

What do the next 10 years have in store?

... For long-baseline neutrino experiments

Mark Scott UK HEP Forum 2019

Neutrinos beyond the Standard Model

 $\cos\theta$

Neutrinos oscillations

 $\mathbf{0}$

- Flavour and mass eigenstates
- Oscillation probability is function of neutrino energy, E, and propagation distance L
- Measure flavour composition of beam as function of L / E

$$\begin{pmatrix} \nu_{e} \\ \nu_{\mu} \\ \nu_{\tau} \end{pmatrix} = \begin{pmatrix} U_{e1} & U_{e2} & U_{e3} \\ U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\ U_{\tau 1} & U_{\tau 2} & U_{\tau 3} \end{pmatrix} \begin{pmatrix} \nu_{1} \\ \nu_{2} \\ \nu_{3} \end{pmatrix}$$
$$\sqrt{1/6} \sqrt{1/6} \sqrt{1$$

Neutrinos oscillations

$$U = \begin{pmatrix} 1 & 0 & 0 \\ 0 & c_{23} & s_{23} \\ 0 & -s_{23} & c_{23} \end{pmatrix} \begin{pmatrix} c_{13} \\ 0 \\ -s_{13}e^{i\delta} \\ -s_{13}e^{i\delta} \\ \hline \begin{cases} c_{ij} = \cos \theta_{ij} \\ s_{ij} = \sin \theta_{ij} \end{cases}$$

- Three mixing angles, θ_{12} , θ_{23} and θ_{13}
- Two mass splittings, Δm_{12}^2 and Δm_{23}^2
- One CP-violating phase, δ_{CP}
 - Majorana phases have no effect on oscillations

0

Long-baseline neutrino experiments

- Leading order oscillation probabilities for v_{μ} survival and v_{e} appearance

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \cong 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)$$

$$P(v_{\mu} \rightarrow v_{e}) \cong \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E}\right)$$

Long-baseline neutrino experiments

- Leading order oscillation probabilities for v_{μ} survival and v_{e} appearance

$$P(\nu_{\mu} \rightarrow \nu_{\mu}) \cong 1 - \sin^2 2\theta_{23} \sin^2 \left(\frac{\Delta m_{32}^2 L}{4E}\right)$$

$$P(v_{\mu} \rightarrow v_{e}) \cong \sin^{2} 2\theta_{13} \sin^{2} \theta_{23} \sin^{2} \left(\frac{\Delta m_{31}^{2} L}{4E}\right)$$

- Need to sample spectrum at different values of L/E
- Build two detectors
- One close to neutrino source
- Other at maximal oscillation

Current experiments

- T2K and NOvA are leading long-baseline neutrino oscillation experiments
- 500 700kW beam power
- Far detector masses of 10s of kilotonne

What they measure

• Muon-like neutrino candidates (left), electron-like candidates (right) circa 2017

What they measure

- Muon-like neutrino candidates (left), electron-like candidates (right) circa 2017
- Suppression in muon neutrino sample driven by $\sin^2\theta_{23}$, Δm^2_{23}

What they measure

- Muon-like neutrino candidates (left), electron-like candidates (right) circa 2017
- Suppression in muon neutrino sample driven by sin²θ₂₃, Δm²₂₃
- Increase in electron neutrino sample driven by $\sin^2\theta_{13}$, δ_{CP} and mass ordering

Current status - v_µ

Consistent picture for θ₂₃ emerging
 – hints that it is not maximal?

J. Walcott, Fermilab User's Meeting, 2019

Current status - v_u

- Some sensitivity to δ_{CP} plots show significance for excluding given value of δ_{CP}
 - Continuous parameter, $3\pi/2 \equiv -\pi/2$
 - 2σ exclusion of CP conservation at T2K

What don't we know?

What don't we know?

What don't we know?

- T2K exclusion coming from excess of electron-like neutrino events
- Statistics limited!

Future long-baseline experiments Liquid argon TPCs as far detector (up to 40 kilotonne) 1300km baseline DEEP UNDERGROUND Few GeV neutrino energy **NEUTRINO EXPERIMENT** 1000+scientists laboratories countries and universities 800 miles/1300 km Sanford Underground Fermi National **Research Facility,** Accelerator Laboratory, South Dakota Illinois

M. Scott, UK HEP Forum 2019

Imperial College

London

Liquid argon detectors

- Two detector designs
 - Single phase
 - Dual phase
 - Gas region above liquid argon
 - Additional amplification of ionization

- Largest cryogenic LAr detectors in existence
- Prototypes of both detectors at CERN
- Full-scale test of LAr detector components
 - Full drift distance

Liquid argon detectors

Construction of the inner cryostat

Liquid argon detectors

DUNE physics

- Difference between electron neutrino and electron anti-neutrino appearance probability larger at lower energies
 - $\Delta m^2 L/E = 3\pi/2$, second oscillation maximum

DUNE sensitivities

- 5σ sensitivity to CP violation after 7 years (best case $\delta_{CP} = -\pi/2$)
- $7^{\circ} 17^{\circ}$ precision on δ_{CP}

75% of δ_{CP} values Normal Ordering **Nominal Analysis** $-\sin^2 2\theta_{13} = 0.088 \pm 0.003$ 10 θ₁₃ unconstrained $sin^2\theta_{23} = 0.580$ unconstrained **DUNE Sensitivity** 7 years (staged) **All Systematics** 10 years (staged) 40 15 years (staged) Normal Ordering Nominal Analysis ${\rm sin}^2\!2\theta_{13}^{}\,{\rm = 0.088\pm 0.003}$ ······ θ₁₃ unconstrained $35 - \sin^2 \theta_{23} = 0.580$ unconstrained δ_{CP} Resolution (degrees) 7 years :10 years 30 DX 10 25E 20 15 5 years -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 8 10 12 14 δ_{CP}/π Years

R. Patterson, Fermilab JETP Seminar, Aug 2nd 2019

DUNE sensitivities

R. Patterson, Fermilab JETP Seminar, Aug 2nd 2019

• 5σ sensitivity to mass ordering after 1 year (assuming NO)

M. Scott, UK HEP Forum 2019

Imperial College London

Future long-baseline experiments

- Water Cherenkov far detector (188 kilotonne)
- 295km baseline
- 0.6 GeV neutrino energy
- Included in MEXT budget request September 2019!

Hyper-Kamiokande

A gigantic detector to confront elementary particle unification theories and the mysteries of the Universe's evolution

Hyper-Kamiokande

- Upgrade of the T2K far detector and beam
 - Fiducial volume, 22.5kt to 188kt
 - 0.5MW beam power to 1.3MW
 - Improved photosensors with twice the quantum efficiency
- Combined factor ~20 increase in statistics compared to T2K

Hyper-K

J-PARC Accelerator Complex

Hyper-Kamiokande events

Hyper-Kamiokande physics

- >5 σ sensitivity to observe CP violation in lepton sector for >50% of possible values of δ_{CP}

Hyper-Kamiokande physics

- $3 7\sigma$ to mass ordering, depending upon true values of δ_{CP} and $\sin^2\theta_{23}$ and including atmospheric neutrinos in analysis
- Similar octant sensitivity to DUNE

CP violation in ten years?

- DUNE due to switch on in 2026, Hyper-K in 2027
- In most optimistic case, 3σ evidence by 2028 and 5σ observation by 2031
- Next generation experiments will be limited by systematics, not statistics

Neutrino oscillation systematics

T2K 2019 Oscillation results

	1-Ring μ		1-Ring e			
Error source	FHC	RHC	FHC	RHC	FHC 1 d.e.	FHC/RHC
SK Detector	2.40	2.01	2.83	3.79	13.16	1.47
SK FSI+SI+PN	2.20	1.98	3.02	2.31	11.44	1.58
Flux + Xsec constrained	2.88	2.68	3.02	2.86	3.82	2.31
E _b	2.43	1.73	7.26	3.66	3.01	3.74
$\sigma(u_e)/\sigma(ar u_e)$	0.00	0.00	2.63	1.46	2.62	3.03
$NC1\gamma$	0.00	0.00	1.07	2.58	0.33	1.49
NC Other	0.25	0.25	0.14	0.33	0.99	0.18
Osc	0.03	0.03	3.86	3.60	3.77	0.79
All Systematics	4.91	4.28	8.81	7.03	18.32	5.87
All with osc	4.91	4.28	9.60	7.87	18.65	5.93

- Uncertainty on ratio of electron appearance to anti-electron appearance ~= uncertainty on δ_{CP}
- Cross-section uncertainties dominate

Example – 2p2h interactions

- Similar to CCQE
- Neutrino interacts with correlated pair of nucleons

Example – 2p2h interactions

- Similar to CCQE
- Neutrino interacts with correlated pair of nucleons
- Reconstructed neutrino energy is biased, therefore oscillation parameter measurement is biased (or has large uncertainty)

DUNE-PRISM and IWCD

- Near / intermediated detectors for DUNE / HK
- Span a range of angles off the centre of the neutrino beam
 - DUNE-PRISM horizontal, ~35m
 - IWCD vertical, ~50m

IWCD

PRISM concept

- Measure neutrino interactions at multiple off-axis positions
- Neutrino flux changes with position

v beam

PRISM benefits - 1

DUNE study - C. Vilela, G. Yang

- Near detector along same axis as far detector
 - Standard analysis tunes MC to match data, used to predict far detector rate
 - Incorrect tuning (due to energy mis-reconstruction) bias oscillation result

PRISM benefits - 1

DUNE study - C. Vilela, G. Yang

- Can test tune ('Nominal MC' here) by comparing to data at point further off-axis
- Clearly see model does not agree model tuning wrong / model incomplete
 - Flag that there is something amiss, but doesn't solve it

all off-axis fluxes

۲

Same detector measuring

Can weight and combine

different off-axis 'slices'

PRISM benefits - 2

- Same detector measuring all off-axis fluxes
- Can weight and combine different off-axis 'slices'
- Produce Gaussian energy distribution

- Measure at a known energy
- Map out true-reco relationship
- Energy range determined by off-axis range

Linear Combination, 1.2 GeV Mean

PRISM benefits - 3

Can have different linear combination

PRISM benefits - 3

- Can have different linear combination
- Recreate oscillated flux
 using near detector data

 Use data to directly predict oscillated spectrum (red)

- Backgrounds (green) can be measured in-situ
- Oscillation analysis minimally dependent on neutrino interaction model

PRISM benefits - 4

- Fit ND v_e flux
 - Directly measure electron/muon cross-section ratio

- Sterile neutrino searches
 - >5 σ exclusion of LSND
 - Oscillation vs off-axis angle

Summary

- Neutrino oscillation physics entering the precision era
- Next generation of long-baseline experiments will measure last unknown parameters in PMNS
 - Experiments will be systematics dominated
 - Major challenge facing community
 - New detector ideas (PRISM etc.) essential to address this
- Ultimate goal is precision neutrino physics
 - Model building / rejection for theory
 - Direct searches for (more) new physics
 - Unitarity measurements in PMNS
 - Non-standard interactions
 - Proton decay
 - Sterile neutrinos, Lorentz violation, etc.

- 1. Is the mass hierarchy "normal" or "inverted?
- 2. Do neutrino oscillations violate *CP* symmetry?
- 3. What is the "octant" of θ_{23} ?

- 1. Is the mass hierarchy "normal" or "inverted?
- 2. Do neutrino oscillations violate *CP* symmetry?
- 3. What is the "octant" of θ_{23} ?

- 1. Is the mass hierarchy "normal" or "inverted?
- 2. Do neutrino oscillations violate *CP* symmetry?
- 3. What is the "octant" of θ_{23} ?

- 1. Is the mass hierarchy "normal" or "inverted?
- 2. Do neutrino oscillations violate *CP* symmetry?
- 3. What is the "octant" of θ_{23} ?

- 1. Is the mass hierarchy "normal" or "inverted?
- 2. Do neutrino oscillations violate *CP* symmetry?
- 3. What is the "octant" of θ_{23} ?

Searches for new Physics: NSI's

NSI's ←→ new physics at high scales Which are integrated out Z', new scalars, ... → ε_{ii}

$$\mathcal{L}_{NSI} \simeq \epsilon_{lphaeta} 2\sqrt{2}G_F(ar{
u}_{Leta} \ \gamma^{
ho} \
u_{Llpha})(ar{f}_L\gamma_{
ho}f_L)$$

$$\begin{split} \frac{d\sigma}{dT}(E_{\nu},T) &= \frac{G_F^2 M}{\pi} \left(1 - \frac{MT}{2E_{\nu}^2} \right) \times \left\{ \left[Z(g_V^p + 2\varepsilon_{ee}^{uV} + \varepsilon_{ee}^{dV}) + N(g_V^n + \varepsilon_{ee}^{uV} + 2\varepsilon_{ee}^{dV}) \right]^2 + \\ &\sum_{\alpha = \mu,\tau} \left[Z(2\varepsilon_{\alpha e}^{uV} + \varepsilon_{\alpha e}^{dV}) + N(\varepsilon_{\alpha e}^{uV} + 2\varepsilon_{\alpha e}^{dV}) \right]^2 \right\} \end{split}$$

Barranco et al. 2005

$$|\epsilon| \simeq \frac{M_W^2}{M_{NSI}^2}$$

→ Competitive method to test TeV scales ε = 0.01 ← → TeV scales

M. Lindner, MPIK

Neutrino Twon Meeting @ CERN, Oct. 22-24, 2018

18

NSIs interfere with Oscillations

interference in oscillations $\sim \epsilon \quad \overleftarrow{\leftarrow} \rightarrow \quad FCNC \text{ effects } \sim \epsilon^2$

M. Lindner, MPIK

Neutrino Twon Meeting @ CERN, Oct. 22-24, 2018

NSI: Offset and Mismatch in θ_{13}

Neutrino Twon Meeting @ CERN, Oct. 22-24, 2018

M. Scott, UK HEP Forum 2019

M. Lindner, MPIK

53

Liquid argon neutrino detectors

- Ionization readout planes
 - Wire planes on anode 2 induction, 1 collection
 - 180kV potential
 - High resolution 2D reconstruction
- Light collection for 3rd dimension
 - Measures time of interaction
 - Scintillator bar with silicon photomultiplier readout

SIPN Array

128 nm LAr scintillation light

430 nm shifted light from plate

Neutrino cross-section measurements

- High energy (>10 GeV region) data and theory agree quite well
- Lower energy (~1 GeV region) a lot more variation
 - Very hard to calculate and (very) hard to measure directly

Why can't we just measure it?

M. Scott, UK HEP Forum 2019

Simulated data studies

- Choice of interaction model changes mapping between true and reconstructed energy
- .Near detector fit attributes data MC difference to wrong interaction
- .Predicted true energy spectrum is incorrect
- .Measured oscillation parameters are biased
- .At T2K I study these biases using simulated data
- .Generate simulated ND280 and SK data samples using a different crosssection model
- •Fit ND280 simulated data with nominal MC
- .Fit SK simulated data using ND280 fit result
- Compare oscillation parameter contours to expectation from nominal fits

Oscillation contours

.Results from oscillation fit – likelihood contour for $sin^2\theta_{23}$

- .Assume normal mass ordering and apply reactor constraint on $sin^2\theta_{13}$
- .Blue expected nominal contour
- .Red simulated data contour

.True value of $\sin^2\theta_{23} = 0.45$

.Bias towards more maximal mixing

PRISM benefits - 3

- Mock data analysis at T2K
 - Addition of multi-nucleon events to mock data
 - Analysis MC without multi-nucleon events
 - Biased values of θ_{23} measured

- Identical analysis with E61
 - Multi-nucleon events added to mock data
 - Not MC
 - Linear combination applied
 - Measured θ_{23} unbiased

- Theory and experimental community working to produce better models
- •e.g. SuperScaling v2 + MEC model Amaro et al. (arXiv:1603.08396)

- Tune to electron scattering data, ongoing comparison to neutrino scattering
- New experiments + techniques
- Liquid argon (right)
- Transverse variables
- Momentum-Energy transfer
- •Will improve situation in future is it enough?

Imperial College 2p-2h events

- Many different theoretical models
- . Two shown on right
 - ~15% of CCQE-like cross-section
- · Predict different rates for neutrinos vs anti-neutrinos
- Direct 'CP-violating' systematic

T2K detectors

Near, Off-axis detector (ND280)

- Two fine-grained detectors (FGDs)
- .FGD1 Fully active carbon target
- .FGD2 Active carbon and passive water layers
- Magnet + three TPCs
- Particle charge + momentum via curvature
- .Particle ID from dE/dx 0.2% mis-ID rate

Super-Kamiokande (SK)

- Large water-Cherenkov detector
- .~11,000 20" PMTs in inner detector
- .22.5 kT fiducial volume
- Separate electrons and muons by ring sha
- .Mis-ID <1%
- No sign selection

Off-axis beam and detector 20

Moving off axis:

Lower peak energy

.Smaller high energy tail

Less energy spread

ND280 Off-axis detector (ND280): •Fine-grained target (FGD) •Magnet + TPC

Characterise neutrino beam

