

EFT Constraints from Higgs measurements

Nicholas Wardle – Imperial College London

Pushing the Boundaries - Standard Model and Beyond at LHC Durham, UK

19/09/2019

Discovery of the Higgs boson completed the Standard Model

→ Great success of LHC @ Run-1

 \rightarrow Coupling structure in SM allows for rich program of Higgs boson studies @ LHC

Tree level coupling to vector bosons and heavy fermions

Discovery of the Higgs boson completed the Standard Model

ightarrow Great success of LHC @ Run-1

 \rightarrow Coupling structure in SM allows for rich program of Higgs boson studies @ LHC

Tree level coupling to vector bosons and heavy fermions

Loop induced processes sensitive to interference & BSM effects

Discovery of the Higgs boson completed the Standard Model

→ Great success of LHC @ Run-1

 \rightarrow Coupling structure in SM allows for rich program of Higgs boson studies @ LHC

Tree level coupling to vector bosons and heavy fermions

Loop induced processes sensitive to interference & BSM effects

U

τ

μ

Higgs boson

d

H

W

e

g

Ζ

 $\nu_{ au}$

S

h

the only particle that couples to itself!

Great for experiments!

arXiv:1909.02845 (sub to Phys Rev D)

Nicholas Wardle

Eur. Phys. J. C 79 (2019)

Observed

— 1 σ interval

CMS Preliminary

35.9 fb⁻¹ (13 TeV)

What do we know?

Couplings to heavy fermions and bosons well established!

What don't we know?

Couplings to heavy fermions and bosons well established!

Yet to confirm **coupling to 2**nd **Generation**

- B(H→μμ) < 1.7 x SM @ 95% CL (ATLAS-CONF-2019-028)
- B(H→cc) < 70 x SM @ 95 % CL (CMS-PAS-HIG-18-031)

What don't we know?

Couplings to heavy fermions and bosons well established!

Yet to confirm **coupling to 2**nd **Generation**

- B(H→μμ) < 1.7 x SM @ 95% CL (ATLAS-CONF-2019-028)
- B(H→cc) < 70 x SM @ 95 % CL (CMS-PAS-HIG-18-031)

Haven't observed **self-coupling** of the Higgs boson

 pp → HH searches severely limited by statistics @LHC

What don't we know?

 $\Gamma_{SM} = 4 \text{ MeV}$

Relatively large modifications possible from new physics

- Modifications to B(→SM) values
- Additional decays present if NP includes light objects
- Width (directly) constrained from H->4l line-shape
- Large uncertainty with Run-2 measurements
- Plenty of available room from BSM contributions with current data

Effective field theory

$$\mathcal{L} = L_{SM} + \sum \frac{c_i}{\Lambda^2} \mathcal{O}_i^{d=6} + \sum \frac{c_i}{\Lambda^4} \mathcal{O}_i^{d=8} + \dots$$

Well-defined theoretical approach to explore physics beyond the SM

- Assume new states are Heavy → only include light (SM) states in effective Lagrangian
- BSM effects show up as deviations of expansion coefficients from o in the data

Not specific to Higgs interactions ...

→ Great framework to combine electroweak, top, Higgs measurements! Matching to UV complete theories ~straightforward ...

 \rightarrow Complimentary to direct searches for heavy states

Effective field theory

$$\mathcal{L} = L_{SM} + \sum \frac{c_i}{\Lambda^2} \mathcal{O}_i^{d=6} + \sum \frac{c_i}{\Lambda^4} \mathcal{O}_i^{d=8} + \dots$$

Well-defined theoretical approach to explore physics beyond the SM

- Assume new states are Heavy → only include light (SM) fields in effective Lagrangian
- BSM effects show up as deviations of expansion coefficients from o in the data

Not specific to Higgs data ...

→ Great framework to combine electroweak, top, Higgs measurements! Matching to UV complete theories straightforward ...

 \rightarrow Complimentary to direct searches for heavy states

In Higgs, limited sensitivity with Run-2 \rightarrow Focus on dim-6 operators in experiments

Overall signal rate

Measuring the inclusive Higgs rate compared to that expected under the SM (μ)...

Uncertainty in overall rate < 10% with latest combinations

- Dominated by systematic component
- Theoretical uncertainty on signal cross-sections are major component of measurement

 $\mu = 1.11^{+0.09}_{-0.08} = 1.11 \pm 0.05 \text{ (stat.)} ^{+0.05}_{-0.04} \text{ (exp.)} ^{+0.05}_{-0.04} \text{ (sig. th.)} \pm 0.03 \text{ (bkg. th.)}$

Overall signal rate

Measuring the inclusive Higgs rate compared to that expected under the SM (μ)...

-2 In A

Uncertainty in overall rate < 10% with latest combinations

- Dominated by systematic component
- Theoretical uncertainty on signal cross-sections are major component of measurement

$$\mathcal{O}_H \sim \frac{c_H}{\Lambda^2} \partial^\mu (\Phi^\dagger \Phi) \partial_\mu (\Phi^\dagger \Phi)$$

Related to constraint on $c_H \rightarrow O_H$ rescales all Higgs $\sigma/\sigma_{SM} = \mu$ prod/decay processes

 $\mu = 1.11^{+0.09}_{-0.08} = 1.11 \pm 0.05 \text{ (stat.)} ^{+0.05}_{-0.04} \text{ (exp.)} ^{+0.05}_{-0.04} \text{ (sig. th.)} \pm 0.03 \text{ (bkg. th.)}$

Effective Couplings (κ-framework)

In LO κ-framework from Run-1, we also relax assumption on loop-induced processes and treat as "**effective couplings**"

Effective Couplings (κ-framework)

In LO κ-framework from Run-1, we also relax assumption on loop-induced processes and treat as "**effective couplings**"

(*In SILH basis)

Effective theories to compare experiments

Searches for $H \rightarrow$ invisibles can be interpreted under EFTs for $DM^* \rightarrow$ Higgs portal models [1]

[1] Review in https://arxiv.org/abs/1903.03616

*note this *does* require addition of new light states!

Nicholas Wardle

Effective theories to compare experiments

Searches for $H \rightarrow$ invisibles can be interpreted under EFTs for DM* \rightarrow Higgs portal models [1]

Nicholas Wardle

Effective field theory

$$\mathcal{L} = L_{SM} + \sum \frac{c_i}{\Lambda^2} \mathcal{O}_i^{d=6}$$

On-shell

$$\delta\mu\approx \left(\frac{v}{\Lambda}\right)^2$$

Inclusive μ/κ : high-precision yields precision on new physics scale $\delta\mu = 1\% \rightarrow \Lambda \sim 2.5 \text{ TeV}$)

Effective field theory

On-shell

ATLAS and CMS —• Observed ±1σ LHC Run 1 Th. uncert γγ ΖZ WW ττ bb -0.5 0.5 1.5 -0.5 0 0.5 1.5 -4 -2 0 2 8 ٥ 2 8 0 2 ggF VBF WH ΖH ttH $\sigma \cdot B$ norm. to SM prediction

$$\delta\mu\approx \left(\frac{v}{\Lambda}\right)^2$$

Inclusive μ/κ : high-precision yields precision on new physics scale

$$\delta\mu = 1\% \rightarrow \Lambda \sim 2.5 \text{ TeV}$$
)

$$\mathcal{L} = L_{SM} + \sum rac{c_i}{\Lambda^2} \mathcal{O}_i^{d=6}$$

Differential: High momentum production sensitive to new physics

Need to use differential measurements to exploit sensitivity at LHC!

Differential $p_T(H)$ Combination in $gg \rightarrow H$ mode: $H \rightarrow ZZ + H \rightarrow \gamma\gamma$ (+boosted $H \rightarrow bb$)

Nicholas Wardle

Differential $p_T(H)$ Combination in $gg \rightarrow H$ mode: $H \rightarrow ZZ + H \rightarrow \gamma\gamma$ (+boosted $H \rightarrow bb$)

Deviation from SM expressed in terms of Wilson coefficients $\mu_i^{\gamma\gamma} \rightarrow \mu_i^{\gamma\gamma}(\bar{\mathbf{c}}, \tilde{\mathbf{c}})$ (using SILH / SMEFT basis @ LO)

Build parameterization of $\mu_i^{\gamma\gamma}(\bar{\mathbf{c}}, \tilde{\mathbf{c}})$ using many MC points + professor algorithm [1] and construct log-likelihood function ...

$$-2\log L = \left(\hat{\boldsymbol{\mu}}^{\gamma\gamma} - \boldsymbol{\mu}^{\gamma\gamma}(\bar{\boldsymbol{c}}, \tilde{\boldsymbol{c}})\right)^T V^{-1} \left(\hat{\boldsymbol{\mu}}^{\gamma\gamma} - \boldsymbol{\mu}^{\gamma\gamma}(\bar{\boldsymbol{c}}, \tilde{\boldsymbol{c}})\right)$$

[1] https://arxiv.org/pdf/0907.2973.pdf

Nicholas Wardle

 $V_{i,j} = \rho(\mu_i^{\gamma\gamma}, \mu_i^{\gamma\gamma}) \sigma_{\mu_i^{\gamma\gamma}} \sigma_{\mu_j^{\gamma\gamma}}$

Minimize log-likelihood to extract constraints on Wilson coefficients

Also studied effects of including or not BSM-only contributions

Parameter value

 \rightarrow Constraints much greater when including BSM only contributions for CP-odd operators ~ \widetilde{c}_i

Simplified Template X-Sections (STXS)

For Run-2 ATLAS/CMS have additional produced Higgs results in terms of STXS measurements

- Introduce differential binning but maintain process distinction
- Binning chosen to decouple theory uncertainty from measurement and maintain experimental sensitivity
- In principle, measurements can be (re)interpreted under generic BSM scenarios → κ-framework, EFTs ...

Simplified Template X-Sections (STXS)

ATLAS-CONF-2019-005

<u>STXS VH(→bb)</u>

ATLAS V(\rightarrow lep)H(\rightarrow bb) cross-sections measured in bins of p_T(V)

Nicholas Wardle

<u>STXS VH(→bb)</u>

STXS combinations

→ STXS includes ratios of Branching ratios to allow combinations of decay channels

STXS combinations

Combinations allow for exploring more EFT operators, simultaneously, without introducing (strong) degeneracies between coefficients

Observed HEL constraints with $H \to ZZ^{\star}$ and $H \to \gamma\gamma$

Double Higgs

Limits on HH production expressed under 12 different EFT

scenarios varying 5 effective couplings ... c_g , c_2 , c_{2g} , y_t , k_λ

 \rightarrow Benchmarks picked from clusters of scenarios [1] which share kinematic properties (rather than full 5D exploration)

"Higgs potential has only been observed as a formula in text-books" \rightarrow no direct experimental confirmation ...

$$V(H) = \frac{m_{H}^{2}}{2}H^{2} + \lambda_{3}vH^{3} + \lambda_{4}H^{4}$$

"Higgs potential has only been observed as a formula in text-books" \rightarrow no direct experimental confirmation ...

$$V(H) = \frac{m_{H}^{2}}{2}H^{2} + \lambda_{3}vH^{3} + \lambda_{4}H^{4}$$

Double Higgs production sensitive to Higgs self-

coupling K_λ

"Higgs potential has only been observed as a formula in text-books" \rightarrow no direct experimental confirmation ...

$$V(H) = \frac{m_H^2}{2}H^2 + \lambda_3 v H^3 + \lambda_4 H^4$$

Double Higgs *and single Higgs* processes can be expressed in terms of effective coupling modifier K_{λ}

ATLAS-PHYS-PUB-2019-009

 \mathbf{K}_{F} 1.5 Re-interpretation of single Higgs ATLAS Preliminary production measurements in terms of 1.4 \sqrt{s} = 13 TeV, 36.1 - 79.8 fb⁻¹ Higgs self-coupling and H-fermion $m_{\rm H} = 125.09 \text{ GeV}, \kappa_{\rm V} = 1$ 1.3 coupling (following [1-2]) 1.2 Integrated luminosity (fb^{-1}) Analysis $H \rightarrow \gamma \gamma$ (including $t\bar{t}H, H \rightarrow \gamma \gamma$) 79.8 1.1 $H \rightarrow ZZ^* \rightarrow 4\ell$ (including $t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell$) 79.8 $H \rightarrow WW^* \rightarrow e \nu \mu \nu$ 36.1 $H \rightarrow \tau \tau$ 36.1 $VH, H \rightarrow b\bar{b}$ 79.8 $t\bar{t}H, H \rightarrow b\bar{b}$ and $t\bar{t}H$ multilepton 36.1 0.9 SM Best Fit Introducing additional degrees of 68% CL 0.8 ---95% CL freedom leads to large degeneracies in 0.7 the fit. -5 0 5 -15 10 15 20 κλ

Can we combine single + double Higgs measurements under EFT?

[1] Eur. Phys. J. C77 (2017) 887, [2] JHEP 12 (2016) 080)

ATLAS-PHYS-PUB-2019-009

 \mathbf{x}_{F} 1.5 Re-interpretation of single Higgs ATLAS Preliminary production measurements in terms of 1.4 \sqrt{s} = 13 TeV, 36.1 - 79.8 fb⁻¹ Higgs self-coupling and H-fermion $m_{\rm H} = 125.09 \text{ GeV}, \kappa_{\rm V} = 1$ 1.3 coupling (following [1-2]) 1.2 Integrated luminosity (fb^{-1}) Analysis $H \rightarrow \gamma \gamma$ (including $t\bar{t}H, H \rightarrow \gamma \gamma$) 79.8 1.1 $H \rightarrow ZZ^* \rightarrow 4\ell$ (including $t\bar{t}H, H \rightarrow ZZ^* \rightarrow 4\ell$) 79.8 $H \rightarrow WW^* \rightarrow e \nu \mu \nu$ 36.1 $H \rightarrow \tau \tau$ 36.1 $VH. H \rightarrow b\bar{b}$ 79.8 $t\bar{t}H, H \rightarrow b\bar{b}$ and $t\bar{t}H$ multilepton 36.1 0.9 SM Best Fit Introducing additional degrees of 68% CL 0.8 ---95% CL freedom leads to large degeneracies in the fit. 5 0 -15 10 15 20 κλ Can we combine single + double Higgs measurements $rac{ar{c}_6\lambda}{2}[\Phi^\dagger\Phi]^3$ under EFT? \rightarrow Yes but we need NLO implementation (SMEFTsim @ NLO?) [1] Eur. Phys. J. C77 (2017) 887, [2] JHEP 12 (2016) 080)

EFT Caveats 1.

STXS (and differential measurements) are great for EFT interpretations ...

However, need to be careful when extrapolating to "fiducial regions"

→ Often experiments rely on SM templates* to determine efficiencies/acceptances etc

→ Furthermore, experiments often employ sophisticated categorization methods (eg BDTs) to perform measurements. What happens to $WH_{[150<pT<250]}(BDT)$ if we include dim-6 operators?

* The "T" in STXS is exactly this!

Nicholas Wardle

EFT Caveats 2.

STXS (and combinations of differential measurements) don't include relevant information about decay of the Higgs

- Angular information (eg in 4l final state) sensitive to BSM effects
 - ALTAS/CMS use MELA/BDT to exploit this information – with SM templates

Can STXS be extended - eg with Pseudo Observables?*

*Discussions at LesHouches this year : <u>https://phystev.cnrs.fr/lh2019</u>

EFT Caveats 3.

In CMS/ATLAS we are used to thinking of Signal / Background

 \rightarrow But EFT is a global approach!

 \rightarrow Need to consider all contributions together

(Re)Interpretations

Providing differential measurements allows theorists to produce EFT interpretations

Aside from the caveats mentioned, what other effects (approximations) could yield inaccuracies?

→ Experiments should help validate these approaches by including EFT interpretations in papers – how much do correlations / HO moments matter?

<u>Speaking the same language</u>

Outcome of LesHouches-2019: https://github.com/ajgilbert/EFT2Obs-Demo

- Usable by both inside & outside CMS, therefore built on public tools (+ theorists prefer not to use ROOT*?)
- Agnostic to specifc EFT implementation, easy to implement new models (currently extensively tested with HEL, ongoing validations with SMEFTsim too)

Reweighting steering with simple configs

 $d\sigma/dp_T$

200

EFT Roadmap from H-perspective?

Image from https://tauo.wordpress.com/2011/06/12/down-the-road-again/

EFT Roadmap from H-perspective?

Image from https://tauo.wordpress.com/2011/06/12/down-the-road-again/

Summary

EFT is a great tool to explore potential BSM physics in the Higgs sector

- A number of interpretations already from ATLAS/CMS
- Differential / STXS measurements already being used to explore EFT scenario

Experiments ultimately provide *measurements* (cross-sections/rates etc)

- EFT Interpretations within the experiments exciting
- Can provide additional info if needed for accurate interpretations outside of the experiment

Global fits/combinations are the challenging but exciting way forward

- Common tools (eg EFT implementations) help experiments+theorists
- Need to continue synergy among similar efforts (LHC HXS WG, Les Houches, HiggsTools, HiggsDays, this workshop...)

LHC is not done yet \rightarrow More results with EFT to come, but let's keep in touch!

THANKS!

SM Coupling Constraints

Leading order coupling modifier framework used to correlate prod/decay rates

Interference between diagrams helps constrain degeneracies EG: κ_z sign degeneracy broken in gg->ZH production

-ve sign for $\kappa_{\rm b}$ slightly preferred due to small excess in ggH

SM Coupling Constraints

Overall sign degeneracy – here we fix $\kappa_t > 0$ and only look at +ve combination of $\kappa_W x \kappa_t$

Relative sign probed in single-top Higgs production Eg: tHW

Contribution from +ve sign combination included in relevant categories

Operator	Expression	HEL coefficient	Vertices
\mathcal{O}_g	$ H ^2 G^A_{\mu u} G^{A\mu u}$	$cG=rac{m_W^2}{g_s^2}ar{c}_g$	Hgg
${\mathcal O}_\gamma$	$ H ^2 B_{\mu u} B^{\mu u}$	$cA = rac{m_W^2}{q'^2}ar{c}_\gamma$	$H\gamma\gamma, HZZ$
\mathcal{O}_{u}	$y_u H ^2 \bar{u}_l H u_R + \text{h.c.}$	$cu = v^2 \overline{c}_u$	$Ht\bar{t}$
\mathcal{O}_{HW}	$i \left(D^{\mu} H \right)^{\dagger} \sigma^{a} \left(D^{\nu} H \right) W^{a}_{\mu\nu}$	$ ext{cHW} = rac{m_W^2}{g}ar{c}_{HW}$	HWW, HZZ
\mathcal{O}_{HB}	$i\left(D^{\mu}H\right)^{\dagger}\left(D^{\nu}H\right)B_{\mu\nu}$	$ ext{cHB} = rac{m_W^2}{g_1'}ar{c}_{HB}$	HZZ
\mathcal{O}_W	$i\left(H^{\dagger}\sigma^{a}D^{\mu}H\right)D^{\nu}W^{a}_{\mu\nu}$	cWW $= rac{m_W^2}{g} ar{c}_W$	HWW, HZZ
\mathcal{O}_B	$i \left(H^{\dagger} D^{\mu} H \right) \partial^{\nu} B_{\mu\nu}$	$cB = rac{m_W^2}{g'} ar{c}_B$	HZZ

Why Higgs Couplings?

Measuring Higgs bosons couplings remain a key goal of Future Higgs measurements

Higgs coupling measurements are good to test SM compatibility
 Synergies with EFT approaches

BSM contributions requite O(%) level Higgs property measurements

Model	κ_V	κ_b	κ_γ
Singlet Mixing	$\sim 6\%$	$\sim 6\%$	$\sim 6\%$
$2 \mathrm{HDM}$	$\sim 1\%$	$\sim 10\%$	$\sim 1\%$
Decoupling MSSM	$\sim -0.0013\%$	$\sim 1.6\%$	$\sim4\%$
Composite	$\sim -3\%$	$\sim -(3-9)\%$	$\sim -9\%$
Top Partner	$\sim -2\%$	$\sim -2\%$	$\sim +1\%$

arXiv:1310.8361 M_{NP}~ 1TeV

Discovery of the Higgs boson completed the Standard Model

→ Great success of LHC @ Run-1

Precision measurements of Higgs boson properties through its couplings to SM particles ...

... and remarkable precision on mass measurement (< 0.2% uncertainty)

Spin-Parity

ATLAS and CMS H \rightarrow WW,ZZ, $\gamma\gamma$ modes use angular information to distinguish between various J^P hypotheses...

Run-1 data is enough to rule out spin-2 (and many other J^P states) at > 99.9% confidence level

PRD 92 (2015) 012004

$$A(\text{HVV}) \sim \left[a_1^{\text{VV}} + \frac{\kappa_1^{\text{VV}} q_1^2 + \kappa_2^{\text{VV}} q_2^2}{\left(\Lambda_1^{\text{VV}}\right)^2} \right] m_{\text{V1}}^2 \epsilon_{\text{V1}}^* \epsilon_{\text{V2}}^* + a_2^{\text{VV}} f_{\mu\nu}^{*(1)} f^{*(2)\mu\nu} + a_3^{\text{VV}} f_{\mu\nu}^{*(1)} \tilde{f}^{*(2)\mu\nu}$$

$$f_{ai} = \frac{|a_i|^2 \sigma_i}{\sum_{j=1,2,3...} |a_j|^2 \sigma_j},$$
$$\phi_{ai} = \arg\left(\frac{a_i}{a_1}\right),$$

What do we actually measure?

What do we actually measure?

Likelihood to interpret the combined datasets from across Higgs channels

$$L(D|\boldsymbol{\mu},\boldsymbol{\theta}) = \prod_{n} Prob\left(d_{n}|\sum_{i,f} \boldsymbol{\mu}_{i}\boldsymbol{\mu}^{f}S_{i,n}^{f}(\boldsymbol{\theta}) + \sum_{k} B_{k}(\boldsymbol{\theta})\right) \times Gauss(\boldsymbol{\tilde{\theta}}|\boldsymbol{\theta})$$

Extract "**signal strengths**" from Maximum likelihood estimators

 $\mu_i = \frac{\sigma_i}{(\sigma_i)_{\text{SM}}}$ and $\mu^f = \frac{\text{BR}^f}{(\text{BR}^f)_{\text{SM}}}$

Re-parameterize strengths in terms of "coupling modifiers" κ

$$\mu
ightarrow \mu(\kappa)$$

Standard model defined by: $oldsymbol{\mu}_i = oldsymbol{\mu}^f = 1$ or $oldsymbol{\kappa} = 1$

What do we actually measure?

Likelihood to interpret the combined datasets from across Higgs channels

Rely on SM Higgs Predictions to calculate in each channel (V-p_T, n-jets etc)

Differential Higgs @ NLL+NLO

Nicholas Wardle

Differential Measurements

ATLAS differential diphoton SMEFT

Table 6: The 95% CL observed limits on the \overline{C}_{HG} , \overline{C}_{HW} , \overline{C}_{HB} , \overline{C}_{HWB} Wilson coefficients of the SMEFT basis and their CP-odd counterparts using interference-only terms and using both interference and quadratic terms. Limits are derived fitting one Wilson coefficient at a time while setting the other coefficients to zero.

Coefficient	95% CL, interference-only terms	95% CL, interference and quadratic terms
\overline{C}_{HG}	$[-4.2, 4.8] \times 10^{-4}$	$[-6.1, 4.7] \times 10^{-4}$
\widetilde{C}_{HG}	$[-2.1, 1.6] \times 10^{-2}$	$[-1.5, 1.4] \times 10^{-3}$
\overline{C}_{HW}	$[-8, 2, 7.4] \times 10^{-4}$	$[-8.3, 8.3] \times 10^{-4}$
\widetilde{C}_{HW}	[-0.26, 0.33]	$[-3.7, 3.7] \times 10^{-3}$
\overline{C}_{HB}	$[-2.4, 2.3] \times 10^{-4}$	$[-2.4, 2.4] \times 10^{-4}$
\widetilde{C}_{HB}	[-13.0, 14.0]	$[-1.2, 1.1] \times 10^{-3}$
\overline{C}_{HWB}	$[-4.0, 4.4] \times 10^{-4}$	$[-4.2, 4.2] \times 10^{-4}$
\widetilde{C}_{HWB}	[-11.1,6.5]	$[-2.0, 2.0] \times 10^{-3}$

<u>CMS/ATLAS H \rightarrow ZZ STXS defs</u>

<u>Compare ~full LH vs χ²</u>

Observed HEL constraints with $H \to ZZ^{\star}$ and $H \to \gamma\gamma$

Fit to ATLAS STXS measurements (ATLAS-CONF-2017-047)

