), is invariant underH = sGs~!, whileH = 5G5~! is the appropriate induced group.
Here, s and s are arbitrary continuous and differentiable one-to-onansformations of and g,
respectively.

2.4. Invariance under Lie groups
Let F'(z,0,1,) be the cdf of a sampling variate, subject to the distribution (14). The cdf of
y = s(z), givenv = §(0), reads:

Yy s(z) _
F(y, v I) = F(s(2),5(6), I.) = / F W) dyf = / J(s('), 5(0)) dls(a’)]

Ya

wherey, is the lower bound of the range 9f while s ands are arbitrary continuous and differen-
tiable one-to-one functions. Then,

LEMMA 2. The lower and the upper bound of the rangecof, andx;, become transformed
into the bounds of, y, andys:

_Js(@e) 5 s'(x) >0 _Js(@) 5 s'(x)>0
Yo = {s(xb) ;s'(x) <0 and y, = {s(za) ; s(r) <0

and the cdf of, givenv, is related to the cdf af, givend, as:

F(z,0,1,) ;&(z)>0

1—F(z,0,1,); s'(x) <0 (19)

F(y7l/a Ié) = F(S(x),§(0),[é) = {

COROLLARY. Leta sampling distribution with the cdf(z, 0, I, ) be invariant undeg. Then,
the cdf ofg, (x) can be expressed as

F(z,0,1,) ; g.(x)>0

;i Vg €G. 20
| P50, 1) g (x) <0 g €6 (20)

F(ga(2), 9a(0), 1) = {

Note that for invariant distributions the informatiéfy that F' (g, (z), ga(6), I,) is based upon (the
family that the sampling distribution belongs to), is ideat to the informatior/, of F'(x, 6, I,),

F(ga(w)aga(g)vlé) = F(ga(w)aga(a)’-[o) )

so that the parameterentersF (g, (), go(0), I,) only throughg, (z) andg,(6), butnot through
Iy, ie., I, # I,(a).
Let nowg be aLie groupof transformations (15), so that the partial derivative

0
%Qa(x)

exists for everyy, € G and everyr € X (see, for example, Elliot and Dawber, 1986,.1-7.2,
pp.126-130). Hereq is a scalar parameter of the group whiteis a set of real scalar variates
(objects of group transformations). Under these circuntss, we state the following
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LEmMMA 3. Forall x € X for which

2 gul) 1)

a=e

vanishes, all group transformations are trivial, i.e.,
galz) =2 ; Vgo€G.
Clearly, if (21) vanishes for all € X, then the action of the group on the entireX is trivial:
go(¥) =2 ; Vg, €G and Vax e X .

LEMMA 4. Let F(z, 6, I,) be a cdf of a strictly positive continuous sampling disttibo that
is invariant under a Lie grougy whose action is not identically trivial on the entire samppeace
X. In addition, letF'(«x, 0, I,,) be differentiable in the second argument (differentidila the first
argument is guaranteed by definiti@®)). Then, the partial derivative

0

9a9a0)] _ (22)

does not vanish for any € ©.
An important statement - an Existence Theorem - can be dddtm®a the above Lemmata. Let

therefore a probability distribution of a scalar samplirgiatex be invariant under a Lie group
(consequentlyy is also a Lie group). Then, differentiation of (20) with resptoa yields

Py (90(2),30(60) 1) 5-00(2) + F(0(0), 3a(0), 1) 5-5(6) = 0.

On the subspac& C X with non-vanishing derivative (21) (derivative (22) isistly different
from zero by Lemma 4), the above differential equation reguo

Fi(z,0,1,)5(0) + Fy(x,0,1,) s'(z) =0, (23)
where the derivatives () ands’(0) of functionss(x) ands(f) are defined as:
;o ds(x) [0 - () B -
@)= 20 = {%ga(x) _} and §'(0) = =~ = %ga(ﬂ)‘a:e L (24)
By defining a functiorG(z, 6),
G(z,0) = s(x) — 5(0) , (25)

(23) can be further rewritten as
Fl(l‘, 9, Io) GQ(J), 9) - FQ(J?, 9, Io) Gl(x, 9) =0 s
or as a functional determinant (see Aczél, 19662.1, p. 325),

Fi(2,0,1,) Fa(x,0,1,)

Ci(x,0)  Ga(w,0) | =0

The Jacobian vanishes for alle X andé € © if and only if the cdfF'(z, 0, I,) is a function of a
single variableZ(z, 0) (25) (see, for example, Courant, 1962, p.5),

F(x,0,1,) = ®[G(z,0)] = ®[s(x) = 5(0)] = D(y — ), (26)



10 T Podobnik and T. Zivko

where we introduced
y=s(z) and p = 5(0) .

Then, by equation (19), the cdf(y, p, I.) is of the form
F(y,/.t, (/)) = 4 . ) )
P ) <

where

Sy —p)=1-B(y—p).
That is, ;. is a location parameter of the sampling distributionyofsee eq. (10)), and the above
reasoning can be summarized as

THEOREM 1. Let f(z|01,) be a pdf of a continuous scalar sampling variate X andf € ©
a continuous scalar parameter of the distribution that iganant under a one-parameter Lie group
G, and let the cdfF'(z, 0, I,) be differentiable ird. Then, on the subspacé C X where the
derivative(21) does not vanish, the distribution is necessarily reducible separate one-to-one
transformationst — z andf — p) to a sampling distribution of with the parametey: being a
location parameter.

In the sequel (Theorem 4) we shall further demonstrate tieesibspac& — X C X of the sample
space with vanishing derivative (21), is irrelevant to @bitistic parametric inference, since for
the observed: from X — X a pdf cannot be assigned to the inferred parameter of thelsgmp
distribution.

The following Theorem also proves to be relevant to our dions:

THEOREM 2. If a sampling distribution9) of =, determined by a location parametegrand a
fixed dispersion parameter, is invariant under a Lie groug, theng is the group of translations.

3. Inverse probabilities

3.1. Plausibilities and inverse probabilities
Let now information about a random variateconsist only of a familyl, of possible distributions
of z, while the true value of the parametethat uniquely determines the sampling distribution, is
unknown. Then, an inference about the true distribution isfequivalent to an inference about the
parameted of the family .

An inference about the parameter is made by specifying amealber, called degree oj
plausibility, (8]x1z2...I,), representing our degree of belief that, given a set of ehtiens
x € (x1,21 + dz), v € (z2,22 + dx), ...of the sampling variate, an intervd, 6 + df) cov-
ers the true value of the parameter. Cox (1946) showed thetars for manipulating plausibilities
is either isomorphic to the probability system or incoresistwith very general requirements, re-
ferred to as the Cox-Pélya-Jaynes Desiderata (see, fongraJaynes, 2003,1.7, pp. 17-19, or
Van Horn, 2003). Motivated by the Cox’s Theorem, we therefonce and for all choose proba-
bilities p(f|z122 . .. I,) among all possible plausibility functior{§|z,z- ... I,) to represent our
degree of belief in particular values of inferred paranseter

ASSUMPTIONZ2. The so-callednverse probabilities(0|x1 25 . . . I,,), and the so-calledirect
(or sampling)probabilitiesp(z|01,), are subjected to identical rules, i.e., to the aforemereib
axioms of conditional probability.
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These, expressed in terms of non-negative functfgfse, z- . . . I,,), calledthe probability density
functions(pdf’s) for the inferred parametersnclude the product rule,

f(H/\|x1x2 . Io) = f(9|.231],‘2 . IO) f(/\|9x1x2 . Io)

:f()\|a:1x2...lo)f(9|)\x1x2...IO) y (27)

the requirement of normalization,

/f(0’|x1x2...lo)d9’ _1 (28)
(C]

and the rule for transformations of the pdf’s, induced by-tmene transformations of their argu-
ments,

fWlzll) = f(0lalo) |5'(0) " (29)

wherev = 5(0) ands’(0) = dv/df, while f(ONz122 ... L) is a a joint pdf for the parametefs
and\ of a family I, of two-parametric sampling distributions.

Let a family I, contain the (unknown) true distribution of a sampling veeriawhose first value
was observed in an intervék,, z1 + dz), and letp(6122]z11,) be the joint probability that an
interval (91,60, + df) covers the true value of the parametenf the family I, and that the second
observation of the random variatg independent of the first one, will be recorded in an interval
(z2,x2 + dx). Then, due to the imposed equivalence of rules for manimgigirobabilities of
sampling variates and those for manipulating probabslifte inferred parameterg,(6,x2|x1 1)
can be decomposed as

p(bra2|z1ls) = p(01]z11o) p(22]01Lo) = p(z2|T11Ls) p(61|T12210) |
so that the product rule fof(6z2|x1 I,) reads
fOza|z1ls) = f(Olz11s) f(22|016) = f(w2|m1lo) f(O|lz12215) - (30)
We add this product rule to the axioms, listed within the Asption 2.

AssuMPTION3. In the same way as we did for the sampling distributions (sseidption 1),
we impose continuity il also to the pdf'sf (0|z1x5 . . . I,) for the inferred parameters.

As for the cdf’sF(x, 0, I,) of sampling variates, we can also define the cdf's:, 6, I,,) for
inferred parameters,

0
H(z,0,1,) E/ f0'xl,)do"
0o

or, equivalently,
f0|zl,) = Ho(x,0,1,) . (31)

By subjecting degrees of plausibility to the axioms of pitaiby, the domain of the probability
calculus, originally being consisted only of sampling a#es, has been extended. In other words,
the sampling variates represent only a subset of all p@ssifguments of probability functions
and pdf'sf. Itis important, however, to distinguish between the cpt o probability distribution
of a sampling variate, and the concept of probability disttion for an inferred parameter. By
definition, the probability for a sampling variateto take a value in an intervdle,, z1 + dx)
coincides with the long run relative frequency of occureen€z in that interval. The probability
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distribution for a parameter, on the other hand, only regressa distribution of our belief in different
values of the inferred parameter within the parameter spata vast majority of situations, the
inferred parameter is assumed to be fixed (though unknownthat in generap(f|z s ... I,)
doesnot coincide with the frequency distribution of the true valoé$. The conceptual difference
becomes of high practical importance when the interpatatf verifiable predictions, based on the
probability distributions fop, is concerned. We will come back to this important point it 5.

3.2. The procedure of marginalization and the Bayes’ Theorem

We can make use of the product rules (27) and (30) for dedubiagrocedure of marginaliza-
tion and the Bayes’ Theorem. Let us therefore integrate thefdA|z122 ... 1,) (27) over ei-
ther of the space® and A of the two inferred parametefsand \, respectively. With the pdf’s
f(MOz122 ... L) and f(O|\x122 . . . I,) being properly normalized, we obtain

/f(@’x\|x1x2 LYAO = s L) |
° (32)

/f(HA’|x1x2 L)X = f(Olerms L) |
A

wheref(Mzize ... L) andf(0|z 22 . . . I,) are the so-callecharginal pdf’s
The Bayes’ Theorem (Bayes, 1763; Laplace, 1774), on the didned, is obtained simply by
rearranging the product rule (30):

0lz11s) f(22]015)
f(za|z1ls)

fO|lzr2al,) = A (33)

The Theorem is also referred to @ principle of inverse probabilitgsee Jeffreys, 1963%,1.22,
p.28) and is interpreted in the following way (O’Hagan, 1994.3, p.2). We are interested in
the probability distribution fof and begin with the initial oprior pdf f(6|z11,), representing the
distribution of our belief in different values @fprior to taking evidence, into account, while the
posteriorpdf f(0|x1z21,) represents the distribution of our belief posterior to addévidencer,
to our previous information aboét According to Bayes’ Theorem, the only consistent way for
updating the probability distribution, assigned to theeméd parameter, is by multiplying the prior
pdf by the so-calledikelihood densityf (z2|01,), corresponding to the probability for observing
x € (x2,x2 + dzx), given the true value of the parameter in the intef¥ab + df).

The denominatof (z2|z21,) is obtainedvia the normalization requirement (28),

flxe|z1 1) = /f(9’|x1IO) f(x2)0'1,)d0" = Co(z1, 22) ,
©
and is independent of the value of the inferred parameter.

3.3. The difference between an assignment and an update of a probability distribution
While being a unique tool for sequentigddatingof a pdf f (8|z11,), assigned to an inferred param-
eterd prior to its updating, Bayes’ Theorem says nothing alamsigningthe pdff(0|z11,) that is
later to be updated. Consequently, the existing systeneddopted rules (27-30) for manipulating
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the pdf’s for inferred parameters, together with the agpions (32) and (33) of these rules, need be
amended in order to allow for assignments of probabilityrifigtions to the parameters, with such
assignments representing natural and indispensablengtadints in every sequential updating of
probability distributions.

The set of rules for assigning probability distribution&tferred parameters is based on the two
fundamental Principles of scientific reasonifRppper, 195% 24, pp.91-92):

I (Principle of Consistency) The theory of inference about the parameters of samplirigldisions
must be internally consistent. In particular, if within thdes of the theory, a conclusion can
be reasoned out in more than one way, then every possible walylead to the same result.
Similarly, identical states of knowledge about a problemtt s solvable within the theory,
must always lead to identical solutions of the problem.

Il (Operational Principle) The theory must specify operations that ensure falsifighili its pre-
dictions.

In what follows, the entire system for assigning inversebpiulities is deduced exclusively by
observing these two rules.

3.4. Consistency Theorem

Suppose that before we made the first observation of a sagng@iiater, we had been completely
ignorant about the value of the paramétéhat determines the distribution of we had only known
the family I, of sampling distributions that the distribution otbelongs to. In this context we can
prove the following proposition, henceforth referred tdtees Consistency Theorem:

THEOREM 3. Suppose that a sampling variatdrom a strictly positive continuous distribution
has been observed in an (infinitesimal) interialr + dx), and that, based on the observation and
on information/, about the form of the sampling distribution, a pf|z1,) can be assigned to
the paramete# of the distribution. When positive the pdf must be, in ordeneet the Consistency
Principle I, directly proportional to the likelihood dergif (x|61,),

7(0)
no(x)

fOlelo) = f(@|0L) |, (34)

wherer () is the so-calledonsistency factowhile ny () is the normalization factahat is deter-
mined by invoking normalizatiaf28) of the pdf, assigned té

ng(x) = /7‘((9/) f(x]0'1,)do" . (35)

S}

For thosed for which f(0|x1,) vanishes, however, the pdf must be zero regardless thededor
valuez of the sampling variate.

Since bothf (z|01,) and f(0|z1,) are assumed to be continuoudifrecall Assumptions 1 and
3), (0) is also continuousln addition we note thahe consistency factor can only be determined
up to an arbitrary constant factor, sdy. That is, multiplyingr(0) by k clearly implies multiplica-
tion of ng(z) by the same factor, which then cancels out in the ratio onigie-hand side of (34).
The factorsr(0) may therefore be either strictly positive or strictly negatbut mustnot switch
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sign within ©, since the latter would imply negative values for pdf@|x1,) whose values are
non-negative by definition.

For discrete sampling variates, the Consistency Theorawhtained simply by replacing the likeli-
hood densityf(z|61,), both in (34) and in (35), with the corresponding likelihop@:|61.). Note,
however, that the consistency factors cannot be uniquéebrméned in such problems (séd.3 and
§5.1 below), so it is impossible to make consistent and catitar probabilistic inferences about the
parameters of discrete sampling distributions.

The form of the Consistency Theorem (34) is remarkably sind that of Bayes’ Theorem (33): in
both Theorems, within a specified modg) the complete information about the inferred parameter
0 of the model that can be extracted from a measuremgistcontained in the value of the appro-
priate likelihood densityf (z|01,). But there is also a fundamental anery important difference
between the two Theorems: whifd6|z,1,) in Bayes’ Theorem represents the pdf foprior to
including observation € (x2, 2 + dx) in our inference abow, the consistency factar(9) in the
Consistency Theorem is just a proportionality coefficiegtiveen the pdf foé and the appropriate
likelihood density.

In the sequel we show how and under what conditions the baisicifles of scientific reasoning
uniquely determine a consistency factdp). The form of the latter depends on the only relevant
information that we possess before the first datuen (x4, 1 + dx) is collected: it depends only on
the specified family, of possible sampling distributions of Therefore, in this particular concept,
the Principle of Consistency reads:

Inferences about the parameters of sampling distributishsse forms, sample spaces and
parameter spaces are identical, must be made by using th@stency factors of the forms
that are identical up to multiplication constants.

Note that the above formulation of the Principle of Consistecoincides with thdrinciple of
Relative Invariancgstated by Hartigan (1964).

4. Determination of the consistency factors

4.1. Consistency factors under transformations of the inferred parameters

Let f(z|01,) of the form (14) be a sampling pdf aof whose parametet we would like to infer

by specifying the pdff(6|zI,). We saw in the foregoing section that when this can be done in a
consistent way, the pdf fat must take the form (34). Letbe a one-to-one transformation of the
sampling variate:, y = s(x), so that the pdf (34) fof can be expressed as

f(Ols(z)1}) = %W(G o(x,0) | (x |7 ‘

J,‘

™(0) f(yl01)) ,

where
fWoL) = ¢(x,0) |s'(x |_

Let there also exist a one-to-one transformatiaf the parametef, v = 5(0). According to
(29), the pdf's forr andd are related as

FwleIl) = f(0leL) |5'(0)] ",
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so that

_| o(s(z),5(0)) (36)

where:

(37)

and, fors’(6) > 0,

5 5(0v)
u[s(z)] =k 1. :/ 7[5(0")] f (s(=)|5(0")I5") d[5(6")] , (38)

while for () < 0 the limits of the above integral are to be interchanged. Wihealing with
multidimensional parameters, the derivatj\ié(e)\ in (37) must be substituted by the appropriate
Jacobian. Thus, the transformations of consistency factoduced by transformations of parame-
ters, are very similar to those of pdf’s (4) and (29).

By using two different symbolsy and, it is stressed that the consistency factorsé@nd
for the transformed parametgff) may, in general, be different functions. However, &) =
ga(x) with g, being an element of a group of transformations, for the sampling distribution
being invariant unde¢, and fors(0) = g.(6) with g, being an element of the corresponding
induced grouy, the form of the consistency factor must also be invariadeng: according to the
Consistency Principler and7 must be the same functions up to an arbitrary multiplicatémtor,

sayk(a):
#[0(0)] = 7(ga (0)]
7[Ga(0)] = K@) (39)

Note that in general the value of the multiplication constanup to which the above invariant
consistency factor is uniquely determined, may dependerdhue of the transformation parameter
a. When combined with (37), (39) implies:

(. (0)) = k(a) 7(6) |7,(6)] " |, (40)

with & being contained irk(a). The above functional equation fai6) is the cornerstone of the
entire theory of consisteissignmentf probabilities to parameters of sampling distributions.

When a sampling distribution, determined by a two-dimemaigarameted = (9, 6(?)),
is invariant under a two-parametric grogpof transformationg, », the corresponding functional
equation for the consistency factofd(!), (?)) reads:

T1ap(0"), §ap(0P)] = k(a,b) (01,0 |J] 7, (41)
where

0(51(01"). 0 6¥))

T T oEm, 60
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We will come across the above functional equatiof 46, during a simultaneous inference about
a location and a dispersion parameter.

When equation (39) holds, the normalization fadipfg,(x)] is equal (up to the usual factor
k(a))tong[g.(x)] (indexa in g, andg, denotes particular elements of transformation groupdewhi
in x, andd, it indicates the lower bounds of the sample and the pararapssr, respectively),

Ga(6s) 1 .

o) = [ s 0o, 1) a0 = @)
Consequently, the pdf for the paramefeof a sampling distribution that is invariant undgr is
invariant undeg. For if ¢ (x, ) denotes the pdf (68) fdt, givenx, and if{/?(ga(x), ga(e)) denotes
the pdf (36) forg, (6), giveng,(x), then the invariance of the sampling distribution, combingth
the equations (39) and (42), implies

U(9a(2), 9a(0)) = ¥ (9a (), 3a(0)) ,

the latter coinciding with the definition (16) of invariansttibutions. Then, according to Lemma 2
and equation (20), the cdf fér H(x, 6, I,), is also invariant undegy, so that

H(x,0,15) 5 go(0) >0

| H(z,0,1,): g.(6) < 0 (*+3)

H(94(2),a(6), 1) = {

4.2. On consistency of the adopted rules
We obtained equation (37) as a direct consequence of thg28)efor transformations of pdf's
f(0)z1l,), induced by one-to-one transformations of inferred patarsewhile (40) was deduced
by applying the Consistency Principle. As a test of consistef the two rules, we shall verify the
compatibility of the two equations.

In the same way as we obtained the functional equation (40} 6), we arrive also at the
corresponding equation for the consistency fagtor) for v = 5(0),

wlha ()] = (@) 7(v) [, 0)] (44)
where, due to Lemma b, = 55,5 ", s0 thath, (v) = 5[7.(0)], b, (v) = §'[§a(0)] 7, (0) [§'(v)]
and7[h.(v)] = 7T{5[g.(0)]}. The latter can then be rewritten by invoking (37) and (40),

7 =~ -1 -1

Tlha(v)] = kk(a)7(0) |9,(0)| " |s'lga(O)]]
which, when inserted to (44), impligsa) = I(a). That is, equations (37) and (40) are perfectly
compatible if in equation (40) the same proportionalitytéad:(a) is used for all parameters that
are relatediia one-to-one transformations.

4.3. Invariance under a discrete group of transformations
Under what circumstances does a unique solution of the ifumedtequation (40) exist? Let us
consider a problem with a sampling distribution being imatrunder a discrete group of transfor-

mations
Jo: * —— go(x) =azx,

Ja: 0 —— g.(0)=ab,
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wherea can only take two values,
a={1,-1}

for both groupsG andG. That is, the considered distribution possesses paritgmusithultane-
ous inversion of the sample space and the parameter spaairaies. By combining functional
equations

(g4 (0)] = k(a)w(0) and 7[g;(0)] = k(a) 7[3a(6)] ,

we obtain fora = —1

so that
Ea=-1)=1.

This, when inability ofr to switch sign is invoked (seg3.4), further implies
w(—0) =7(0) . (45)

That is, the consistency factor that corresponds to a sampliistribution being invariant under
simultaneous inversions of sampling and parameter spamelicates, must itself havegositive
parity under the inversion of the parameter space coordinatesajgut from this, it can take any
form and so in this case the solution of (40) is clearbunique.

It is not difficult to understand that this is a common featirall solutions based on invariance
of the sampling distributions unddiscretegroups. If the symmetry group is discrete, the sample
and the parameter spaces break up in intervals, the satfafidamental regionsr domainsof the
group (Wigner, 1959 19.1, p. 210; Jaynes, 200810.9, p. 332), with no connections in terms of
group transformations within the points of the same interVée are then free to choose the form
of 7(#) in one of these intervals (e.g., we can choe&®) for the positive values df in the above
example), so it is evident thétis impossible to determine uniquely the form of consisgdactors
for problems that are invariant only under discrete groupdransformations This is also why it
is impossible to make consistent probabilistic infereratasut the parameters of discrete sampling
distributions.

4.4. Consistency factors and homogenous parameter spaces

If, on the other hand, for ever§; andf, from a parameter spade there exists an element,
from a groupg of transformations such thés = g,(6:) (i.e., if all points of© are connectedlia
transformationg,), then the fundamental domain of the parameter space redoeesingle point
and we say tha® is a homogenous space for the grodpor equivalently, that the entir® is a
singleG-orbit. In what follows we show that homogeneity of parameter spémelie groups plays
a decisive role in determination of consistency factors &éipgisymmetry arguments.

According to the Existence Theorem 1$2.4, on the subspacE C X with non-vanishing
derivative (21), every sampling distribution of a contims@ampling variate that is invariant under
a single-parametric Lie groug, is necessarily reducible (by separate transformations y and
¢ — p) to a sampling distribution of with the parameteq being a location parameter. For the
subspaceX C X it is therefore sufficient to determine the consistencydagi ) for u, which
can subsequently be transformed (by means of (37)) to thresmmwnding consistency facte(6)
for the original parametet. Note, however, that implications of Theorem 1 may be exeirtd the
subspaceX — X C X with vanishing derivative (21):
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THEOREM4. Consider a continuous scalar sampling variatewith the cdfF(z, 0, I,) that
is differentiable in the second argument, and with the cspanding pdff (z|01,) that is strictly
positive and invariant under a Lie gropwhose action is not identically trivial on entic€. Then,
for the observed: € X — X C X with vanishing derivativé21), the probability distribution
whose cdf (z, 0, I,,) is differentiable in the first argument, cannot be assigreel t(Existence of
derivativesF (z, 0, I,) and Hy(z, 0, I,,) is assured by definition®) and (31), respectively.)

Reducibility of the sampling distribution af to a distribution that is determined by a location pa-
rameteryu, is therefore a necessary condition that is to be met in dadsolve (40) exclusively by
using symmetry arguments. The only Lie group of invariambsformations of sampling distribu-
tions, determined by the location parameters, is the omanélations (Theorem 2) and the space of
the location parameters, consisting of the entire real &tsomogenous for that group. Below we
shall demonstrate that the axioms of probability, imposethterse probabilities (Assumption 2),
together with the Principle of Consistency, uniquely deiiee the consistency factors for location
parameters. In this way, the reducibility of a problem ofgwaetric inference to the inference about
a location parameter will be proved also a sufficient condifor a consistent probabilistic para-
metric inference.

4.5. Inference about location parameters

We saw in§ 2.3 that a sampling distribution, parameterized by a locaiarametey: and by a
fixed dispersion parametet is invariant under the group of translations (18). Thea,ftinctional
equation (40) for the appropriate consistency faetgr|c) for i reads:

m(p+blo) = k@) w(plo) ; VubeR, (46)
with the notationr (o) stressing that the dispersion parameter is being fixed.

LEMMA 5. By settingr(0) = 1,

m(plo) = exp{—q(o) pu} (47)
becomes the most general solution(46).

Note that at this point the value of the constarih (47) may, at least in principle, depend on the
value of the fixed parameter.

For sampling distributions, symmetric under simultaneiousrsions of the sampling and the param-
eter space, equation (45) impligs= 0, i.e., implies uniform consistency factors for location pa
rameters. This argument was used by Hartigan (1964) tordatera unique form of the so-called
non-informative prior distributions in problems of infexe about the location parameter of a Gaus-
sian distribution witho being fixed. However, ir§ 4.6 we demonstrate that must vanish also in
problems without the space-inversion symmetry.

Based on a measured valug the pdf for a location parametgrtherefore reads:

7(plo) e dr 1 —p
) 0ot = S (1t
77”(11,0) ﬂu($1,0) o o

Now, as an example, we want to update our inference aboutttaeetey: by including additional

informationxs in our inference, wheres is a result of a measurement.ofthat is also subject to
the same sampling distribution and independent;0fWe can write the likelihood density af,,

]_ _
f@alponiLo) = flasluole) = —¢(Z=L),

f(plzrols) =
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and the updated pdf far,

x w(plo) f(z1|pols) f(ze|uols) (48)

(plo) f(xrxa|pols) ,

where the update is made in accordance with Bayes’ Theor8jn £&cording to (8), the pdf for
w (48) can equivalently be expressed in terms of the likekhdensity f (zs|uol,) of the variates
T = (z1+ax2)/2ands = (x1 — z2)/2:

flplzrwaols) o fplziolo) faz|uols)

_ 7(ulo) _ e—d@pn 1 ~(9_C_N 8)
I) = ——7— I)= ————¢(—~,=). 49
flulossle) = 2= H@slol) = ems 5 0(— (49)
The findings of the present example will become of particutgrortance in the following two
subsections, where we determine the form of the consistiactyrsr(u, o) for simultaneous esti-
mation of a location and a dispersion parametergady:) for estimation of a dispersion parameter
with u being fixed.

4.6. Simultaneous inference about a location and a dispersion parameter

By fixing neither the location nor the dispersion parameteinference about the two parameters is
invariant under a simultaneous location and scale tramsftion (17). The symmetry of the problem
implies the following form of the functional equation (4Drfthe appropriate consistency factors

m(u,0):

n(ap + b,a0) = h(b,a)n(u,0) ; VYu,beR and Yo,ac RT, (50)
where )
_ dlap+b,a0) |~ k(a,b)
h(b,a) = k(a,b) ‘ 90i0) pea
LEMMA 6.
m(p,o)=0"" (51)

is the most general solution ¢60), compatible with a condition (0, 1) = 1.

The pdf fory ando, givenz ands, therefore reads:

7 _ 7T(/,L,O') = - 0'_(T+2) ~(T — I i
f(/,LO'|Z'SIO) - nu’g(jys) f(xSLMO-IO) - ny{’a(f’ S) ( o ) O_) . (52)
Then, according to the product rule (27), the pdf (52) can bidem as
f(uolzslo) = f(ulozsls) f(o|zslo) (53)
wheref(o|zsl,) is a marginal pdf (see equation (32)),
o|zsl, :/ ’ofs[od’:i/ Zsly/ol) dy
flo|zsl,) mf(u |Zs1o) dp (0 9) mf( \Wols)dp

while f(u|ozsI,) denotes the pdf (49) fqr with the value of the dispersion parameter assumed to
be fixed ato. Expressingf(uo|zsl,) and f(u|lczsl,) in equation (53) in terms of (52) and (49)
yields

O.*T’

(o) )
Mo (Z,8)  Cu(T, 5,0) flolzslo) .,
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implying 7(u|o) (47) to be independent @f. Consequently, the value @fo) in (47) must iden-
tically be zero, so that the consistency factor fiomiven fixed dispersion parameter must be a
constant, e.g.,

m(ulo) =1, (54)

regardless the explicit form of the sampling distributias well as the value of the fixed dispersion
parameter.

4.7. Inference about dispersion parameters

As for (u|o) in the previous subsection, also the consistency fact¢w$u) and (u, o) need

be uniquely determined. I§2.2 and§ 2.3 we stressed that an assignment of a pdf to a dispersion
parameter, given datume and a fixed location parametey can be split into two separate assign-
ments of (the same) scale parameter, each of the latter twg hether reducible to an assignment

of a pdf to a location parametgfo) = In o, given a fixed dispersion parameter (see equation (13)).
Then, according to the findings of the previous section (geéd)), we can immediately write the
appropriate consistency factor fafo):

w(s(o)lul =1,

so that (37) implies the factor for the original parametéo be of the form

(olp) = 7[5(0)|u] |5'(0)] =07, (55)

again regardless the explicit form of the particular sangptistribution, as well as the value of the
fixed location parameter.

The general form ofr(o|u) o~ " could have been obtained by solving functional equation (40
for scale transformationg, (o) = ao,

n(ac|u) = h(a) 7 (o),
where

h(a) =
When the observed is equal tou, the pdf, assigned to,

wolw) o1 _6(0)
o) 1 = Hlo L) = T

ko)

flolpzlo) =

cannot be normalized since the integral

o ’ ’ < do’
(o) = [ wlol) S = plue' ) do’ = 000) [T ST

clearly doesot exist for any reat. This, for if z = p the dispersion parametercannot be reduced
to a location parameter (rec§lR.3), is in perfect agreement with Theorem 4.

In the limit of complete prior ignorance about its value, g for the scaleparametew, given
fixed x and observed; # p, therefore reads:

fO (@1 |poll) ;a1 > p
FO(@r|poll) ;a1 < p

)

flolpar I5) oc m(o|p) x {
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which is equivalent to the pdf for thaispersionparametet,

Flolpa 1) o< wloli) f(ralpols) = 5 6(Z L) v

Following the steps of the example at the en@ 4f5, we update the pdf for the dispersion param-
etero by including a result:; of an additional measurement in our inference. The updatéd p
expressed in terms afands, reads:
Flolnaste) = T faalpar,) = —T—— G(I=2 2 (56)
CU(IZ‘,S,/J,) ga(i'ysyﬂ) o o

The value ofr in the consistency factor(u, o) (52) is then uniquely determined by invoking
the product rule (27) that relates the pdfo|zsl,) and f (o|uzsl,) as:

f(uolzslo) = f(olpzsl) f(ulTsls) (57)

with the marginal distributiorf (u|zs1,) standing for

flufast) = [ puo'\ast) do’ = s | e sl 1) o

’r],u,,a(i‘7 S
Expressingf (uo|zsl,) andf(o|uzsl,) in (57) according to (52) and (56) yields

—r 0.—1

e @) G | HTste)

g

which, since it is to be true for at € (0, c0), impliesr = 1, i.e., implies the consistency factor
7(u, o) to be
(o) =0t (58)

Throughout Subsections 4.5-4.7 we thus proved

THEOREM5. Axioms of probability (Assumption 2) and the Principle oh€istency combined
determine the form of consistency factafs:|c), 7(o|u) andx(u, o) uniquely up to an arbitrary
multiplication constant:

n(ulo) =1 and w(olp) =n(u,0) =0 1.

4.8. On unigueness and integrability of consistency factors

Provided the sampling distribution (7) is normalizableisistraightforward to verify that all the
pdf’s, involved in the derivations of the consistency fastare normalizable and thus satisfy the
basic requirements (3) and (28), imposed to probabilitiriigtions. No requirement of normaliz-
ability, however, has ever been imposed to consistencgifacsince the factors conceptually differ
from pdf's. Moreover,

THEOREM 6. None of the consistency factor§)) for scalar parameters that can be deduced
exclusively on the grounds of invariance of the samplingspdider Lie groups of transformations,
is normalizable, demonstrating in this way unambiguousdy the factors dmotrepresent any kind
of probability distribution, neither the sampling one nbat of our belief.
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The second important property of consistency factors tkeatvwant to address, is uniqueness:

THEOREM 7. The consistency factors for inference about a paramgtee unique in that if a
family I, of sampling distribution§14) is invariant under two Lie groups, say and H, then the
two groups lead to the consistency factagg6) andr, (0) that are identical up to a multiplication
constant,

™ (0) = kmy(6) . (59)

5. Calibration

Thus far, the theory of plausible inference about paramdtas been developed by following only
the Principle of Consistency, while the implications of @ygerational Principlél have not yet been
considered. According to the latter, in order to exceed ¢lrellof a mere speculation, our theory
of inference about parameters must be exposed, i.e., mugilbeéo make predictions that can be
verified (or falsified) by experiments.
Let therefore several values of a scalar random variate be sampled from a family, (14)

of sampling distributions. The valug of the scalar parametérof the family may arbitrarily vary
from one sampling to another. The predictions of the theogytlzen made in terms of probabilities

0;.2
P(@ (S (97;71, 91'72)|],‘1'Io) = f(0/|.137;10) d@’ =9 (60)
01

that given measured valug of the sampling variate, an intervi@; 1, 6; ») contains the actual value
0; of the parameter.

The interval for the inference of a particular valigés not unique: it can be the shortest of all possible
intervals, the central interval witR(0; < 0; 1|x:1,) = P(6; > 0;2]zilo) = (1 — §)/2, the lower-
most interval withd; 1 = 0,, the upper-most interval with; » = 05, or any other interval as long as
the probability (60) is equal to.

Our probability judgments are said to balibratedif the fraction of inferences with the specified in-
terval(6;,1, 6, 2) covering the true valué; of the parameter in the particular sampling coincides
with 6.
For sampling distributions whose cflf(x, 6, I, ) is either strictly increasing or strictly decreas-
ing in 0, a necessary and sufficient condition for calibrated infees reads (Fisher, 195%3.6,
p. 70):
fO|lzl,) = FFo(x,0,1,) (61)

where the upper (lower) sign is for cdf’s that are strictlm@sing (increasing) i@. It is easy to
verify that for the pdf’s, assigned to location and scaleapaaters by using the consistency factors
(54) and (55), the condition (61) is satisfied.

5.1. Lindley’s Theorem

The probability distributions for location, scale or disgen parameters that were assigned by
following the Consistency Principle, passed an importasit tthey are all calibrated. The question
can be raised whether there are any other types of parantiet¢rare also in accordance with the
calibration requirement (61)? We restrict the answer amlydrameters whose pdf can be assigned
according to the Consistency Theorem (34). By combiningwlieequations we obtain:

m(0) Fi(x,0,1,) £ ng(x) Fa(z,0,1,) =0, (62)
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where the upper (lower) sign stands for cdf’s which are tyridecreasing (increasing) ih By
defining functionG(x, 6) as a difference (sum),

G(x,0) = s(x) F 5(0) ,
with s(z) ands(6) being related tar(9) andng(z) as
§'(¢) = np(x) and 5'(6) = n(6) ,
equation (62) can be rewritten as
Fi(z,0,1,) Ga(z,0) — Fa(x,0,1,) G1(x,0) =0,

with G (z,0) = ne(x) andGs(x,0) = 7(0) being strictly positive functions (s€g8.4). But as we
saw in§ 2.3, the general solution of such a differential functioe@lation implies a cdf'(y, u, I.)
of the form

F(yauvlé) = (I)(y - N) )

corresponding to a cdf af = s(z) with © = +5(9) being a location parameter (10). Therefore,
in the limit of complete prior ignorancen inference about a parametérthat is subject to the
calibration condition(61), is necessarily reducible to an inference about a locatianameter
Note that this result was first obtained by Lindley (1958) lynbining the calibration condition
(61) and the Bayes’ Theorem with a prior pfifd| I, ) which is independent of data

Imagine that for a particular parameterization of a sangpliariatex: and the corresponding
parametef, sayy = s(z) andp = 5(0), a calibrated inference abog) exists, i.e., the cdf of
s(x), F(s(x),s(9),1}), solves equation (62),

7(5(6)] Fi (s(2), 5(6), 12)  Tuls(2)] Fa (s(x),5(6). 1) = 0. (63)

Here, 7[5(0)] is the consistency factor fa¥(#), while 7,[s(z)] is the appropriate normalization
factor for f (5(0)|s(x)1}). By differentiating equation (19) separately with resgect andé, (63)
can be expressed in terms®bf »(z, 0, I, ), instead off 5 (s(x), 5(6), 1}):

7[5(0)]|5(0)| Fi(,0, 1) £ 7uls(x)] |s(x)| Fa(z,0,1,) =0 (64)

Inference about will thus be calibrated (cf. (64) and (62)) if and only if

7[s5(0)] = m(0) [50)] " and 7ufs(x)] = mo(a) [s(x)] ",
which coincides with the rules (37) and (38) for transforimrabf the consistency and normalization
factors, with the arbitrary constahtin (37) and (38) being set to unity. Calibration of inference
about a parameter of a sampling distribution is thereforariant under arbitrary one-to-one trans-
formations of the sampling variate and the inferred paramet

Then, since every problem of inference about a paranfeteat is uniquely solvable within the
Principle of Consistency, is reducible to an inference alaolocation parametex = s(6), and
since the uniform consistency and normalization factde$d)] and7,[s(xz)] provide a calibrated
inference about, the inference aboutwill also be automatically calibrated.

The Principle of Consistency and the Operational Princgyke thus equivalent concepts for
determination of the consistency factors. First, they gieable under identical circumstances,
i.e., when the problem of inference is reducible to a proldémference about a location parameter.
Second, the consistency factor that solves the functianaton (40), based on the requirement of
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consistency, is identical to the solution of the calibmatiequirement (62). The equivalence of the
two Principles speaks in favour of complete reconciliatietween the (objective) Bayesian school
and the frequentist school of inference, the former payttenéion primarily to logical consistency
and the latter stressing the importance of verifiable ptixfis.

In order to avoid a frequent misunderstanding we shouldstieat a pdf, assigned to an inferred
parametep;, doesnot necessarily imply that the parameter is distributed adogrtb f(6;|x; I, ):
whatis distributed is our belief in different values éfvithin the parameter spaé® In practice, the
inferred parameters are usually fixed while unknown, butalaaq, at least in principle, arbitrarily
vary from one inference to another. In general, the assigiiédz; ) will therefore differ from
the true distribution of the parameté¥s Still, the calibrated pdf’s (0;|x; I, ) will correctly predict
the fractiond (60) of the confidence interva($, 1, 6; »), covering the true values.

5.2. Calibration and symmetry preserved under updating

In previous subsections we saw that a calibrated assigrohpritbability distribution to an inferred
scalar parametércan be assured éf is reducible to a location parameter The calibration of the
probability distributions, assigned to the inferred pagters, is preserved under updating:

THEOREM 8. Every updating of a calibrated probability distributionrfan inferred parameter
that is performed in accordance with Bayes’ Theorem, presethe calibration of the distribution.
The preservation of calibration can be connected to thegrkesd translation invariance under the
updating.

5.3. Predictive distributions
Imagine now a slightly different problem. Let = (z1,z2,...,2,) be a sequence of recorded
values of a continuous sampling variatevith the pdf f(x|01,). In the present subsection we are
interested in predicting values of the sampling variate #ra yet to be observed, rather than in
inferring the (unknown) value of the paramefeof its distribution. That is, given the collected
we are aiming at assigning a pfifz,,+1|xI,) to the possible values af, ;.

Suppose that the famili, is reducible to a family! that is parameterized by a location param-
eter, so that the consistency factdf)) can uniquely be determined, and that a pdf, basex, @an
be assigned t6:
() ) 17 ¢
o0 o) I f(ilor) .

=1
Then, the joint pdff (62,41 |xI,) can be factorized (cf. equation (30)),

fOlxIo) =

f(x|01,) =

J (021 |xL) = FOIXLL) f(@narl0xLo) = F(O]xLo) f(@ni1]0L0) |

and the pdff(x,+1|xI,) can be obtained simply by a convolution, i.e., by the mailga#on of
f(Ozni1lxLs),

f(nsr|xTo) = / F(0 2 |xL) dO (65)
©

It is important to note thaf (z,+1|xI,) stands for the distribution of our degree of belief in
different values ofr,,,1: in the context of the prediction of the future valuexfz,,; is not a
sampling variate, so that(z,+1|xI,) will in general differ from the observed distribution of the
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future values of the sampling variate However, in the same way as for Theorem 8, we can prove
that the future values af, predicted according to (65), will still be calibrated: flvbabilities

Tq
P2y € (e, 2a)[x]) = / (@ XI,) dey

will always coincide with the relative frequency of intelséz., x ), covering the observed future
values ofz in the long run.

6. Conclusions

This article presents a theory of probabilistic inferenbela the parameters of sampling distribu-
tions. A special attention has been payed to assignmenbbipility distributions to the inferred
parameters, with such an assignment representing nahdahdispensable starting point in every
inference about the parameters. In order to be internatigistent, the assignments must be made
in accordance with the Consistency Theorem (34). The forthe@fTheorem is very similar to the
form of Bayes’ Theorem (33) that is used fgrdatingthe assigned probability distributions, but we
stressed an important difference between the two. WhileaiypeB’' Theorem the prior probability
f(0)z11,) represents a distribution of credibility among differeatues of the inferred parameter
0, m(9) in the Consistency Theorem is just a proportionality fathatby no meansepresents any
kind of probability distribution.

The requirement of consistency uniquely determines tha fufrthe consistency factors only in
those inferences that are reducible to inferences aboatitocparameters of sampling distributions.
Since, according to Lindley’s Theorem, correct verifiabtedictions can only be assured under
the very same condition, the requirement of reducibilitesioot restrict the class of sampling
distributions with possible consistent and calibratedriehce about their parameters.

The theory is operational in the sense that it is verifialenftong range consequences. Within
the theory, all inferences are calibrated: in the long roe ftaction of the confidence intervals, con-
structed on the basis of (posterior) probabilities, thaktcthe true values of the inferred parameters,
always coincides with the probability contents, assigmeitiése intervals. This is a very important
feature that permits for a reconciliation between the fegtjist and the Bayesian approaches to in-
ference, probably the same kind of reconciliation that Kain@d949) had in mind: “Neither party
can avoid ideas of the other in order to set up and justify apzehensive theory.” In this way,
the distinction between thieory of probabilityand that ofstatistical inferencenay be removed,
leaving a logical unity and simplicity.
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Appendix: Proofs of Theorems and Lemmata

A.1. Proof of LEMMA 1
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If a pdf of a sampling variate is of the form¢(z, #), the assumed invariance of the distribution
underg implies the same type of distribution(g, (), g.(6)), of g.(z), forall g, € G andg, € G.
The distribution of the transformed variateon the other hand, reads

FWvL) = é(,0) s/ (@)| " = d(y,v) (66)
Then, since
ha(y) = s{ga[s T ()]} = slga(2)] and ha(v) = 5{gal5 ()]} = 5[3a(0)]  (67)
forall h, € H andh, € H, the pdf ofh,(y), givenh,(v), f(ha(y)|ha(v)I)), is equal to
£ (sl9a(@)]15[72(OV) = ¢(9a(2),3a(0)) |5'[ga(@)]| ",

which, by (66) and (67), is further equaldd s[g,(2)], 5(Ga(0)]) = &(ha(y), ha(V)).

A.2. Proof of LEMMA 2
Indeed:

P 50),12) = Plstea). 50, 1) = [ )f(y’lg(ﬂ)lé)dy’

5(@) B
z/ o(a',0) |5 (x ‘ )]
—:I:/gbxﬁ

=+F(x,0,1,),

where the positive and the negative sign corresporid(to) > 0 and tos’(z) < 0, respectively.
Settingx to the upper bound;, of its range, the above equation reads:

F(s(xb),é(ﬁ),lé) — F(s(xa) 5(0), I') +F(xp,0,10) = +1.
Since the cdf’s are limited withifo, 1], this completes the proof of the Lemma by implying

0; g'(z) >0
1; ¢(x)<0

15 ¢'(x)>0

F(s(ma),§(9),l(')) = { 0. d@)<0 o

and F(s(x),5(0),10) = {

A.3. Proof of LEMMA 3
Letg(-,boa) = gr.a € G denote a composition of group elements, a) = g, andg( -, b) = gs,
such that

g(x,bo a) = g[g(x,a),b] .

When differentiated with respect tq the above equation reads:

92(r,b00) (b0 0) = galg(a,0). b g2(z0)

with existence of the derivative db o a) being guaranteed by the requirement®mo be a Lie
group (see, for example, Elliot and Dawber, 1988,1, p. 126). Since the above equation is valid
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for arbitrarya andb, it is also to be valid fob = a~! (here,a~! is the index of the inverse af,),
so that

g0, =oa)  =als@a).bl|_ e,
wherec = b o a. The left-hand side of the above equation is identicallypzkre to the premise of

the Lemma,
0
B PG

c=e

92('7:76)

On the right-hand side, however, the first term,

nlote.@ |, =) = a0 ) £0.

b=a—1
is non-vanishing for all admissible values of the indeand of the variate) = g.(z) € X (all
group transformations (15) are necessarily one-to-oneall&2.3), so that

B
go(z,a) = aga(x) =0

is implied for all permissible, i.e., g,(z) is permitted to be a function af only, sayh(z). When
ge(x) = x is invoked, this further mearigx) = = and the Lemma is proved. O

A.4. Proof of LEMMA 4

The proof of the Lemma is accomplishedggluctio ad absurdurgo let suppose that there exists a
value offy € © for which the partial derivative (22) vanishes. Then, sitheesampling distribution
is invariant undeiG, equation (20) applies which, when differentiated withpexs toa and set
afterwards: = e, yields

0

0
Fl(x7 97 IO) %ga(x)

= —FQ(.’E, 07 IO) %ga(g)

a=e a=e

The second term on right-hand side of the above equatioslhasiford = 6, which, when strict
positivity of Fy (z, 0, I,) = f(x|01,) is invoked, implies

0
%ga(x) =0 ; VzelX.

a=e

This means, according to Lemma 3, that all transformatigns G of X are trivial, which is in
direct contradiction with the premises of the Lemma, so thafproof is completed. O

A.5. Proof of THEOREM 2
The assumed invariance of distribution (9) implies thetexise ofy = g,(x) andv = g, (0), such
that

flylvls) = o(y —v),

with ¢, andg, being elements of the grogpand the corresponding induced gra@irespectively.
Then, due to equation (10), the cdfpfeads

F(y,l/,O',Io):(I)(y—V) .
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In addition, according to Lemma 2, the cdf (10)20énd that ofy are related as

e e >0
q’(y_”)‘{l—q><x—u>;g;(x><o

If differentiated with respect ta, the relation between the cdf’s yields

¥l 0) | 5l - o] =0,

implying 5 5
%ga(x) = %ga (1)

for all y andv with non-vanishingd’(y — v) = f(y|vol,). Then, the two derivatives can only
depend om, but not onz or . Parameterizing this dependencelbf) = dh(a)/da yields

ga(x) = h(a) + k(z) and ga(p) = h(a) +1(n) ,
which, whena is set to index of the unity element, further gives
k(z) =z —h(e) and I(u) =p— h(e).

Finally, since the elements of the groupandg can be re-enumerated according ta h(a)—h(e),
we obtain

g(x) =x+b and Gy(u) =p+b,
while the invariance of the sample and the parameter spaga&s X = (—oo0,00) and® =
(—00, 00). O

A.6. Proof of THEOREM 3
Let the pdf ofz givend = 64, f(x|611,), be denoted by(x, 6,), and let the pdf fop atd = 6,
given the observation € (x1, x1+dx), whose general form we would like to determine, be denoted
byw(l‘l, 91):

¢($1,91) = f(01|.23110) . (68)

In addition, let another value of, independent of the first one, be recorded in an intevalzs +
dzx), with the appropriate likelihood density being

f(z2|b1211s) = f(x2|011) = d(x2,61) .

In §3.2 we saw that the only way of updating pdf #that is consistent with the adopted rules,
in particular with the product rule (30), is the one in ac@rce with Bayes’ Theorem (33). With
f(0)z11,) taking the role of the prior pdf fo#, the pdf posterior to including, into our reasoning
aboutd is thus written as:

Y(x1,01) p(x2,01)

Co(z1, 22)

f(91|1‘1$210) = (69)
with the normalization constag(x1, x2) being

Colar, ) = / P(1,0) (o, 0') O
e
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Nothing prevents us from reversing the order of taking the pieces of informationg; and
x2, into account, which results in the following pdf fér

w(a"Qa 91) ¢(x1a91) )

0 I,) = 70
f(O1|z22115) S, 0) (70)
Moreover, the Consistency Princigleequires equality of the two results, (69) and (70):
f(Or|z12215) = f(O1|z22115) ,
i.e., it requires
Y(x1,01) p(x2,01) _ Y(x2,01) p(x1,01) (71)

Co(w1,72) Co(z2,71)
We distinguish two cases:
Caste 1. None of the pdf's, assigned to the inferred parameteiishias in (71). Then, due to
the imposed continuity ofy(z, 8) (Assumptions 3), and due to the normalization condition),(28
there exist®), £ 6, for which none of the terms in

U(x1,02) P(w2,02)  Y(w2,02) p(x1,02)

= 72
Co(1,22) Co(x2,71) (72)

vanishes, either. Dividing equations (71) and (72) resnlts
li(],‘l,@l) _ n(xg,ﬁl) 7 (73)

k(z1,02)  K(z2,02)
where
Y(z,0)
¢(x,0)
Clearly, in order to ensure equality in (73) for all possitsgdues ofzr; andz,, the left-hand and
the right-hand side of the equation must be independent ahdx-, respectively, but may depend

on the value®, andf, of the parametef. Taking this dependence into account by introducing a
functionh (61, 62), we obtain

k(z,0) =

k(z,01)
K/(x702) - h(01502) )
further implying factorizability ofa (61, 62),
_ m(6h)
h(61,02) = )
so that
K(z,01) _ k(z,6) _ 1
m(61) m(02) — m(z)’
and finally
(0)
¢ x79 = x)e 3
(,6) = o055 #:0)

which, when written in terms of generic pdf’s, reduces to)(34
CASE 2. One of the two pdf’s assigned to the inferred parametgr,®(xz2, 61), is zero. Then,
according to (71))(x1, 61) must vanish for alk; € X.
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Note that within the theorem and its proof, batlandd may be multi-dimensional variatess

A.7. Proof of THEOREM 4

Suppose for a moment that a pdf fér f(0|zol,), can be assigned td € © based onzy €
X — X C X for which the partial derivative (21) vanishes. Then, siti sampling distribution
is invariant under a Lie grou@ of transformations, the distribution assignedtis invariant under
the induced Lie groug so that the equation (43), concerning the ébfr,, 6, I,,) for 0, is valid.
When differentiated with respect toand set afterwards = e, (43) further implies

= — Hy(z0,0, I,) %ga(e) . Y0eO,

a=e

0
Hl(xO) 0) IO) %Qa(xo)

a=e

whose left-hand side vanishes due to the premise, adopthd beginning of the proof. Since, by
Lemma 4, the second term on the right-hand side does nottvanisvhere or®, Hs(zo, 0, I,) =
f(0)zo1,) must vanish for alh € O, which is incompatible with the normalization requirement
(28). Therefore, the assumed existence @flxo I, ), based oy with vanishing derivative (21),
inevitably leads to inconsistencies and is thus ruled out. 0O

A.8. Proof of LEMMA 5

The consistency factors can only be determined up to anranpimultiplication constant, so that
no generality is lost by choosing the factor such th@tc) = 1. In addition, if (46) is to be true
forall u, b € (—o0, ), it must also be true far = —p when it reads

7(0) = k(—p) w(ulo) = 1.

By construction, consistency factors dot vanish anywhere where defined (recall Theorem 3 and
its proof). Non-vanishing (¢|o) thus implies

1
k(b) = ————
0=
which, when inserted to (46), further yields
m(u+v|o) = w(ulo) 7 (v|o) ,

whereu = x + b andv = —b. The latter functional equation is of Cauchy’s type (Caud897,
Part 1, Chapter \§ |, pp. 98-105; see also Aczél, 196&2.1.1-2.1.2, pp. 31-42) and its most gen-
eral continuous solutions are

m(ulo) = exp{—qp} and w(ulo) =0,
wheregq is an arbitrary constant. Finally, the latter of the two $iolos is ruled out by requirement
(28). O
A.9. Proof of LEMMA 6

Forb = —au equation (50) reads

7(0,a0) = h(—ap, a) w(p, o) (74)
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which, fora = o1, further reduces to
m(0,1) =h (—po~ ", 07") n(p,0).
Choosingr(0,1) = 1 leads to

1
h(u,v) = ————— . YueR and Vv eR",
m(—uv=1 v=1)

which, when inserted to (74), yields

m(p, o) =7 (p,a ') 7(0,a0) .
By settinga = 1 we obtain
(1, 0) = E(p) Qo) ,

where
E(w) =m(u,1) and Qo) =7(0,0) .

Thatis,n(u, o) is factorizable and, consequentlyp, a) is factorizable, too:

1
E(—ba ) Q@)

h(b,a) =

Applying the factorizability to (50) and setting= o ~* andb = 0 then yields
Z(no™t) =Ep) ,

which implies=(p) be a constant, e.g=(u) = 1, and so

m(u,0) = Qo) and h(b,a) = IRk

As aresult, (50) reduces to
Q(uv) = Q(u) Q(v)

(v = aoc andv = a~1), which is again a Cauchy’s functional equation (Cauchyg7l&art 1,
Chapter V§ I, pp. 104-105) whose most general continuous solutions are

Qo)=0"" and Qo) =0

(r is an arbitrary real constant). As before, the trivial soln€2(c) = 0 is ruled out by invoking
normalization requirement (28). 0O

A.10. Proof of THEOREM 6
To verify the Theorem, suppose for a moment that the oppissitae, i.e., that

/71'(0') df’ < <. (75)

S}

Then, according to Theorems 1 and 4, every scalar parafmetéh the corresponding consistency
factor determined uniquely by the underlying symmetry uralé&ie group of transformations, is
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reducible to a location parameter= 5(9), with the two consistency factors,(6) and 7 (u|o),
being related according to (37),

T(plo) dp = km(0)do
wherek is an arbitrary (finite) constant. The supposed existendbefntegral (75) thus implies
integrability of 7 (1) over the corresponding parameter spate

/%(u'|0) dy' = k/w(@') df < . (76)
M 6

If, on the other hands(u|o) can be determined exclusively by invoking the translatigmmetry,
the domainM of 7(u:|o) must be invariant under the group of translations, i.e.,Listmange over
the entire real axis. But then, singéu|o) « 1, the integral

[Fuloran = [~ aw (77)

M -
clearly doesotexist. By realizing an evident contradiction between (#8) é&/7), we can conclude

that the supposed normalizability of consistency facté® {nevitably leads to inconsistencies and
is thus ruled out. 0O

A.11. Proof of THEOREM 7
Recall Theorems 1 and 4, stating that if a consistency fasttr be deduced solely by invoking
invariance of a sampling pdf(0|x1,), the problem of inference must be deducible by one-to-one
transformations to an inference about a location paranieteall also (24) and (26)). Let= y(z),
uw = p(d), z = z(x) andv = v(6) be such transformations, the former two correspondingeo th
invariance of the pdf undey, and the latter two to the invariance undér so that, according to
(26), B

F(z,0,1,) =®(y—p) =(z—v). (78)
By transitivity of one-to-one relations, = z(y) andv = v(u) are also one-to-one. Consequently,
by differentiating (78) separately with respectit@nd i, and by dividing the two resulting equa-

tions, we obtain
dz Ov

Oy ou’
If this is to be true for ally andy, it must further be equal to a constant, say
Above we learned that sampling distributions (9), deteedihy location parameters, can only
be invariant under one Lie group, that of translations (Taen2), and that such an invariance
uniquely determines the form of the consistency factor3. (6énsequentlyr, (u|o,,) exists and is
unique, and so ig,(v|o,). The two consistency factors are relateal (37),

ov|—1 k
dFp_Lr ). 7
aM |C|7T£](:U|U}) ( 9)

The factorst, (u|o,) andm,(6), as well as the factors, (v, ) andm, (6), are also related by the
same equation (37):

Th(vloy) = k7y(ulo,)

-1

~ 0

To(ulon) = kimy(0) a—’g : (80)
ov| ™

T(vloy) = komn(0) 20 (81)
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By invoking (79) and
v _ v ou _ On
00  ou o0 00’
(81) can be rewritten as

QH -1

90
which, when divided by (80), finally yields (59). -

B uloy) = Fam(0)

A.12. Proof of THEOREM 8

It is enough to prove the Theorem for the location parametef the sampling distribution of the
form (9), where the dispersion parameteis fixed, sayc = 1. Suppose, therefore, that we have
collected a sex = (x1, 2, ...,x,) (n > 2) of independent measurements from (9). By using the
Consistency Theorem (34) for the assignment of a pdf to tfegred parametes, and the Bayes’
Theorem (33) for its sequential updating, we obtain

flulxoly) o< w(plo) f(x|pol,) (82)

where

n

fecluote) =TT fwilnot) = [T ot — p)

=1

while the appropriate consistency factd:|o) is independent of either or o (54).

We introducen linear combinationsy ands = (s, . .., s,—1), of the measured set,
;= zn: and T;i=1 1
T=—-)> x; i=r—r;1=1,...,n—-1,
n 4 j S Z i1 n
Jj=1
so that

Ti—p=—pu+s; t=1...,n—-1

n—1
Ty — U= — U— E Sj -
Jj=1

Since
n—1 n—1
oo te) o sl ) o7 - = sy ) - [L ot~ ot-5) (83)
j=1 i=1
the pdf (82) can be rewritten in terms @fands:
Flulasals) = P17 pasiual,)
Cu(x’ s,0)

According to the product rule (1), the likelihood densityzs|uol,) can be decomposed as

f(@s|pols) = f(s|pols) f(Z|spols) .
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By introducingu = &’ — , it becomes obvious thdi(s|uo I, ) is independent ofi,

foluot) = [~ p@siporyar = [~ ofu- Z) L otu+ sihdu = s6sote)

-0 j=1 i=1

and can be included in the normalization constaitt, s, o):

T = 771-('“'0) s|o T|suo = 771-('“'0) T|spo
flulisole) = o5y Felole) falsol) = === f(@lspol).

The remaining likelihood density,(z|suol,), is of the form

) F(@s|pol,) i noloy ool o
[(@|spol,) = F——=5 ¢<a? o e E Sj) : H o(x —p+s) =T — p,8),
j=1 i=1

S, 0

f(slpols)
so that the updated pdf farreads

f(plzsolo) oc w(plo) f(Tlspols) = m(ulo) ¢(Z — p,s) - (84)
The cdf ofz, giveny, s ando,

Fapsol) = [ f@lsol)dd = [ 66 - ps)ds',

can be explicitly written as

T—p
F(z,pu,s,0,15) :/ d(u,8)du=®(T — p,s) .
Then, equation (84) can be rewritten as
FQ(IE,M,S,O’, IO) = _M Fl(j7uasyo—v IO) s
Cu(Z,s,0)

which, with the appropriate(u|o) = 5M(:f, s,0) x 1, satisfies the calibration condition (62).

Note that the updated pdf for is in general also a function &f, i.e., except for some very
special sampling distributions like, for example, the Gdaus, z is not a sufficient statistifor .
However, the pdf is calibrated fewverypossibles, so that the proof of invariance of the calibration
under updating is completed.

The preservation of calibration can also be connected tpibserved translation invariance of
inference under updating. Namely, simultaneous locatemsformations

x; —— x;+b; i=1,...,n; b€ (—o00,00), (85)
imply
T —— T+D,
s —— s,

so that (83) is clearly invariant under simultaneous traishs (85) of the measured values of the
sampling variate, and of the inferred parameter,

W —— u+b.
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