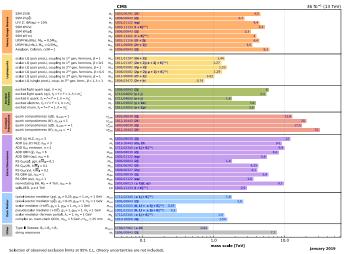
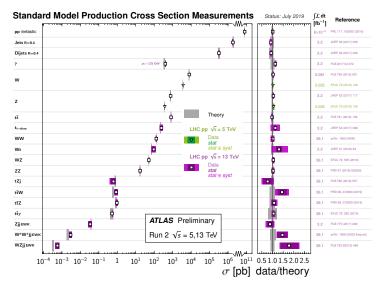
SM EW Precision Measurements and EFT Fits Pushing the Boundaries The Standard Model and Beyond at the LHC


The University Of Sheffield. Hannes Mildner

20.09.2019

- 1. Short introduction to EFT (for EW measurements)
- 2. Presentation of selected LHC Run 2 measurements
- 3. Discussion of possible improvements


BSM Searches

Overview of CMS EXO results

So far, no direct hints for new physics found at the LHC...

SM Precision Measurements

...but wide range of SM precision measurements available

The Standard Model Effective Field Theory

- Make best use of SM precision measurements to constrain new physics
- One possibility: constrain the SM Effective Field Theory
- SM EFT: expansion of new physics in inverse of energy scale $1/\Lambda$
 - ► Introduces operators Q_i of energy dimension n > 4, suppressed by increasing powers of $\Lambda \gg v$
 - Lagrangian (without L and B violating operators):

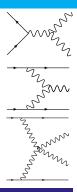
$$\mathcal{L}_{\text{SM EFT}} = \mathcal{L}_{\text{SM}} + \sum_{i} \frac{c_{i}^{\text{dim6}}}{\Lambda^{2}} \mathcal{Q}_{i}^{\text{dim6}} + \sum_{i} \frac{c_{i}^{\text{dim8}}}{\Lambda^{4}} \mathcal{Q}_{i}^{\text{dim8}} + \dots$$

- SMEFT respects SM symmetries and assumes linear realisation of SU(2)
- Captures low-energy effect of UV theory beyond Λ for $\sqrt{\hat{s}} \ll \Lambda$
- Can only measure c_i/Λ^n , not c_i or Λ separately
- Operator basis not unique, different conventions in use
- Constrain EFT coefficients \Rightarrow constrain large classes of UV theories

Important Concepts

• Comparison of size of terms linear ($\propto c/\Lambda^n$) and quadratic ($\propto c^2/\Lambda^{2n}$) in EFT coefficients can be test of convergence of EFT expansion

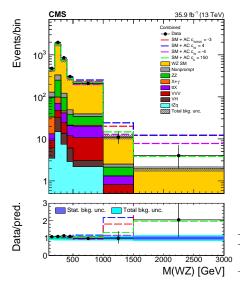
Dimension six example


$$\sigma = \sigma_{\rm SM} + \sum_{i} \frac{c_i}{\Lambda^2} \sigma_i^{\rm dim-6-interf} + \sum_{ij} \frac{c_i c_j}{\Lambda^4} \sigma_{ii}^{\rm (dim-6)^2} + \sum_{k} \frac{c_k}{\Lambda^4} \sigma_k^{\rm dim-8-interf} + \dots$$

Naive expectation: SM < dim-6-interf < $(dim-6)^2 \approx dim-8$ -interf

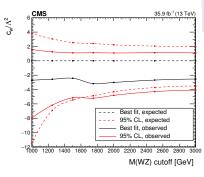
- Energy scale probed by measurement relevant: A has to be larger than directly probed energy scale (given e.g. by $\sqrt{\hat{s}}$)
- Effect of operators typically growing with $(E/\Lambda)^n \Rightarrow$ measure in tails
- Growth of amplitude with ŝ can violate unitarity, different unitarisation schemes in use

Anomalous Gauge Coupling Measurements


- In SM precision measurements at the LHC: EFT constraints almost exclusively from anomalous gauge coupling measurements
- Anomalous triple gauge couplings (aTGCs): Dibosons (WW, WZ, Wy) and VBF production (Zjj, Wjj)
- Neutral triple gauge couplings (nTGCs): ZZ and Zγ
- Anomalous quartic gauge couplings (aQGCs): Triboson, VBS production of boson pairs, exclusive WW

aTGCs and EFT

aTGC operators at dimension six in EFT expansion, usual basis:


CMS SMP-18-002: $WZ \rightarrow \ell \nu \ell' \ell'$

- Measurements in relatively clean three-lepton channel
 - Low background
 - Can deduce neutrino momentum
- Limits from tails of m_{WZ} distribution, where impact of aTGC largest
- Order 2/TeV² constraints on c_{WWW}/Λ^2 and c_W/Λ^2 , hardly sensitive to c_B

Parameter	95% CI (expected) [TeV ⁻²]	95% CI (observed) [TeV ⁻²]
c_W/Λ^2	[-3.3, 2.0]	[-4.1, 1.1]
c_{WWW}/Λ^2	[-1.8, 1.9]	[-2.0, 2.1]
c_b/Λ^2	[-130, 170]	[-100, 160]

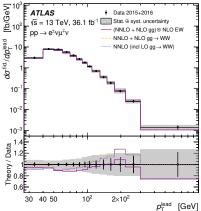
WZ (CMS) 2/2

- Importance of quadratic term studied
 - Small effect for limit on c_W
 - Quadratic term dominant for *c_{WWW}* and *c_B*

Linear vs Quadratic Terms

Limits using linear+quadratic terms

Parameter	95% CI (expected) [TeV ⁻²]	95% CI (observed) [TeV ⁻²]
c_W/Λ^2	[-3.3, 2.0]	[-4.1, 1.1]
c_{WWW}/Λ^2	[-1.8, 1.9]	[-2.0, 2.1]
$c_{\rm b}/\Lambda^2$	[-130, 170]	[-100, 160]

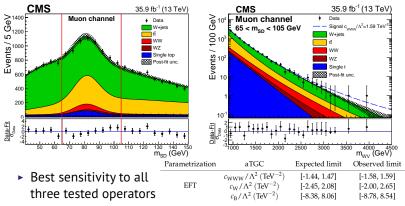

Linear terms only

Parameter	95% CI (expected) [TeV ⁻²]	95% CI (observed) [TeV ⁻²]
c_W/Λ^2	[-2.3, 3.4]	[-2.2, 2.7]
c_{WWW}/Λ^2	[-33.2, 28.6]	[-13.8, 41.2]
$c_{\rm b}/\Lambda^2$	[-360, 300]	[-230, 390]

- "Clipping" study performed as well (ad-hoc unitarisation with sliding cut-off)
- Restrict effect of aTGC up to a cut-off value of M(WZ) (SM prediction and data not affected)

WW (ATLAS)

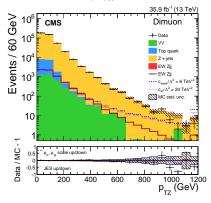
ATLAS STDM-2017-24: $WW \rightarrow e \nu \mu \nu$

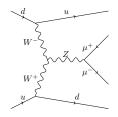

- More background than WZ, need to suppress tt with jet-veto
- Two neutrinos in final state
- Limits from unfolded leading p_T^{ℓ} fiducial cross section validated BSM terms behave as SM in unfolding
- Large EW correction to tail of p_T^ℓ
- ► Less sensitive to O_W, O_{WWW} than WZ
- Results given with and without quadratic term as well

		p _T ^{isud} [GeV]	Parameter	Observed 95% CL [TeV ⁻²]	Expected 95% CL [TeV-2]
			c_{WWW}/Λ^2	[-3.4, 3.3]	[-3.0, 3.0]
Operator	95% CL (linear and quadratic terms)	95% CL (linear terms only)	c_W/Λ^2	[-7.4,4.1]	[-6.4, 5.1]
c_{WWW}/Λ^2	[-3.4 TeV ⁻² , 3.3 TeV ⁻²]	[-179 TeV-2 , -17 TeV-2]	c_B/Λ^2	[-21,18]	[-18, 17]
c_W/Λ^2	[-7.4 TeV-2 , 4.1 TeV-2]			[-1.6, 1.6]	[-1.5, 1.5]
c_B/Λ^2	[-21 TeV-2 , 18 TeV-2]	[-104 TeV ⁻² , 101 TeV ⁻²]	$c_{\tilde{W}}/\Lambda^2$	[-76,76]	[-91,91]

WV (CMS)

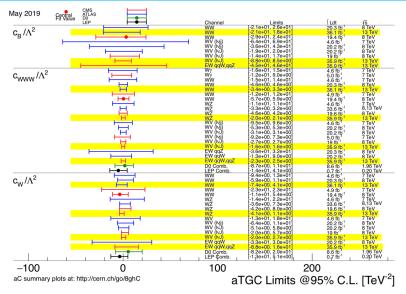
CMS SMP-18-008: $WV \rightarrow \ell \nu J \ (J = \text{fat jet})$


- Least clean channel SM signal buried beneath $t\bar{t}$ and W+jets
- Higher statistics / energy reach for aTGCs
- Simultaneous unbinned fit of jet and diboson mass


No study on unitarity, energy scale probed, or quadratic terms

VBF Z (CMS)

SMP-16-018: Z(*ll*)jj


 Targeting VBF production of Zjj

- Characterised by two tagging jets with rapidity gap
- Large irreducible Z+jets background ("QCD production")
- Limits from tail of p_{TZ}, competitive limit on c_{WWW}

Coupling constant	Expected 95% CL interval (TeV ⁻²)	Observed 95% CL interval (TeV ⁻²)
c_{WWW}/Λ^2	[-3.7, 3.6]	[-2.6, 2.6]
c_W/Λ^2	[-12.6, 14.7]	[-8.4, 10.1]

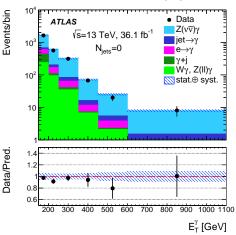
Summary of EFT constraints from aTGC measurements

Presented results (highlighted) most sensitive ones, far surpassing LEP

Beyond dimension six: nTGCs and aQGCs

Neutral Triple Gauge Couplings

- Reminder: no neutral triple gauge couplings in SM
- nTGC operators only at dim-8 in EFT expansion


$$\begin{aligned} O_{\widetilde{B}W} &= i H^{\dagger} \widetilde{B}_{\mu\nu} W^{\mu\rho} \left\{ D_{\rho}, D^{\nu} \right\} H, \qquad O_{WW} &= i H^{\dagger} W_{\mu\nu} W^{\mu\rho} \left\{ D_{\rho}, D^{\nu} \right\} H, \\ O_{BW} &= i H^{\dagger} B_{\mu\nu} W^{\mu\rho} \left\{ D_{\rho}, D^{\nu} \right\} H, \qquad O_{BB} &= i H^{\dagger} B_{\mu\nu} B^{\mu\rho} \left\{ D_{\rho}, D^{\nu} \right\} H. \end{aligned}$$

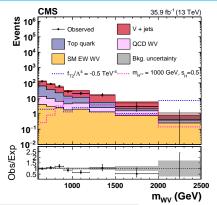
Anomalous Quartic Gauge Couplings

- Only at dim-8 (or higher) operators with quartic vertices but no two or three-boson couplings
- Assumption: aQGC due to dim-6 already constrained elsewhere
- Operators affect all quartic boson couplings

 $\mathcal{L}_{S,0-1} \propto (D_{\mu} \Phi)^4, \qquad \mathcal{L}_{M,0-7} \propto (F^{\mu\nu})^2 (D_{\mu} \Phi)^2, \qquad \mathcal{L}_{T,0-9} \propto (F^{\mu\nu})^4$

ATLAS STDM-2017-18: Ζ(νν)γ

- nTGCs constrained in ZZ and Zγ
- EFT constraints from Zγ tighter
- Best channel: Z → vv (large branching ratio, no FSR)
- Limits extracted from E^γ_T > 600 GeV events, in 0-jet category


Constraints of order 1/TeV⁴

Parameter	Limit 95% CL		
	Measured [TeV ⁻⁴]	Expected [TeV ⁻⁴]	
$C_{\tilde{B}W}/\Lambda^4$	(-1.1, 1.1)	(-1.3, 1.3)	
C_{BW}/Λ^4	(-0.65, 0.64)	(-0.74, 0.74)	
C_{WW}/Λ^4	(-2.3, 2.3)	(-2.7, 2.7)	
C_{BB}/Λ^4	(-0.24, 0.24)	(-0.28, 0.27)	

VBS WV/ZV (CMS)

CMS SMP-18-006: $WV \rightarrow \ell \nu J$ and $ZV \rightarrow \ell \ell J$

- Lepton(s) + fat jet + VBS jets final state
- As in semi-leptonic aTGC analysis: no attempt to discover SM process, only constraints of new physics
- ► Fit of *m_{WV}* distribution, binning as aggressive as MC statistics permits
- World-best limits for all operators tested (no unitarisation)

	Observed (WV)	Expected (WV)	Observed (ZV)	Expected (ZV)	Observed	Expected
	(TeV ⁻⁴)	(TeV^{-4})	(TeV ⁻⁴)	(TeV^{-4})	(TeV ⁻⁴)	(TeV^{-4})
f_{S0}/Λ^4	[-2.7, 2.7]	[-4.2, 4.2]	[-40, 40]	[-31,31]	[-2.7, 2.7]	[-4.2, 4.2]
$f_{\rm S1}/\Lambda^4$	[-3.3, 3.4]	[-5.2, 5.2]	[-32, 32]	[-24, 24]	[-3.4, 3.4]	[-5.2, 5.2]
f_{M0}/Λ^4	[-0.69, 0.69]	[-1.0, 1.0]	[-7.5, 7.5]	[-5.3, 5.3]	[-0.69, 0.70]	[-1.0, 1.0]
$f_{\rm M1}/\Lambda^4$	[-2.0, 2.0]	[-3.0, 3.0]	[-22, 23]	[-16, 16]	[-2,0,2.1]	[-3.0, 3.0]
f_{M6}/Λ^4	[-1.4, 1.4]	[-2.0, 2.0]	[-15, 15]	[-11, 11]	[-1.3, 1.3]	[-1.4, 1.4]
f_{M7}/Λ^4	[-3.4, 3.4]	[-5.1, 5.1]	[-35, 36]	[-25, 26]	[-3.4, 3.4]	[-5.1, 5.1]
f_{T0}/Λ^4	[-0.12, 0.11]	[-0.17, 0.16]	[-1.4, 1.4]	[-1.0, 1.0]	[-0.12, 0.11]	[-0.17, 0.16]
f_{T1}/Λ^4	[-0.12, 0.13]	[-0.18, 0.18]	[-1.5, 1.5]	[-1.0, 1.0]	[-0.12, 0.13]	[-0.18, 0.18]
f_{T2}/Λ^4	[-0.28, 0.28]	[-0.41, 0.41]	[-3.4, 3.4]	[-2.4, 2.4]	[-0.28, 0.28]	[-0.41, 0.41]

- All presented measurements constrain new physics in tails of kinematic distributions (m_{VV}, p_{TV} or proxies)
- No excesses observed
- Across the board: limits greatly improved compared to Run 1
- Tightest limits from semi-leptonic measurements
- Usually limited by statistics sensitivity will improve
- Many full Run 2 measurements ongoing: good time to think about improvements

Possible Improvements (1/2)

Allow Reinterpretation of Analyses

Perform model independent measurements, publish HEPdata + Rivet

Restrict Energy Scale Probed

Barely done so far (difficult in WW, otherwise $\approx \sqrt{\hat{s}}$ in principle accessible)

Perform Linearised Fit

Linear vs quadratic difference not always checked \rightarrow trivial to do!

Study Unitarisation

- Unitarisation applied only sporadically
- Clipping scans nowadays most popular method useful?

Possible Improvements (2/2)

Measure Better Observables

- Improve sensitivity, in particular to interference effect
- CP-odd observables for CP-odd operators?

Improve Statistical Interpretation

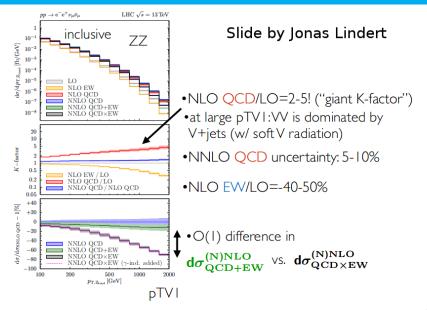
- Combine measurements
- Perform multi-parameter fits

Use Additional Models

- Should we also use the Warsaw basis in aTGC studies?
- NLO models available for limited set of operators (SMEFT@NLO)

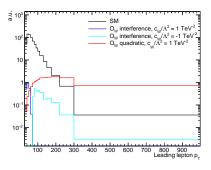
Higher Order Corrections

- Precise SM predictions clearly of utmost importance
- Some aspect of particular importance for EFT studies


EW Corrections and EFT

- EW correction typically growing with $\sqrt{\hat{s}}$ like EFT operators
- In tails, corrections of similar size as measurement uncertainties inclusion of correction (and associated uncertainty) affects limits
- Uncertainty scheme less clear compared to QCD

QCD Corrections and EFT


- SM QCD corrections sometimes applied to BSM terms
 - Can be OK, in some cases
 - Not always, for example: beware of giant k-factors when correcting LO EFT predictions for diboson

Giant k-factors

Importance of Quadratic Terms

- ► Interference of SM and dim6 amplitudes helicity suppressed in diboson (in particular for $Q_W = \epsilon^{UK} W^{I\nu}_{\mu} W^{J\rho}_{\nu} W^{K\mu}_{\rho}$) [1609.06312]
- Furthermore: quadratic term grows more strongly with energy than naively expected

\mathcal{O}_i	$\sigma_{SM \times dim_6} / (g_{SM}^4 / E^2)$	$\sigma_{dim_6^2}/(g_{SM}^4/E^2)$
F^3	$\frac{c_1}{g_{SM}}\frac{m_W^2}{\Lambda^2}$	$\frac{c_1^2}{g_{SM}^2} \frac{E^4}{\Lambda^4}$
$\phi^2 F^2$	$\frac{c_2}{g_{SM}^2} \frac{m_W^2}{\Lambda^2}$	$-\frac{c_2^2}{g_{SM}^4}\frac{m_W^2 E^2}{\Lambda^4}$
$(\phi D \phi)^2$	$\frac{c_3}{g_{SM}^2}\frac{m_W^2}{\Lambda^2}$	$\frac{c_3^2}{g_{SM}^4}\frac{m_W^4}{\Lambda^4}$
$ar{\psi}\gamma\psi\phi D\phi$	$\frac{c_4}{g_{SM}^2} \frac{E^2}{\Lambda^2}$	$\frac{c_4^2}{g_{SM}^4}\frac{E^4}{\Lambda^4}$

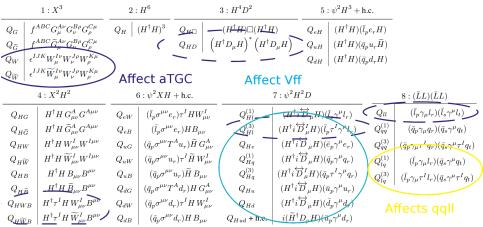
- In tails, essentially no sensitivity to interference
- Improvements possible:
 - Less suppression for VV+jets
 - Different observables?
- Similar situation in VBS: limits driven by quadratic terms

In the future: (more) global fits?

- ► UV theories introduce large number of non-zero EFT coefficients, affecting many processes ⇒ should constrain SM EFT in global fit
- Initial scope of global fit not entirely clear for SM measurements
 - Measurements to be included: going beyond aTGCs?
 - What is a good set of operators to constrain?
 - Where do we gain when combining with top or Higgs measurements?
 - How to include EW precision data? Where can we improve on it?
- Models and tools exists to start endeavour
 - Warsaw basis includes all dimension six operators
 - Implemented in SMEFTsim, partially also in SMEFT@NLO
 - Useful MC generator features make simulation feasible: e.g. MadGraph reweighting and interference integration

Possible Global Fit Strategy (for SM measurements)

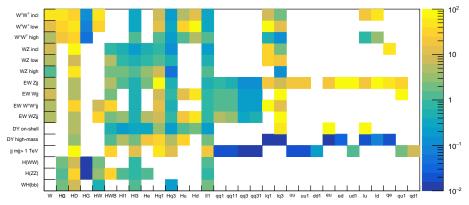
- Use SMEFTsim LO model (LO)
 - Focus on dimension six, Warsaw basis
 - LO: Keep things simple
- Rely on unfolded measurements where possible
 - Standard way to present SM physics results anyway
 - Reduces need for CPU expensive detector simulation
- Fit both linear and linear+quadratic terms
 - Both seems to be of interest, effect of quadratic at least as uncertainty
 - Quadratic terms increase simulation effort significantly


Case for Fit by Experimental Collaborations

If published unfolded measurements used, why EFT fits in experimental collaborations? (all information available outside)

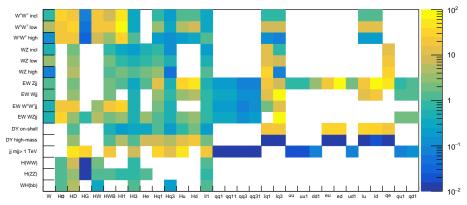
- We know our measurements best
- Can guide measurements strategy
- Resources available
- Makes sure all relevant information is published

Potentially Relevant Operators


Warsaw basis operators (omitting most four-fermion operators)

► Not directly clear which operators (beyond *Q*_W) relevant for electroweak measurements

Sensitivity study


- Quick sensitivity study: calculated linear effects for different processes and fiducial regions with MadGraph
- Estimate sensitivity by comparing relative change in cross section with measurement uncertainty

Sensitivity estimate linear ($\Lambda = 1 \text{ TeV}$)

Sensitivity study, including quadratic terms

- Adding also quadratic terms
 - Channels with good sensitivity to linear term not changed too much
 - Channels with previously bad sensitivity \rightarrow slightly better sensitivity
 - ▶ Notable exception: Measurement of *Q*^{*W*} relies on quadratic term

Sensitivity estimate linear+quadratic ($\Lambda = 1 \text{ TeV}$)

Conclusion

- At the LHC: EFT fits in EW precision measurements (so far) synonymous with anomalous gauge coupling measurements
- Many measurements with 2015+16 data published, much improved sensitivity to anomalous couplings w.r.t. LHC Run 1 (and LEP)
- Analysis of full Run 2 dataset in progress
- Some obvious points where measurements and their interpretations can be improved
- Longer term: should move towards combinations and perform more global EFT fits