

Probing BSM physics with SM

measurements

Dr Zara Grout (University College London)

Standard Model and Beyond workshop 19/09/19

This Talk

All SM measurements limit BSM - but can design with this in mind

Covered

- Why bother doing this?
- What we did so far
 - Four lepton mass
 - Met + jets cross-section
 ratios
 - Re-interpretation
- Limitations & how can we improve?
- Outlook

Beyond Scope

- Unfolding CRs in your search e.g
 - : Leptoquark discussion
- CMS (nothing personal!)
- SM measurements setting limits
 on aTGC / EFT scenarios
- Earliest example of unfolded
 limit setting on ATLAS:
 JHEP05(2014)059

Why bother?

Dedicated Search Program

p

 LQ_3^u

10³ ν, τ 10² LQ_3^u 10 pt, b10 Data / Bkg 1.4 **BSM** 0.8 0.e signature 200 300 1000 driven Transverse mass [GeV]

Events

10

106

10

10

ATLAS

vs = 13 TeV, 139 fb

 $W' \rightarrow ev$ selection

t, b

 ν, τ

- W' (3 TeV) - W' (4 TeV) - W' (5 TeV) - W' (6 TeV)

Data

Top quark

Multijet

Diboson

 $\Box Z/\gamma^*$

2000

ΠW

- **Detector-level** \triangleright
- Fast \triangleright
- Can bin very finely or even \triangleright un-binned

How do SM measurements differ?

eee

μee

eμμ

μμμ

combined

Standard Model Total Production Cross Section Measurements Status: July 2019

SM process-driven

Focus on precision, longevity, re-usability

Advantages

Can compare directly to MC without simulating the detector

- Quick and CPU-cheap
- Easy to scan wide parameter space
- Accessible to everyone
- Can update if SM modelling improves

Not targeting specific process

 Maintain sensitivity to many scenarios

What have we done?Four Lepton Mass Spectrum

What this gives us

Fiducial Region dominated by "signal" processes (96.5%)

 \bar{a}'

 Slightly increased WRT Higgs analysis by decreasing lower mass limit on secondary lepton pair
 V1

 V_2

Irreducible

- ▷ ZWW, ZZW, ZZZ, ttZ
- Take from MC
- Contributes around 1.6% total events

Reducible

- ▷ Z+jets, tt, WZ
- At least one "fake" lepton
 - Heavy flavour hadron decays
 - Muons from "light flavour" pion/kaon decays
 - Jets mis-identified as electrons
 - Electrons from photon conversions
- Contributes around 1.9% total events
- Estimated with data-driven methods

Fiducial Region Definition

Cross-section measured in region driven by kinematic acceptance of detector

- > At least **4** *leptons* muon (electron) pT > 5 (7) GeV, $|\eta| < 2.7 (2.47) - (>20/15/10 \text{ GeV in pair})$
- ► Two same flavour, opposite sign (SFOS) lepton pairs, e.g. $e^+e^-e^+e^-$, $e^+e^-\mu^+\mu^-$, $\mu^+\mu^-\mu^+\mu^-$
- Pair with dilepton mass closest to Z boson mass primary pair - must be 50 - 106 GeV, second-closest are secondary pair - uses sliding scale f(m4l) - 115 GeV
- ▷ Separated by <u>AR > 0.1 (0.2)</u> for same(opposite) flavours
- MII > 5 Gev for all SFOS pairs (J/Psi veto)

$$f(m_{4\ell}) = \begin{cases} 5 \text{ GeV}, \\ 5 \text{ GeV} + 0.7 \times (m_{4\ell} - 100 \text{ GeV}), \\ 12 \text{ GeV}, \\ 12 \text{ GeV} + 0.76 \times (m_{4\ell} - 140 \text{ GeV} \\ 50 \text{ GeV}, \end{cases}$$

for $m_{4\ell} < 100 \text{ GeV}$ for 100 GeV $< m_{4\ell} < 110 \text{ GeV}$ for 110 GeV $< m_{4\ell} < 140 \text{ GeV}$), for 140 GeV $< m_{4\ell} < 190 \text{ GeV}$ for $m_{4\ell} > 190 \text{ GeV}$

Maintains sensitivity to $Z \rightarrow 4I$ but suppresses leptons from tau lepton decays

Distributions

Star of the show - four lepton mass

Double Differential Distributions:

- Measure m₄₁ in fairly coarse bins of other interesting variables;
 - Transverse momentum p_{τ}^{4l}
 - **Rapidity** y_{41}
 - Lepton Flavours eeee/ееµµ/µµµµ
 - Matrix element discriminant
- Potential increased sensitivity
- Improved modelling in future can be fed in

Uncertainty Sources

Dominated by statistical uncertainty

Lepton dominated by reconstruction, identification and isolation efficiencies

Data has a flat ~2% uncertainty associated with luminosity measurement

Smaller contributions from:

- Unfolding procedure
- Data-driven background estimation
- Theoretical uncertainty includes scale, PDF set and parton showering choices

Uncertainty Sources

Relative sizes do vary across distributions, with exception of luminosity and pileup, but always dominated by statistical uncertainty

Unfolding

Correct for effects the detector has on measured data:

- Imperfect e.g. efficiency to reconstruct leptons, energy resolution
- Model effects by comparing "truth" and "reconstructed" objects in MC simulation

Efficiency:

Events (pass fiducial and reco-level)/pass fiducial

Fiducial Fraction:

Events pass reco-level but fail fiducial (detector resolution/tau leptons)

Fiducial Purity:

Probability that fiducial bin is the same as reco-level bin (in e.g. m4l)

Unfolding

Migration Matrix:

Probability that a given fiducial bin results in a given reco-level bin (in e.g. m4l) (diagonal == fiducial purity)

- Uses migration matrix
- Prior is predicted distribution
- Two iterations used here

Subtract background from data Multiply observation in each bin by fiducial fraction

Iterative Bayesian method to correct for bin migration Divide each bin by reconstruction efficiency

What if there's signal in our data?

- Injected possible BSM signals into MC to check the effects on the unfolding mechanism
- The cross-section for the on-shell Higgs boson contribution is set to 25%/300% the SM prediction < 5% deviation
- The non-resonant $gg \rightarrow ZZ^{(*)}$ contribution is set to 0%/500% of the SM prediction. < 3% deviation

• An additional heavy Higgs boson with $m_{H'} = 200 \text{GeV}$, $\Gamma_{H'} = 30 \text{GeV}$ is injected

- An additional heavy Higgs boson with $m_{H'} = 400$ GeV, $\Gamma_{H'} = 60$ GeV is injected
- An additional heavy Higgs boson with $m_{H'} = 900$ GeV, $\Gamma_{H'} = 135$ GeV is injected

< 6% deviation, except for matrix element discriminant which is < 20%

Caveat:

Need to take care interpreting unfolded limits for peaked resonances in very sensitive regions

Kinematics differences between SM and BSM will effect unfolding if BSM signal present

Differential Cross-sections

MATRIX is a fixed-order NNLO QCD prediction, no additional higher order corrections or QED final state radiation are included

Differential Cross-sections - Flavour

Example Interpretation: Modified Higgs couplings

Model:

- BSM modification of couplings of Higgs boson to top quark (c_t) and gluon (c_g)
- High mass region allows probing of these couplings separately, whereas on-shell can only limit |c_t +c_g|²

Interpretation:

- \triangleright Use m₄₁ above 180 GeV
- $\vdash \operatorname{Fix} \operatorname{qq} \xrightarrow{\neg} \operatorname{4I} \operatorname{to} \operatorname{prediction}$
- ▷ $gg \rightarrow 4I$ yield is parameterised as function of couplings
- Vary everything within theoretical uncertainties

Other interpretations include branching fraction of single Z to four lepton decay, off-shell Higgs production strength and gluon-fusion signal strength 20 What have we done?
Four Lepton Mass Spectrum
Met + jets cross-section ratio

Eur. Phys. J. C 77 (2017) 765

Ratio:

Cancellation of systematic uncertainties and aspects of detector correction

Key concepts

$$R_{\rm miss} = \frac{\sigma(\not p_{\rm T} + {\rm jets})}{\sigma(Z \to \ell^+ \ell^- + {\rm jets})}$$

General Selection:

SM contribution to numerator comes from $Z \rightarrow vv$ decays but sensitive to BSM

VBF

\geq 1 jet

- \geq 1 jet with p_T>120 GeV, |y|<2.4 \triangleright
- Measure R as a function of missing \triangleright transverse momentum

- \geq 2 jet with p_T>80, 50 GeV, |y|<4.4, mjj > 200 GeV \triangleright \triangleright
 - Veto additional jets in y-space between leading jets
- Measure R as a function of missing transverse \triangleright momentum, di-jet invariant mass, and di-jet angle ϕ

Common

- pTmiss > 200 GeV, additional lepton veto, $\Delta \phi$ (pTmiss, jet) > 0.4 \triangleright **Denominator**
- SFOS lepton pair with mll 66-116 GeV, pT>80, 7 GeV, |y|<2.5 \triangleright
- pTmiss calculated without leptons, which are treated as invisible particles \triangleright

What this gives us

Significant numerator contributions from backgrounds containing W bosons

- ▷ W+jets, tt, dibosons with un-reconstructed or out-of-acceptance lepton
- Data-driven estimation using control regions
- Estimated separately for each lepton flavour

Changing for full Run 2

Multijets

Events / GeV

10

10²

10

10-

 10^{-2}

 10^{-3}

1.4

0.8

200

400

600

800

1000

- Small in numerator, even smaller in denominator
- Also estimated with data-driven method using QCD-enriched control regions

Data 2015

Total Syst. Unc.

MC Z($\rightarrow vv$)+jets

Data driven uv Bkg

Data driven **tv** Bkg

Data driven ev Bkg

Data driven Multijet Bkg

1200

 p_{τ}^{miss} [GeV]

MC Z(→ II)+jets

<u>Prediction</u> agrees well with data

 Smaller contributions estimated with MC

$Z \rightarrow vv$ (numerator) ≥ 1 jet

vs = 13 TeV, 3.2 fb⁻¹

ATLAS

p₊^{miss} + ≥1 jet

$Z \rightarrow II (denominator) \ge 1 jet$

Uncertainties

Systematic uncertainty source	Low $p_{\mathrm{T}}^{\mathrm{miss}}$ [%]	High $p_{\rm T}^{\rm miss}$ [%]	Low $m_{\rm jj}$ [%]	High $m_{\rm jj}$ [%]
Lepton efficiency	+3.5, -3.5	+7.6, -7.1	+3.7, -3.6	+4.6, -4.4
Jets	+0.8, -0.7	+2.2, -2.8	+1.1, -1.0	+9.0, -0.5
$W \to \tau \nu$ from control region	+1.2, -1.2	+4.6, -4.6	+1.3, -1.3	+3.9, -3.9
Multijet	+1.8, -1.8	+0.9, -0.9	+1.4, -1.4	+2.5, -2.5
Correction factor statistical	+0.2, -0.2	+2.0, -1.9	+0.4, -0.4	+3.8, -3.6
W statistical	+0.5, -0.5	+24, -24	+1.1, -1.1	+6.8, -6.8
W theory	+2.4, -2.3	+6.0, -2.3	+3.1, -3.0	+4.9, -5.1
Top cross-section	+1.5, -1.8	+1.3, -0.1	+1.1, -1.2	+0.5, -0.4
$Z \to \ell \ell$ backgrounds	+0.9, -0.8	+1.1, -1.1	+1.0, -1.0	+0.1, -0.1
Total systematic uncertainty	+5.2, -5.2	+27, -26	+5.6, -5.5	+14, -11
Statistical uncertainty	+1.7, -1.7	+83, -44	+3.5, -3.4	+35, -25
Total uncertainty	+5.5, -5.4	+87, -51	+6.6, -6.5	+38, -27

Dominant uncertainties do depend on region of distribution

- Experimental sources dominated by lepton reconstruction, isolation and trigger efficiencies
- Significant contributions from background estimation methods, particularly the W backgrounds in lower statistics regions
- Analysis statistically limited in more sensitive tail regions due to rarer process in denominator

Unfolding

Correct for effects the detector has on measured data:

- $\begin{tabular}{ll} \label{eq:cancellation} \begin{tabular}{ll} \begin{tabular}{ll}$
- Wide bins so negligible migration effects
- Bin-by-bin correction can be applied to account for remaining effects
- ▷ Agrees well with C_z , describing just lepton inefficiencies in denominator $Z \rightarrow II$ (detector)/ $Z \rightarrow II$ (particle)

BSM effects

- As with m_{4l,} tested robustness to BSM signal by injecting MC
- 50% change to R vs p_T distribution only
 <0.5% change to correction factor

Cross-section Results

VBF

5

Interpretations: Dark Matter

- Scan over mediator mass and DM mass
- Limits competitive with existing reconstruction-level analysis in mono-jet final state
- Use 95% CLs method and include correlations between all bins of all distributions in covariance matrix

What have we done?
Four Lepton Mass Spectrum
Met + jets cross-section ratio
Re-interpretation: CONTUR

<u>Arxiv:1606.05296</u> <u>contur.hepforge.org</u>

Eur. Phys. J. C 77 (2017) 765

Re-interpreting

Rivet routine:

- Truth-level implementation of the analysis cross-checked against the code used for the paper available online: <u>ATLAS_2019_I1720442.tar.gz</u>
- Can take particle-level input and read measurements and predictions used directly from

Hepdata:

 Online storage of *detector-corrected measurement*, *particle-level predictions*, *covariance matrices* (split into statistical, systematic and background sources) <u>https://www.hepdata.net/record/ins1720442</u>

SQRT(S)	13000 GEV			
$m_{4l} \; [{ m GEV}]$	Measured ${ m d}\sigma/{ m d}m_{4l}$ [FB GEV-1]	Predicted ${ m d}\sigma/{ m d}m_{4l}$ (with Sherpa + NLO EW) [FB GEV-1]	Predicted $d\sigma/dm_{4l}$ (with Powheg + NLO EW + NNLO QCD) [FB GEV-1]	Pred $d\sigma/$ Matr orde [FB (
7.500000e+01 - 1.000000e+02	5.100341e-01 ±2.346437e-02 syst ±3.442822e-02 stat	5.182588e-01 ±3.545342e-02 total	4.865038e-01 ±2.906800e-02 total	4.89) ±6.45 tota
1.000000e+02 - 1.200000e+02	9.334923e-02 ±4.205973e-03 syst	7.834322e-02 ±4.277496e-03 total	7.545697e-02 ±3.490459e-03 total	5.853 ±1.10 tota

CONTUR 2HDM example

- Can combine results from multiple measurements (best in each bin is used to avoid any correlation)
- Easy to make changes to the model and re-run: results for varying other parameters on web page

Two Higgs-Doublet Dark Matter Model with Pseudoscalar Mediator:

- A and a are 2 of 5 Higgs bosons. All other additional Higgs' have the same mass as A.
- ▷ a plays the role of mediator to dark matter
- DM candidate has mass of 10 GeV
- Taken from <u>Pseudoscalar 2HDMGitRepo</u>

https://contur.hepforge.org/results/Pseudoscalar 2HDM/index.html

Met + jets example

- Can split sensitivity into individual measurements
- Met + jets analysis contributes in unique phase-space
- Significant contributions in other regions come from vector boson + jets and di-jet measurements

M₁ example

Spontaneously broken B-L gauge symmetry:

- Broken by additional SM singlet Higgs
- Also has additional heavy neutrinos and new gauge boson Z'
- Additional free parameters:
 - ⊃ M_{z′},g_{1′}
 - \bigcirc M_{h2}, sina
 - \circ M_{Ni}, V_{IN}

- Provides good example where four lepton analysis can provide sensitivity
- Many scenarios can produce multiple leptons in final state
- Easy to test new scenarios with this framework

LHC Constraints on a B-L Gauge Model using Contur: S. Amrith, J. M. Butterworth, F. F. Deppisch, W. Liu, A. Varma, and D. Yallup 32

Limitations & how we can we improve

Binning, statistics and sensitivity

Reco-level CMS result

- ▷ To maintain validity of unfolding and limit setting bins require:
 - Small migrations
 - At least ten expected events per bin (inter-related with purity)
- ▷ Will bin more finely in future → increase statistics with increased luminosity and more common final states
- Some regions limited by detector resolution

SM-BSM Kinematic Differences

Events with exactly 1 muon

HBOM: Hit Backspace Once More

 ▷ Iteratively (k times) apply operator encapsulating effect of ATLAS detector → try and remove effect of *lepton inefficiencies*

$$N^{reco}(k) = A^k(N^{reco})$$

- Doesn't matter if BSM signals have different lepton kinematics to SM
- Still need to use some standard unfolding to correct for other effects

Difficulties

- Some complications for complex final states if fiducial and reconstructed selection differs
- Investigating whether these can be comatted using "hybrid" selection using truth leptons and reconstructed selection for all other objects e.g. jets

HBOM method for unfolding detector effects: J Monk and C Oropeza-Barrera

A simpler method?

Pre-unfolding:

- Use data-driven methodology to remove per-lepton inefficiencies as a function of relevant kinematics before unfolding
- Investigating in m₄₁ analysis measure efficiencies separately for electrons and muons and apply inverse
- Aim to remove related SM dependence from unfolded results

Example Electron Efficiencies

- Would improve robustness to resonant signals
- Decrease uncertainty in unfolding method itself?
- Studies ongoing need to understand how best to separate effects relating to leptons and other effects like migration

What if there's signal in our "backgrounds"?

Met + jets analysis

- Signals producing 1 lepton: could enter into W background estimation and would therefore be subtracted - cannot interpret with this measurement
- Signals producing 2 leptons: can only reliably be constrained if kinematics similar to SM - aim to address this with previous methods

M4I analysis

 Signals producing four leptons but not through Z boson decay - no sensitivity with this measurement

- Remove as much process-dependence as possible from new selection
- ▷ Consider irreducible backgrounds as part of signal → pre-unfolding should address lepton kinematic differences

Categorised Met + jets (+other!)

- ▷ Include additional unfolded regions →
 higher statistics for ratio construction,
 more options for interpretation
- Background-subtracted and inclusive processes

Loosening M_{4l} Cuts

- Current analysis makes measurement more inclusive by loosening selection as much as possible
 Includes allowing
- Includes allowing lepton pair masses to vary from Z value

Random example: B-L model from arXiv:1811.11452, $M_{z'}$ =200 GeV, M_{H2} = 450 GeV

- CONTUR can also be used when *designing* searches/measurements
- Easy to gauge effect of simple modifications on many models without generating any detector-level MC (or run over it!)

Summary & Outlook

- Detector-corrected cross-sections easy to compare to theoretical predictions made by *anyone*
 - Including new physics predictions!
 - No need to simulate detector
 - Fast, easy, broad parameter space scans
- Can design SM measurements to emphasise these properties and complement existing searches
- ▷ Two examples already on to full Run 2 analyses:
 - Four lepton mass lineshape
 - Met + jets cross-section analysis
- Lots of areas for improvement, crucially;
 - Try to correct for model dependent kinematics
 - Move to more inclusive measurements
 - Expand existing analyses to measure more!

Reconstruction-level selection

Physics Object preselection						
	Electrons	Muons				
Identification	Loose working point [23]	Loose working point [22]				
Kinematics	$E_{\rm T}>7~{\rm GeV}$ and $ \eta <2.47$	$p_{\rm T} > 5 \text{ GeV and } \eta < 2.7$ $p_{\rm T} > 15 \text{ GeV if calorimeter-tagged } [22]$				
Interaction point constraint	$ z_0 \cdot \sin \theta < 0.5 \text{ mm}$	$ z_0 \cdot \sin \theta < 0.5 \text{ mm}$				
Cosmic-ray muon veto		$ d_0 < 1 \text{ mm}$				
Quadruplet Selection						
QUADRUPLET FORMATION	Procedure and kinematic selection criteria as in Table ??					
LEPTON ISOLATION						
	Electrons	Muons				
Track isolation	$\sum p_{\mathrm{T}} < 0.15 E_{\mathrm{T}}^{e}$	$\sum p_{\mathrm{T}} < 0.15 p_{\mathrm{T}}^{\mu}$				
Calorimeter isolation	$\sum_{\Delta R=0.2}^{\Delta R \le 0.2} E_{\rm T} < 0.2 E_{\rm T}^e$	$\sum_{\Delta R=0.2}^{\Delta R \le 0.3} E_{\rm T} < 0.3 p_{\rm T}^{\mu}$				
	Contributions from the other	· leptons of the quadruplet not considered				
LEPTON TRANSVERSE IMPACT PARAMETER						
	Electrons	Muons				
	$d_0/\sigma_{d_0} < 5$	$d_0/\sigma_{d_0} < 3$				
4ℓ vertex fit						
χ^2/ndof	$< 6 (4\mu) \text{ or } < 9 (4e, 2e2\mu)$					

Signal Simulation

Higgs Signal:

- Gluon fusion Powheg NNLOPS
- Vector Boson fusion -Powheg VBFH
- Associated Boson Powheg
- ▷ qqH MG5_aMC@NLO

$qq \rightarrow ZZ$:

- Sherpa 2.2.2 NLO for 0,1 jets, LO for 2,3 jets, + NLO EWK corrections
- Electroweak 4l+jj Sherpa 2.2
 NLO at 2 jets
- Generator cross-check samples -PowhegBox+Pythia8 + NNLO QCD + NLO EWK

Irreducible Background:

- ttV(V) Sherpa 2.2.1 LO scaled to NLO QCD + EWK
- VVV Sherpa 2.1 NLO for 0 jets, LO for 1, 2 jets

Reducible Background:

- ▷ Z+jets, Sherpa NLO 0,1,2j, LO 3,4 j
- ▷ tt, WZ Powheg

$gg {\rightarrow} ZZ:$

- Sherpa 2.2 LO for 0, 1 jets, + NLO
 QCD + flat NNLO/NLO k-factor of
 1.2
- Separate samples for process via/not via Higgs, and interference

Reducible Background Estimation

Control Region

Methodology:

- ▷ Split into **II+ee** and **II+***µµ*
- Target processes with different efficiencies, e.g. heavy flavour and light flavour in control regions
- Reversed/relaxed/altered selections
 WRT signal selection
- Shape taken from MC except for light flavour ll+ee case

Validation:

- Loosened region to check estimation
- Compare multiple alternative methods

Double differential example - y_{4l}

Double differential example - flavour

Double differential example - P₁^{4l}

Matrix element discriminant - D_{ME}

$$D_{\rm ME} = \log_{10} \frac{\tilde{M}_{gg \to H^{(*)} \to ZZ^{(*)} \to 4\ell}^2 \left(p_{1,2,3,4}^{\mu} \right)}{\tilde{M}_{gg(\to H^{(*)}) \to ZZ^{(*)} \to 4\ell}^2 \left(p_{1,2,3,4}^{\mu} \right) + 0.1 \cdot \tilde{M}_{q\bar{q} \to ZZ^{(*)} \to 4\ell}^2 \left(p_{1,2,3,4}^{\mu} \right)},$$

What is it?:

- Calculated using Z boson production angles and decay angles
- Can help separate off-shell Higgs production from other processes by splitting into two bins

Differential Cross-sections

Comparison to various predictions:

- ▷ Sherpa and Powheg agree very well → validates reweighting of Powheg with MATRIX NNLO QCD k-factors
- Sherpa doesn't need this, intrinsic higher accuracy sufficient
- Missing real wide-angle QED emission in events for on-shell ZZ causes underestimation from MATRIX wrt full generators
- > gg→ 4l and higgs processes are == LO for fixed-order MATRIX, whereas generators have higher order contributions → more underestimations for MATRIX

Differential Cross-sections - P₁^{4l}

Differential Cross-sections - Y

Differential Cross-sections - D_{ME}

Statistical Procedure

$$\chi^2 = (y_{\text{data}} - y_{\text{pred}})^{\text{T}} C^{-1} (y_{\text{data}} - y_{\text{pred}})$$

- Use chi-squared function as exponential component of Gaussian likelihood quantifying agreement between data and prediction.
- Predicted values are a function of the parameter of interest (POI) and nuisance parameter (NP) used for uncertainty sources.
- > The covariance matrix is *scaled* dependent on the POI and NP to account for this.

$$C(i,j) = R_i \times R_j \times C_{\text{syst}}^{\text{SM}}(i,j) + \sqrt{(R_i \times R_j)} \times C_{\text{stat}}^{\text{SM}}(i,j) + C_{\text{bkg}}^{\text{SM}}(i,j)$$

- \triangleright $R_{\kappa} = N_{\kappa}^{pred}(POI, NP)/N_{\kappa}^{pred}(POI = SM, NP = 0)$ quantifies the scaling.
- Contributions from the systematic, statistical and background uncertainties.
- Theory uncertainties don't enter the covariance matrix but have an NP each for shape, and for normalisation.
- \triangleright Limits are set with CL_s method with a confidence level of 95%.

Gluon-induced production signal strength

Expected: 1.0±0.4

Interpretation:

- ▷ Larger contribution once both Z's can be on-shell → use bins above 180 GeV
- M₄₁ distribution has NLO QCD available (other distributions give consistent results)
- \triangleright qqZZ \rightarrow 4l fixed to prediction
- ▷ gg→ 4l prediction scaled by signal strength (*measured xsec/SM* predicted xsec) in a scan
- Predictions can vary within theoretical uncertainties using NPs

$Z \rightarrow$ IIII branching fraction

$$\mathcal{B}_{Z \to 4\ell} = \frac{N_{\text{fid}} \times (1 - f_{\text{non-res}})}{\sigma_Z \times A_{\text{fid}} \times \mathcal{L}}$$

Interpretation:

- N_{fid} is number of detector corrected events in first bin
- f_{non-res} is the fraction of non-resonant events in this bin
- \circ σ_7 is total Z production cross-section
- \triangleright *L* is the luminosity
- A_{fid} is the acceptance

 Measurement
 $\mathcal{B}_{Z \to 4\ell}/10^{-6}$

 ATLAS, $\sqrt{s} = 7$ TeV and 8 TeV [8]
 $4.31 \pm 0.34(\text{stat}) \pm 0.17(\text{syst})$

 CMS, $\sqrt{s} = 13$ TeV [6]
 $4.83^{+0.23}_{-0.22}(\text{stat})^{+0.32}_{-0.29}(\text{syst}) \pm 0.08(\text{theo}) \pm 0.12(\text{lumi})$

 ATLAS, $\sqrt{s} = 13$ TeV
 $4.70 \pm 0.32(\text{stat}) \pm 0.21(\text{syst}) \pm 0.14(\text{lumi})$

Measured σ_z taken from https://arxiv.org/abs/1603.09222

Off-shell Higgs signal strength

Measured 95% upper limit on signal strength: 6.5

Expected 95% upper limit on signal strength: 5.4 [4.2, 7.2]

Reconstruction-level dedicated Higgs result: 4.5

VBF region

$Z \rightarrow vv$ (numerator)

Flavour Combination

- Statistical uncertainty correlation between bins was calculated with a bootstrap method
- P-value for compatibility between the two channels in all four distributions is 74%

Ratio measured separately for electrons and muons

- Results were then combined using a "Best Linear Unbiased Estimator" framework
- Produces weighted combination accounting for correlations between all uncertainty sources in all bins

Statistical Procedure

$$\chi^2 = (y_{\text{data}} - y_{\text{pred}})^{\text{T}} C^{-1} (y_{\text{data}} - y_{\text{pred}})$$

- \triangleright Use **chi-squared function** (as with m₄₁)
- Covariance matrix is constructed using a bootstrap method
 - contains correlations for statistical and systematic uncertainty sources between all bins of all distributions
- Set limits for BSM scenarios:

$$1 - CL = \int_{\chi^2_{DM+SM} - \chi^2_{SM}}^{\infty} \chi^2(x; 2 \, \text{d.o.f.}) \, dx$$

 All components provided so any DM prediction can be combined with SM predictions, uncertainties and correlations to calculate a limit

Interpretations

- Unfolded cross-sections also used to limit production of dark matter in Effective Field Theory which only interacts with electroweak gauge bosons, with different operator sets
- Lastly, an upper limit is set on *Higgs bosons decaying to invisible particles* (production rate x branching fraction) of 0.46 - expected is 0.59 [0.47, 1.13] compared to dedicated search which observed 0.28 (expected 0.31)