

Top Precision Measurements and EFT Fits

Tom Stevenson

Pushing the Boundaries - Standard Model and Beyond at LHC **IPPP** Durham 20 September 2019

Top Quark Production Cross Section Measurements

TOM STEVENSON

Top Measurements at the LHC

Status: November 2018

- Precision measurements of top quarks at the LHC cover many orders of magnitude
- Due to large top quark mass, close to EW symmetry breaking scale, particle could play special role in SM as well as BSM theories
- Focus on two recent results at both ends of range which include EFT interpretations:
 - tt charge asymmetry
 - ttZ production

- Effective field theory (EFT) framework provides model-independent approach to parametrisation of possible deviation from SM predictions
- BSM physics described by higher order operators dimension six or higher
 - each operator is associated with a Wilson coefficient C_i extended Lagrangian is series expansion in inverse of new
 - physics energy scale

$$\mathcal{L}_{eff} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda^2} \sum_i C_i O_i + \dots$$

ATLAS-CONF-2019-026

TOM STEVENSON

tt charge asymmetry

20 SEPTEMBER 2019

- A LO production of top anti-top pairs is symmetric under C
- Higher order QCD contributions, i.e. from ISR/FSR and one-loop diagrams, mean top (anti-top) produced preferentially in direction of incoming quark (anti-quark)
- Though pp collisions at LHC are symmetric, on average valence quarks carry larger fraction of proton momentum than sea quarks
- Result in more forward top quarks and more central anti-top quarks
- Charge asymmetry defined as:

$$A_C^{t\bar{t}} = \frac{N(\Delta |y| > 0) - N(\Delta |y| < 0)}{N(\Delta |y| > 0) + N(\Delta |y| < 0)}$$

$$N(\Delta | y |$$

where

- Sensitive to BSM processes, e.g. anomalous couplings, heavy bosons, etc.

tt Charge Asymmetry

 $> 0) + N(\Delta | y | < 0)$

$$= |y_t| - |y_{\overline{t}}|$$

tt Charge Asymmetry - Analysis Setup

- Analysis uses 139 fb⁻¹ dataset at √s=13 TeV
- Lepton+jets considered for both resolved and boosted channels
 - Split into categories by:
 - $=1 \text{ or } \ge 2 \text{ b-tags}$
 - +ve or -ve lepton
- Measurement of tt asymmetry inclusively and binned in tt mass and velocity in z-direction, β_z
- Dominant backgrounds are single top production, W/Z+jets production, diboson and multijet

- Analysis uses fully Bayesian Unfolding (FBU) to estimate "true" Δ lyl distribution from measured distribution, which is smeared by acceptance and detector resolution effects
 - arXiv:1201.4612
 - Allows for combined unfolding of all channels
 - Also marginalises the systematics to reduce their values
- Posterior probability of true distribution is proportional to likelihood function (observed data **D** given truth) multiplied by prior probability density for true distribution **T** (uniform prior is chosen)
- Systematics included by extending likelihood to include nuisance parameters
- Likelihood sampled around minimum using Markov-Chain Monte Carlo based method to estimate posterior probability for all parameters of interest

tt Charge Asymmetry - Unfolding

tt Charge Asymmetry - Unfolding

TOM STEVENSON

tt Charge Asymmetry - Results

TOM STEVENSON

		Data 139 fb ⁻¹						SM pr
		A _C	Stat.	Syst.	MC stat.	Bias	Total unc.	
	Inclusive	0.0060	0.0011	0.0009	0.0005	0.0001	0.0015	0.006
	< 500 GeV	0.0045	0.0028	0.0034	0.0013	0.0001	0.0045	0.005
100 -	500-750 GeV	0.0051	0.0020	0.0021	0.0009	<0.0001	0.0031	0.007
m _{tt}	750-1000 GeV	0.0100	0.0049	0.0046	0.0021	0.0001	0.0070	0.007
	1000-1500 GeV	0.0169	0.0072	0.0027	0.0029	0.0004	0.0083	0.009
	> 1500 GeV	0.0121	0.0277	0.0150	0.0092	0.0005	0.0329	0.009
	0-0.3	0.0007	0.0040	0.0032	0.0020	0.0001	0.0055	0.001
$eta_{{ m z},tar t}$	0.3-0.6	0.0085	0.0031	0.0025	0.0013	0.0003	0.0042	0.002
	0.6-0.8	0.0014	0.0029	0.0033	0.0015	0.0004	0.0047	0.004
	0.8-1.0	0.0100	0.0026	0.0042	0.0013	0.0007	0.0051	0.014

20 SEPTEMBER 2019

rediction

tt Charge Asymmetry - EFT Operators

- - Charge asymmetry at LHC sensitive to seven four-fermion operators
 - Reduced to four by using flavour-specific linear combination:

$$C_u^2 = C_{qu}^{(1)}$$

$$C_d^1 = C_{qq}^{(8,1)}$$

$$C_d^2 = C_{qd}^{(1)}$$

equal couplings to up- and down-type quarks:

$$C_u^1 = C_d^1 = C^1$$

TOM STEVENSON

Warsaw basis comprises complete set of dimension-six operators

Number of combinations further reduced by making assumption of

$$C_u^2 = C_d^2 = C^2$$

At LHC tt charge asymmetry is sensitive to difference

$$C^- = C^1 - C^2$$

Can be recast as bound on coupling and massive of massive new states in variety of models. • e.g.

$$C^-/\Lambda^2 = -4g_s^2/m_A^2$$

- Bounds on C⁻/ Λ^2 derived from inclusive measurement and differential $m_{t\bar{t}}$ bins (right)
 - Small total uncertainty on inclusive measurement yields tight bound
 - Tevatron result and ATLAS & CMS combination at $\sqrt{s}=8$ TeV result are included for comparison

tt Charge Asymmetry - EFT Fit Results

PhysRevD.99.072009

TOM STEVENSON

20 SEPTEMBER 2019

Rare SM process - provides important test of the SM

 $\sigma_{t\bar{t}Z}^{NLO+NNLL} = 811^{+11.0\%}_{-9.6\%} (\text{scale})^{+2.4\%}_{-2.4\%} (\text{PDF} + \alpha_{\text{S}}) \text{ fb}$

- Main contribution from $gg \sim 70\%$, qq contribution $\sim 30\%$
- Cross-section is sensitive to the ttZ coupling in case of Z originating from FSR

Important background for ttH and some SUSY searches TOM STEVENSON

ttZ - Production at LHC

[1907.04343]

- ATLAS result based on full 2015+2016 dataset of 13 TeV collision (36.1 fb-1) Different final states, with varying S/B and dominant backgrounds
- Measurement uses I=e,µ only
- ▶ Will focus on ttZ as this is used for EFT interpretations

Process	tī decay	V decay	Channel	Dominant Backgrounds
++M/	(l±vb)(qą̄b)	Ι ±V	SS di-lepton	Non-prompt
	(l±vb)(l±vb)	l±v	tri-lepton	Non-prompt, t T X
τīΖ	(qą̄b)(qą̄b)	+ -	OS di-lepton	Z+jets tī
	(qą̄b)(l±vb)	 + -	tri-lepton	WZ+jets rare
	(l±vb)(l±vb)	 + -	tetra-lepton	ZZ+jets rare

ttV - 13 TeV Measurement

Overwhelming Z+jets and tt backgrounds: Use a BDT to increase sensitivity

- Three signal regions with different S/B: 2I-Z-6j1b, 2I-Z-5j2b, 2I-Z-6j2b
- > Data-driven estimate of $t\bar{t}$ from an eµ control region Z+heavy flavour normalisation from data (low BDT values)

ttz - OS Dilepton Channel

- Most sensitive regions for ttZ
- Signal regions defined by (b-)jet multiplicities:
 - > 3I-Z-1b4j, 3I-Z-2b3j, 3I-Z-2b4j, 3InoZ-2b4j
- Dominant backgrounds: WZ+jets, nonprompt leptons and rare SM processes (tZ, tWZ, ttH, etc.)
- Control region for WZ+jets defined using =3 jets and =0 b-tags
- Additional uncertainties included for WZ+HF and extrapolation to the SR

TOM STEVENSON

- Regions with excellent S/B, but relatively low yields due to small BR
- Always require a Z-like OSSF pair
- Four SRs, depending on the whether the other two flavours are the same (SF) or different (DF) and the number of b-jets: ▶ 4I-DF-1b, 4I-DF-2b, 4I-SF-1b, 4I-SF-2b
- Dominant backgrounds are ZZ+jets and rare SM processes (tWZ, ttX)
- Dedicated control regions for ZZ+jets, where two OSSF pairs consistent with a Z boson are required

- Combined fit in all signal regions to simultaneously extract $\sigma_{t\bar{t}Z}$ and $\sigma_{t\bar{t}W}$
 - Values from individual fits compatible within uncertainties
 - Dominated by signal & diboson background modelling and flavour-tagging uncertainties

$$\sigma_{t\bar{t}Z} = 0.95 \pm 0.08_{\text{stat.}} \pm 0.10_{\text{syst.}} \text{ pb}$$

 $\sigma_{t\bar{t}W} = 0.87 \pm 0.13_{\text{stat.}} \pm 0.14_{\text{syst.}} \text{ pb}$

Fit configuration	$\mu_{t ar{t} Z}$	$\mu_t ar{t} W$
Combined	1.08 ± 0.14	1.44 ± 0.32
2ℓ -OS	0.73 ± 0.28	
$3\ell \; t ar t Z$	1.08 ± 0.18	
2ℓ -SS and $3\ell \ t\bar{t}W$		1.41 ± 0.33
4ℓ	1.21 ± 0.29	

ttV - Results

Uncertainty	$\sigma_{t \bar{t} Z}$
Luminosity	2.9%
Simulated sample statistics	2.0%
Data-driven background statistics	2.5%
JES/JER	1.9%
Flavor tagging	4.2%
Other object-related	3.7%
Data-driven background normalization	3.2%
Modeling of backgrounds from simulation	5.3%
Background cross sections	2.3%
Fake leptons and charge misID	1.8%
$t\bar{t}Z$ modeling	4.9%
$t\bar{t}W$ modeling	0.3%
Total systematic	10%
Statistical	8.4%
Total	13%

- ttZ measurement is sensitive to a number of EFT couplings: 59 independent, gauge-invariant and baryon- & lepton- number conserving EFT operators in total at dimension six
 - Consider subset of these that modify ttV production Some of these can modify the top coupling to the gluon or the gluon self-couplings as well as the ttZ vertex
 - Some of these, e.g. $O_{tG} \equiv y_t g_s \left(\bar{Q} \sigma^{\mu\nu} T^A t \right) \tilde{\phi} G^A_{\mu\nu}$, can be constrained more precisely from other measurements (e.g. tt cross-section)
 - aMC@NLO used to perform EFT computation

Consider 5 operators only affecting ttZ Uses the NLO model of <u>arXiv:1601.08193</u>

arXiv:1601.08193

Operator	Expression	Ano L
$O^{(3)}_{\varphi Q}$	$\frac{i}{2} y_t^2 (\varphi^{\dagger} \overleftrightarrow{D}^I_{\mu} \varphi) (\bar{Q} \gamma^{\mu} \tau^I Q)$	whei
$O^{(1)}_{\varphi Q}$	$\frac{i}{2} y_t^2 (\varphi^\dagger \overleftrightarrow{Q}_\mu \varphi) (\bar{Q} \gamma^\mu Q)$	VVIISO
$O_{\varphi t}$	$\frac{i}{2} y_t^2 (\varphi^{\dagger} \overleftrightarrow{D}_{\mu} \varphi) (\bar{t} \gamma^{\mu} t)$	
O_{tW}	$y_t g_w (\bar{Q} \sigma^{\mu\nu} \tau^I t) \tilde{\varphi} W^I_{\mu\nu}$	
O_{tB}	$y_t g_Y(\bar{Q}\sigma^{\mu\nu}t)\tilde{\varphi}B_{\mu\nu}$	

TOM STEVENSON

Direct relationship can be made with anomalous-coupling approach, Bylund et al

malous coupling parametrisation of the ttZ vertex: $\mathscr{U}_{t\bar{t}Z} = e\bar{u}(p_t) \left[\gamma^{\mu} \left(C_{1,V}^Z + \gamma_5 C_{1,A}^Z \right) + \frac{i\sigma^{\mu\nu}q_{\nu}}{m_7} \left(C_{2,V}^Z + i\gamma_5 C_{2,A}^Z \right) \right] v(p_{\bar{t}}) Z_{\mu}$

re the relationships between anomalous couplings and on coefficients are:

$$\begin{split} C_{1,V}^{Z} &= \frac{1}{2} \left(C_{\varphi Q}^{(3)} - C_{\varphi Q}^{(1)} - C_{\varphi t} \right) \frac{m_{t}^{2}}{\Lambda^{2} s_{W} c_{W}} \\ C_{1,A}^{Z} &= \frac{1}{2} \left(-C_{\varphi Q}^{(3)} + C_{\varphi Q}^{(1)} - C_{\varphi t} \right) \frac{m_{t}}{\Lambda^{2} s_{W} c_{W}} \\ C_{2,V}^{Z} &= \left(C_{tW} c_{W}^{2} - C_{tB} s_{W}^{2} \right) \frac{2m_{t} m_{Z}}{\Lambda^{2} s_{W} c_{W}} \\ C_{2,A}^{Z} &= 0 \end{split}$$

EFT fit performed using the trilepton and tetralepton signal regions

Dilepton is discarded due to low purity

Excluded by previous constraints

Coefficients	$\mathcal{C}^{(3)}_{\phi Q}/\Lambda^2$	$\mathcal{C}_{\phi t}/\Lambda^2$
Previous indirect constraints at 68% CL Previous direct constraints at 95% CL	$[-4.7,\ 0.7] \ [-1.3,\ 1.3]$	$[-0.1,\ 3.7] \ [-9.7,\ 8.3]$

ttZ - EFT Fit Results

20 SEPTEMBER 2019

- New possibilities open up with the full Run 2 dataset
- Additional sensitivity to EFT operators from the tails of differential distributions
- Could consider combinations with other measurements sensitive to the same coupling, e.g. $t\bar{t}\gamma$, $t\bar{t}H$

- magnitude
- EFT framework provides model-independent approach to parametrisation of possible deviation from SM predictions
- Measurements of various top quark productions sensitive to EFT operators
- Presented two recent top quark production measurement with EFT interpretations: tt Charge Asymmetry ttZ production

ATLAS Top precision measurements cover many orders of

OS Dilepton

Variable	2 ℓ- Z-6j1b	2ℓ -Z-5j2b	2ℓ -Z-6j2b	Variable	3ℓ-Z-1b4j	3ℓ -Z-2b3j	3ℓ -Z-2b4j	3ℓ-noZ-
Leptons	=2, same :	flavor and op	posite sign	Leading lepton		1	$p_{\rm T} > 27 {\rm GeV}$	
$m_{\ell\ell}$	$ m_{\ell\ell} $	$-m_Z < 10$	GeV	Other leptons		1	$p_{\rm T} > 20 {\rm GeV}$	
$p_{\rm T}$ (leading lepton)		$> 30 \mathrm{GeV}$		Sum of lepton charges			± 1	
$p_{\rm T}$ (subleading lepton)		$> 15 {\rm GeV}$		Z requirement (OSSF pair)	$ m_{\ell\ell} $	$-m_Z < 10$	${ m GeV}$	$ m_{\ell\ell} - m_Z $ 2
$n_{b-\mathrm{tags}}$	1	≥ 2	≥ 2	$n_{ m jets}$	≥ 4	3	≥ 4	≥ 4
$n_{ m jets}$	≥ 6	5	≥ 6	$n_{b-\mathrm{tags}}$	1	≥ 2	≥ 2	≥ 2

Region	Z_2 leptons	p_{T4}	p_{T34}	$ m_{Z_2} - m_Z $	$E_{\mathrm{T}}^{\mathrm{miss}}$	$n_{b\text{-tags}}$
4ℓ -DF-1b	$e^{\pm}\mu^{\mp}$	_	$> 35 \mathrm{GeV}$	_	_	1
4ℓ -DF-2b	$e^{\pm}\mu^{\mp}$	$> 10 \mathrm{GeV}$	_	_	—	≥ 2
4 ℓ-SF- 1b	$e^{\pm}e^{\mp}$ $u^{\pm}u^{\mp}$		> 25 GeV	$\int > 10 \text{GeV}$	$> 40 \mathrm{GeV}$	1
	c c $,\mu$ μ		/ 20 00 /	$\langle 10 \text{GeV} \rangle$	$> 80 \mathrm{GeV}$	T
4ℓ -SF-2b	$e^{\pm}e^{\mp}$ $u^{\pm}u^{\mp}$	> 10 GeV		$\int > 10 \text{GeV}$	-)	> 2
10 01 20	c c $, \mu$ μ	> 10 007		$\langle 10 \text{GeV} \rangle$	$> 40 \mathrm{GeV}$	<u> </u>

ttZ signal regions

Trilepton

Tetralepton

Y L EXPERIMEN							_			OF
	SS Dilepton						Т	rilepton		
Requirement	2ℓ -SS(p,m)-1b	2e-SS(p,m)- $2b$	$e\mu$ -SS(p,m)-2b	2μ -SS(p,m)- $2b$		Variable	3ℓp-noZ-2b2j	3ℓ m-noZ-2b2j	3ℓp-noZ-1b2j	3ℓ m-noZ-1
$n_{b-\text{tags}}$ $E_{\text{T}}^{\text{miss}}$ H_{T} p_{T} (leading lepton)	=1 > 40 GeV	≥ 2 > 40 GeV > 24 > 27	≥ 2 > 40 GeV 0 GeV 7 GeV	≥ 2 > 20 GeV		All leptons Z veto (OSSF pair) $n_{\rm jets}$		$p_{\mathrm{T}} > 2$ $ m_{\ell\ell} - m_Z$ 2 o	$27 \mathrm{GeV}$ $ > 10 \mathrm{GeV}$ or 3	
$p_{\rm T}$ (subleading lepton) $n_{\rm jets}$ Z veto	≥ 4 $ m_{\ell\ell} $ -	> 27 ≥ 4 $- m_Z > 10 \mathrm{GeV}$	7 GeV ≥ 4 in the 2e and 2 μ	≥ 2 regions		$H_{\rm T}$ Sum of lepton charg $n_{b-{\rm tags}}$	ges $+1 \ge 2$	- -1 ≥ 2	> 240 +1 1) GeV
		Events	10^{3} 10^{2} 10^{2} 10^{2} 10^{2} 10^{1} 1.5	4 <i>S</i> 13 TeV, 36.1 fb -fit)		 Data tīZ Other Charge-flips Fake Leptons 	ttw WZ ttH γ+X Uncertainty			
		Data / Prec	ee-SSp-1b-CR ee-SSm-1b-CR eμ-SSm-1b-CR eμ-SSm-1b-CR	μμ-SSp-1b-CR μμ-SSm-1b-CR ee-SSp-2b-CR eμ-SSm-2b-CR eμ-SSm-2b-CR	μμ-SSp-2b-CR	μμ-SSp-2b-SR μμ-SSm-2b-SR eμ-SSp-2b-SR eμ-SSm-2b-SR ee-SSp-2b-SR ee-SSm-2b-SR ee-SSm-2b-SR alp-noZ-2b2j 3Lp-noZ-2b2j alm-noZ-2b2j	μμ-SSm-1b-SR eμ-SSp-1b-SR eμ-SSm-1b-SR ee-SSp-1b-SR ee-SSm-1b-SR ee-SSm-1b-SR al.p-noZ-1b2j			

TOM STEVENSON

ttW signal regions

Coefficients

Previous indirect constraints at 68% CL Previous direct constraints at 95% CL

Expected limit at 68% CL Expected limit at 95% CL Observed limit at 68% CL Observed limit at 95% CL

Expected limit at 68% CL (linear) Expected limit at 95% CL (linear) Observed limit at 68% CL (linear) Observed limit at 95% CL (linear)

${\cal C}^{(3)}_{\phi Q}/\Lambda^2$	$\mathcal{C}_{\phi t}/\Lambda^2$	$\mathcal{C}_{tB}/\Lambda^2$	${\cal C}_{tW}/\Lambda^2$
$[-4.7,\ 0.7] \ [-1.3,\ 1.3]$	$egin{array}{cccccccccccccccccccccccccccccccccccc$	$\begin{bmatrix} -0.5, 10 \end{bmatrix} \\ \begin{bmatrix} -6.9, 4.6 \end{bmatrix}$	$egin{array}{cccccccccccccccccccccccccccccccccccc$
$egin{array}{llllllllllllllllllllllllllllllllllll$	$\begin{array}{l} [-3.8,\ 2.7] \\ [-23,\ 4.9] \\ [-2.0,\ 3.5] \\ [-25,\ 5.5] \end{array}$	$egin{array}{llllllllllllllllllllllllllllllllllll$	$egin{array}{llllllllllllllllllllllllllllllllllll$
[-1.9, 2.0] [-3.7, 4.0]	[-3.0, 3.2] [-5.8, 6.3]		
[-1.0, 2.9] [-2.9, 4.9]	[-1.8, 4.4] [-4.8, 7.5]		

- Resolved and Boosted:
 - \blacktriangleright Exactly one lepton, $p_T > 28$ GeV
 - Electron: $E_T^{miss} > 30 \text{ GeV}, m_T^W > 30 \text{ GeV}$
 - Muon: $E_T^{miss} + m_T^W > 60 \text{ GeV}$
 - \Rightarrow =1 or \ge 2 b-tagged jets
- Resolved:
 - ≥4 small-R jets with $p_T > 25$ GeV
 - no boosted jets
 - \blacktriangleright tt system reconstructed with BDT (cut > 0.3)
- Boosted:
 - ≥1 small-R jet(s) with $p_T > 25$ GeV
 - $m_{t\bar{t}} > 500 \text{ GeV}$

tt Charge Asymmetry signal regions

► \geq large-R jet(s) top-tagged with p_T > 350 GeV and lηl < 2

Drocossi	Resc	olved	Boosted		
FIOCESS.	1b-excl.	2 <i>b</i> -incl.	1 <i>b</i> -excl	2 <i>b</i> -incl.	
$t\bar{t}$	1520000 ± 120000	1840000 ± 150000	50000 ± 7000	74000 ± 10000	
Single top	89000 ± 12000	49000 ± 8000	3600 ± 1200	3000 ± 1200	
W + jets	200000 ± 23000	23000 ± 14000	10000 ± 5000	1800 ± 1000	
$Z + VV + t\bar{t}X$	52000 ± 28000	15000 ± 8000	2600 ± 1300	1400 ± 800	
Multijet	90000 ± 40000	47000 ± 23000	3000 ± 1500	2300 ± 1200	
Total Prediction	1950000 ± 200000	1980000 ± 160000	69000±11000	83000±11000	
Data (139 fb ⁻¹)	1945037	2009526	54710	66582	

Table 1: Event yields split by topology (resolved, boosted) and b-tag multiplicity (1-excl., 2-incl.). Total premarginalisation uncertainty is shown.

