

Kaon Physics Prospects

Giuseppe Ruggiero (Lancaster University) UK HEP Forum Abingdon, 25/09/2019

Outline

- The Past
- The Present
- Future Prospects

Kaon Physics: a Building Block of the Standard Model

- Discovery of strange particles [Nature 160 4077 (1947) 855]
- Postulation of neutral meson oscillation [PR 97 (1955) 1387]
- θ τ puzzle: first hint of P violation [PR 104 (1956) 254]
- Discovery of CP violation in the K⁰ mixing [PRL 13 (1964) 138]
- 3 quark-model to describe the observed meson / baryon spectra [PL 8 (1964) 214]
- c quark prediction to explain the observed BR of $K_L \rightarrow \mu^+ \mu^-$ [PRD 2 (1970) 1285]
- Discovery of CP violation in the K⁰ decay [PLB 206 (1988) 169]

Kaon Physics: the last 20 Years

- Measurement of CP violation
- Test of CPT symmetry invariance
- Low energy QCD (e.g. χ PT)
- Precision test of the CKM unitarity
- Test of lepton universality and flavour violation
- Rare K decays: SM and beyonds

KAON «Factories»:

- 1997-2014 CERN SPS (NA48), CERN LEAR (CPLEAR), FNAL (KTeV), LNF (KLOE, KLOE2), BNL (E787, E865, E949), KEK (E391), Protvino (ISTRA+)
- 2014-today CERN SPS (NA62), JPARC (KOTO), CERN LHC (LHCb, K_S rare decay program)

Particle Physics Today

Electroweak sector (LEP, LHC, Tevatron) QCD sector (LEP, Hera, LHC) Yukawa sector (Babar/Belle, Tevatron, LHC) Higgs sector (LHC)

Direct / Indirect New Physics searches

Snapshots from

"The Past"

CP Violation in K^0 : Re ε'/ε

Experimental measurement (NA48 - KTeV): Re $\varepsilon'/\varepsilon = (1.66 \pm 0.23) \times 10^{-3}$ [*Phys. Lett. B* 544 (2002) 97, *Phys. Rev. D* 83 (2010) 092001]

CP Violation in K⁰: Still "The Past" ?

Kaon Physics and V_{us}

 $|V_{us}|, K \rightarrow \pi l \nu (K_{l3})$

$$\Gamma\left(K \to \pi l \nu [\gamma]\right) = Br(K_{13}) / \tau = C_{K}^{2} \frac{G_{F}^{2} m_{K}^{5}}{192\pi^{3}} S_{EW}^{K} |V_{us}|^{2} \left| f_{+}^{K^{0}\pi^{-}}(0) \right|^{2} I_{Kl} \left(1 + 2\Delta_{EM}^{Kl} + 2\Delta_{SU(2)}^{K\pi}\right)$$

$$\frac{|V_{us}|}{|V_{ud}|}, K \to l\nu (K_{l2}) \qquad \frac{|V_{us}|}{|V_{ud}|} \frac{f_K}{f_{\pi}} = \left(\frac{\Gamma_{K_{\mu 2(\gamma)}} m_{\pi^{\pm}}}{\Gamma_{\pi_{\mu 2(\gamma)}} m_{K^{\pm}}}\right)^{1/2} \frac{1 - m_{\mu}^2 / m_{\pi^{\pm}}^2}{1 - m_{\mu}^2 / m_{K^{\pm}}^2} \left(1 - \frac{1}{2} \delta_{EM} - \frac{1}{2} \delta_{SU(2)}\right)$$

$$f_+(0) \text{ computations}$$

BR and form factor measurements from NA48, KLOE, KLOE2, ISTRA++, KTeV

0.214	0.216	0.218			% err	BR	τ	Δ	Int
1.		· 1	$K_L e3$	0.2164(6)	<u>0.26</u>	0.09	0.20	0.11	<u>0.05</u>
	•	_	$K_L \mu 3$	0.2167(6)	<u>0.29</u>	0.15	0.18	0.11	<u>0.07</u>
	-•		K _s e3	0.2156(13)	0.61	0.60	<u>0.02</u>	0.11	<u>0.05</u>
	-		K±e3	<u>0.2169(8</u>)	<u>0.35</u>	<u>0.27</u>	<u>0.06</u>	<u>0.21</u>	<u>0.05</u>
Ι.			<i>К</i> ±µ3	<u>0.2167(11</u>)	<u>0.50</u>	<u>0.45</u>	<u>0.06</u>	<u>0.21</u>	<u>0.07</u>
0.214	0.216	0.218							
	Averag	e: V _u	$ f_{+}(0) =$	= 0.21652(41)	χ²/r	ndf = ().98/4	(91%)

FLAG '19 $N_f = 2 + 1 + 1$ 1902.08191 FNAL/MILC 18 ETM16 FNAL/MILC 13E FNAL//MILC 13C $N_{f} = 2+1$ JLQCD17 **RBC/UKQCD 15A RBC/UKQCD 13** FNAL/MILC 12I JLQCD 12 JLQCD 11 **RBC/UKQCD 10 RBC/UKQCD 07** $N_{f} = 2$ **ETM 10D ETM 09A** Kastner 08 Cirigliano 05 Jamin 04 Bijnens 03 ChPT, etc. L&R 84 0.95 0.97 0.99

Passerman @ KAON 2019

Kaon Physics and CKM Unitarity

$$|V_{ud}|^2 + |V_{us}|^2 + |V_{ub}|^2 = 1 + \Delta_{CKM}$$
 $\Delta \sim \frac{c_n}{\sigma^2} \frac{M_W^2}{\Lambda^2} \le 10^{-2} - 10^{-3} \leftrightarrow \Lambda \sim 1-10 \text{ TeV}$

 $f_+(0), f_K/f_\pi$ from χ pT V_{us} fit to the measurements (K_{l3}) V_{us}/V_{us} fit to the measurements (K_{l2}) V_{ud} from nuclear $0^+ \rightarrow 0^+$ transitions

$$V_{ud} = 0.97414(21)$$

 $V_{us} = 0.22456(35)$
 $\chi^2/ndf = 8.0/1 (0.5\%)$
 $\Delta_{CKM} = -0.00062(45)$
 -1.4σ

 3σ tension if the most recent determination of V_{ud} is used Passerman @ KAON 2019

"The Present"

$K \to \pi \nu \bar{\nu}$ decays: a theoretically clean environment

• FCNC loop processes: $s \rightarrow d$ coupling and highest CKM suppression

- Very clean theoretically: Short distance contribution. No hadronic uncertainties.
- SM predictions [Buras et al. JHEP 11 (2015) 33]

$$BR(K^{+} \to \pi^{+} \nu \bar{\nu}) = (8.39 \pm 0.30) \cdot 10^{-11} \left(\frac{|V_{cb}|}{0.0407}\right)^{2.8} \left(\frac{\gamma}{73.2^{\circ}}\right)^{0.74} = (0.84 \pm 0.10) \cdot 10^{-10}$$
$$BR(K_{L} \to \pi^{0} \nu \bar{\nu}) = (3.36 \pm 0.05) \cdot 10^{-11} \left(\frac{|V_{ub}|}{0.00388}\right)^{2} \left(\frac{|V_{cb}|}{0.0407}\right)^{2} \left(\frac{\sin \gamma}{\sin 73.2^{\circ}}\right)^{2} = (0.34 \pm 0.06) \cdot 10^{-10}$$

$K \to \pi \nu \bar{\nu}$ and New Physics

- High sensitivity to NP (non MVF): significant variations wrt SM possible
- Model-dependent correlations of possible variations of K^+ and K_L BR
- Weak constraints from other flavour observables

$K \to \pi \nu \bar{\nu}$ and CKM

CKM fit using $K \rightarrow \pi \nu \nu$ ONLY

NP flavour dynamics from comparison of CKM fit with K and B

$K_L \rightarrow \pi^0 \nu \overline{\nu}$: KOTO @ JPARC

Goal: Observe SM $K_L \to \pi^0 \nu \overline{\nu}$

 $K_L \rightarrow \pi^0 \nu \overline{\nu}$: KOTO @ JPARC

- 2015 Single event sensitivity: $(1.30 \pm 0.01_{stat} \pm 0.14_{syst}) \times 10^{-9}$
- 2015 result: BR($K_L \rightarrow \pi^0 \nu \overline{\nu}$) < 3.0 × 10⁻⁹ (90% C.L.)

[Phys. Rev. Lett. 122, 021802 (2019)]

$K^+ \to \pi^+ \nu \bar{\nu} :$ from the Past to the Present

• The past: Stopping Kaon Technique

• The present: Decay-in-flight Technique

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: E787/949 @ BNL Stopping Kaon

• Single Event Sensitivity: $\sim 0.8 \cdot 10^{-10}$

 $BR(K^+ \to \pi^+ \nu \bar{\nu}) < 3.35 \times 10^{-10} \ (90\% \text{ CL})$ $BR(K^+ \to \pi^+ \nu \bar{\nu}) = (1.73^{+1.15}_{-1.05}) \times 10^{-10}$

Phys. Rev. D 77, 052003 (2008), Phys. Rev. D 79, 092004 (2009)

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$: NA62 @ CERN SPS, Decay in Flight

Typical Intensity

Incoming *K*⁺, 75 GeV/c, 1% rms

Outing π^+

 γ /multitrack veto (LAV, LKr, IRC, SAC, HASC)

Particle ID (RICH, LKr, MUV1,2,3)

 19×10^{11} ppp (450 MHz @ GTK3)

Timing by KTAG ($\sigma_t \sim 70 \text{ ps}$); position/momentum by GTK Timing by RICH ($\sigma_t \sim 70 \text{ ps}$); position/momentum by STRAW $\pi^0 \rightarrow \gamma\gamma$ suppression $\sim 1.4 \times 10^{-8}$

 μ^+ suppression $\sim 10^{-8}$

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$: NA62 @ CERN SPS, Decay in Flight

20

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Decay in flight

Principal Decays	Branching ratio
$K^+ o \pi^+ \pi^0(\gamma)$	0.2067 ± 0.08
$K^+ ightarrow \mu^+ \nu(\gamma)$	0.6356 ± 0.11
$K^+ \rightarrow \pi^+ \pi^+ \pi^-$	0.05583 ± 0.024
$\mathrm{K}^+ \to \pi^+ \pi^0 \pi^0$	0.01760 ± 0.023
$K^+ ightarrow \pi^0 e^+ \nu$	0.0507 ± 0.04
$K^+ o \pi^0 \mu^+ \nu$	0.03352 ± 0.033
$K^+ \rightarrow \pi^+ \pi^- e^+ \nu$	$(4.247 \pm 0.024) \cdot 10^{-5}$

Particle ID (Cerenkov)

Particle ID (Calorimeters)

Photon Veto

 $15 < P_{\pi^+} < 35$ GeV/c

NA62: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Data Analysis

• **2016 DATA:** Proof-of-principle of the decay in flight technique

2017 Data: new result presented recently

$$\begin{split} S.E.S. &*= (3.15 \pm 0.24) \times 10^{-10} \\ N_{\pi\nu\nu}^{expected} &= 0.267 \pm 0.020 \pm 0.032_{ext} \\ N_{bckg} &= 0.152^{+0.092}_{-0.033} \Big|_{stat} \pm 0.013_{syst} \\ 1 \text{ event observed in signal region} \\ BR(K^+ \to \pi^+ \nu \bar{\nu}) < 14 \times 10^{-10} @ 95\% \ CL \\ \text{Phys. Lett. B 791, 156 (2019)} \end{split}$$

G.R. KAON2019 10/09/2019 CERN EP Seminar 23/09/2019

2 trigger streams: PNN (highly selective for signal), CONTROL (minimum-bias) Full blind analysis procedure (like for 2016 analysis)

* S.E.S. = Single Event Sensitivity

NA62: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Selection

 m_{miss}^2 : π^+/K^+ 3-momentum from Straw/Gigatracker, π^+ mass hypothesis

Selection

- $K^+\text{-}\pi^+$ matching
- K^+ decays in the decay volume
- π^+ identification (PID)
- photon rejection
- Multi-track rejection

 K^+ decays selected no PID and γ /multi-track rejection

NA62: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ 2017 Data after selection

NA62: 2017 Single Event Sensitivity

- $\pi\nu\nu$ normalised to $\pi^+\pi^0$
- SES depends linearly on: PNN trigger efficiency, random veto efficiency

 $S.E.S. = (0.389 \pm 0.021) \times 10^{-10}$

$$N_{\pi\nu\nu}^{exp} = 2.16 \pm 0.12 \pm 0.26_{ext}$$

* Vector form factors

NA62: 2017 Expected Background

Example: $K^+ \rightarrow \pi^+ \pi^0$ Background

- Estimated from DATA. Hypotesis: kinematic and π^0 rejection independent
- Corrections for correlation due to radiative γ

NA62: 2017 Background Validation

Signal and background evaluated in the 35-40 GeV/c signal-like regions

Opening the Box

NA62: 2017 Box Opened

2 events observed in signal region

 m_{miss}^2 Signal and Background

NA62: $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ 2016+2017 Result

• Combination of 2016 and 2017 data

Events observed	3
Single event sensitivity	$(0.346 \pm 0.017) \times 10^{-10}$
Expected background	1.65 ± 0.31

• Upper limits (CLs method)

ObservedExpected (background only)CL $Br(K^+ \to \pi^+ \nu \bar{\nu}) < 1.85 \times 10^{-10}$ $Br(K^+ \to \pi^+ \nu \bar{\nu}) < 1.32 \times 10^{-10}$ 90% $Br(K^+ \to \pi^+ \nu \bar{\nu}) < 2.44 \times 10^{-10}$ $Br(K^+ \to \pi^+ \nu \bar{\nu}) < 1.62 \times 10^{-10}$ 95%

- Two-sided 68% band: $Br(K^+ \to \pi^+ \nu \bar{\nu}) = (0.47^{+0.72}_{-0.47}) \times 10^{-10}$
- Search for $K^+ \rightarrow \pi^+ X$, with X «dark» scalar on-going

$K^+ \to \pi^+ \nu \bar{\nu}$ and $K_L \to \pi^0 \nu \bar{\nu}$ Today

• New Grossman – Nir limit: $Br(K_L \to \pi^0 \nu \nu) < 8.14 \times 10^{-10} @ 90\% CL$

Beyond $K \rightarrow \pi \nu \nu$: HNL production @ NA62

- Search for HNL in $K^+ \rightarrow e^+ \nu$ and $K^+ \rightarrow \mu^+ \nu$: NA62 (2016+2017)
- Peak search on the missing mass spectrum out of the peak

HNL production vs decay searches

- Direct searches require model dependent assumptions
- Exhausting the BBN-allowed range up to 300 MeV/c^2
- T2K has improved the PS191 limits > 360 MeV/c^2 [arXiv:1902.07598]

Future Prospects

$K \rightarrow \pi \nu \overline{\nu}$ Medium Term Prospects (<2026)

- $K^+ \rightarrow \pi^+ \nu \overline{\nu}$ @ NA62
 - Goal 2016+2017+2018 data: O(10) events
 - 2018 data: 2 × 2017 statistics; analysis optimization under study
 - Goal 2021 2025 run: O(50) events (if at least 3 years of data taking)
 - Definition of the NA62 run schedule under discussion
 - Suppression of upstream background under study; increase of intensity
- $K_L \rightarrow \pi^0 \nu \overline{\nu} @$ Koto
 - Goal 2016 \rightarrow 2019 data: O(10) sensitivity increase
 - Background under study
 - Goal >2019 run: SM SES (1 SM event observation)
 - JPARC power increase

Beyond $\mathbf{K} \to \pi \nu \overline{\nu}$: Forbidden / Rare Decays **(a)** NA62

Forbidden LFV - LNV	$K^+ \rightarrow \pi^- e^+ e^+ / K^+ \rightarrow \pi^- \mu^+ \mu^+$
	$K \rightarrow \pi \mu e$
HNL production	$K^+ \rightarrow \mu^+ N / K^+ \rightarrow e^+ N$
Rare decays	$K^+ \rightarrow \pi^+ \gamma \gamma$
	$K^+ \rightarrow \pi^+ e^+ e^- / K^+ \rightarrow \pi^+ \mu^+ \mu^-$
	$K^+ \rightarrow l_1^+ \nu l_2^+ l_2^-$, $l_{1,2} = e, \mu$
	$K^+ \rightarrow e^+ \nu(\gamma), R_K = \Gamma(K^+ \rightarrow e^+ \nu) / \Gamma(K^+ \rightarrow \mu^+ \nu)$
	$K^+ \rightarrow \pi^0 e^+ \nu \gamma, K^+ \rightarrow \pi^+ e^+ e^- \gamma, K^+ \rightarrow \pi^+ \pi^+ \pi^- \gamma$

- Forbidden: $10^{-11} \div 10^{-12}$ sensitivity (>2021)
- Rare:
 - largest statistical samples for some of the decays available (e.g. $K^+ \rightarrow e^+ \nu$)
 - >2021 entering high precision era for all rare decays

Beyond $\mathbf{K} \to \pi \nu \overline{\nu}$: Dark Sector Searches @ NA62

NA62 in dump mode (not exactly K physics... but <a>
 <2026 time scale)

- >2021 Goal: collect 10¹⁸ proton on target (3 months of data taking after 2021)
- Extend dark particle mass range $> M_K$ (D and B associated production)
- Searches: HNLs, Dark Scalar (S), Dark Photon (A'), Axion-like (ALP)

Bridge towards future dump facilities (e.g. SHIP)

Beyond $K \rightarrow \pi \nu \overline{\nu}$: NA62-dump Prospects

$K \to \pi \nu \bar{\nu}$ The Big Picture

• <10% precision measurement of $BR(K^+ \rightarrow \pi^+ \nu \bar{\nu})$ can test NP up to O(100 TeV) (model - independent)

• BR measurement of $K^+ \rightarrow \pi^+ \nu \bar{\nu}$ and $K_L \rightarrow \pi^0 \nu \bar{\nu}$ can give insights about the NP flavour structure

$K^+ \rightarrow \pi^+ \nu \bar{\nu}$ Long Term Prospect (>2026)

- O(200) events: NA62 @ 4 times the intensity («NA62×4»)
- Advantage:
 - NA62 is the most intense existing kaon facility
 - The decay in flight technique works well for $K^+ \rightarrow \pi^+ \nu \bar{\nu}$
- Issues:
 - Make NA62 resiliant to intensity effects:
 - <u>Background:</u> time resolution must scale accordingly O(<40 ps)
 - <u>Signal:</u> improve significantly the random veto efficiency

$K^+ \rightarrow \pi^+ \nu \overline{\nu}$: «NA62×4»

- Detector R&D example: beam tracker
- Si pixel stations mounted on the beam

	NA62	NA62×4
Beam Particle Rate	750 MHz	3 GHz
Peak Beam Particle Flux	$2.0 \mathrm{MHz}/\mathrm{mm}^2$	8.0
Hit Time Resolution	< 200 ps	< 50 ps

• Time resolution (NA62)
$$\sigma = \sqrt{\sigma_{TDC}^2 + \sigma_{electronic}^2 + \sigma_{WeightingField}^2 + \sigma_{Straggling}^2}$$

= $\sqrt{28^2 + 75^2 + 85^2 + 100^2} = 150 \text{ ps}$

- Straggling \Rightarrow thinner sensor (NA62 200 μ m)
- WeightingField \Rightarrow different electrode design
- Electronic \Rightarrow reduce S/N
- Possible R&D in synergy with similar projects for HiLumi

$K_L \rightarrow \pi^0 \nu \overline{\nu}$ Long Term Prospect

• O(60) events: KLEVER @ CERN

- KOTO-like technique at high energy
- Advantage:
 - CERN SPS can deliver enough protons on target
 - Photon rejection benefits from higher energy than KOTO

$K_L \rightarrow \pi^0 \nu \bar{\nu}$ Long Term Prospect

• O(60) events: KLEVER @ CERN

- KOTO-like technique at high energy
- Issues:
 - New photon detectors wrt NA62; avoid pileup from high photon rate
 - No kinematic constraint for signal ⇒ photon rejection critical, but full geometrical coverage not possible over >100 m

Conclusions

- 70 years of Kaon Physics have made the history of the particle physics
- Today
 - Kaon Physics, and NA62 in particular, has started the search for new physics at the highest mass scales
- Tomorrow
 - Kaon Physics can reach new physics at the highest mass scale
 - NA62 can initiate the future quest of new physics in the dark sector
- UK
 - had a leading role in the past of kaon physics (NA48)
 - has a leading role in the present of kaon physics (NA62)
 - is setting the bar to lead the future of kaon physics