An EFT interpretation of STXS measurements at CMS

J. Langford, E. Scott, N. Wardle

Imperial College London

Pushing the Boundaries Workshop 19 Sept 2019

Imperial College London

Introduction

- Theory: EFT increasingly popular tool to investigate BSM physics
 - ▶ large interest in Higgs sector \Rightarrow substantial developments in recent years
 - ▶ in-light of no NP @ TeV scale, assume exists at $\Lambda \gg m_H$

$$\mathcal{L} = \mathcal{L}_{\rm SM} + \frac{1}{\Lambda^2} \mathcal{L}_6 + \frac{1}{\Lambda^4} \mathcal{L}_8 + ...$$

► dynamics: described through higher dim operators featuring SM fields

• Experiment: Simplified Template Cross Section (STXS) framework

- natural progression of per-production mode signal strengths, μ_i
- measure XS: increasingly granular regions of Higgs phase space
- Bridging the gap: EFT interpretation of STXS measurements
 - ► re-parametrize STXS bins in terms of EFT Wilson coefficients

Overview

Simplified Template Cross Sections (STXS)

- Introduction
- Stages
- Status of STXS measurements @ CMS
- Re-interpretation in an EFT framework
 - Higgs Effective Lagrangain
 - Deriving an EFT parametrization for STXS measurements
 - Examples: EFT parametrization
- - Results

STXS: introduction

- Coherent framework for increasingly granular Higgs measurements
 - ► isolate mutually exclusive regions of Higgs phase space (bins)
 - split by production mode + kinematics

- Aims: maximise experimental sensitivity whilst systematically reducing theory dependence folded into measurements
 - design bins to have constant theory unc.
 - + isolate possible BSM physics
 - coherence permits combinations across decay channels

Stages

• Evolution of framework (with increasing stats) defined in stages:

- ► 0: SM production modes
- ▶ 1: splitting by kinematic properties $(p_T^H, N_{jets},...)$
- ▶ 1.1: revision based on expected sensitivity of full Run 2 dataset

Status of STXS measurements @ CMS

• 2016 combination of Stage 0 measurements: [Eur. Phys. J. C (2019) 79: 421]

Status of STXS measurements @ CMS

- Stage 1 measurements in most decay channels: $\gamma\gamma$, VH(bb), $\underline{\tau\tau}$
- Run 2 Legacy: adhere to stage 1.1 binning scheme
 - public 1.1 measurements in $\underline{4\ell}$ using full dataset

- Intermediate combination:
 - frankenstein of different stages
 - direct STXS meas. not possible
 - $\Rightarrow \textit{motivates interpretations...}$

J. Langford

Re-interpretation in an EFT framework

- Goal: parametrize each STXS bin in terms of EFT parameters
- Higgs Effective Lagrangian (HEL): 39 flavour independent dim-6 operators

$$\mathcal{L}_{ ext{HEL}} = \mathcal{L}_{ ext{SM}} + \sum_j c_j \mathcal{O}_j$$

► NP: deviations from zero in HEL parameters, c_j

- Require scaling functions: $\mu_i(c_j) = \sigma_i^{\text{EFT}} / \sigma_i^{\text{SM}}$
 - for each STXS bin, i

$$\sigma_i^{\text{EFT}} = \sigma_i^{\text{SM}} + \sigma_i^{\text{int}} + \sigma_i^{\text{BSM}}$$

 $\implies \mu_i(c_j) = 1 + \sum_j A_j c_j + \sum_{jk} B_{jk} c_j c_k$

• Task: derive A_j and B_{jk} coefficients for STXS bins

$$\begin{split} \mathcal{O}_g &= |H|^2 G^A_{\mu\nu} G^{A\mu\nu} \\ \bar{\mathcal{O}}_g &= |H|^2 G^A_{\mu\nu} \bar{G}^{A\mu\nu} \\ \mathcal{O}_\gamma &= |H|^2 B_{\mu\nu} B^{\mu\nu} \\ \bar{\mathcal{O}}_\gamma &= |H|^2 B_{\mu\nu} B^{\mu\nu} \\ \hline \mathcal{O}_u &= y_u |H|^2 \bar{Q}_L H^\dagger u_R + \text{h.c.} \\ \mathcal{O}_d &= y_d |H|^2 \bar{Q}_L H d_R + \text{h.c.} \\ \mathcal{O}_\ell &= y_\ell |H|^2 \bar{L}_L H \ell_R + \text{h.c.} \\ \hline \mathcal{O}_\ell &= (\partial^\mu |H|^2)^2 \\ \hline \mathcal{O}_{6} &= (H^\dagger H)^3 \\ \hline \mathcal{O}_{HW} &= i (D^\mu H)^\dagger \sigma^a (D^\nu H) W^a_{\mu\nu} \\ \bar{\mathcal{O}}_{HW} &= i (D^\mu H)^\dagger \sigma^a (D^\nu H) W^a_{\mu\nu} \\ \hline \mathcal{O}_{HB} &= i (D^\mu H)^\dagger (D^\nu H) B_{\mu\nu} \\ \hline \overline{\mathcal{O}}_W &= i \left(H^\dagger \overline{D}^\mu H\right) D^\nu W^a_{\mu\nu} \\ \hline \mathcal{O}_B &= i \left(H^\dagger \overline{D}^\mu H\right) \partial^\nu B_{\mu\nu} \end{split}$$

EFT parametrization: derivation

$$\mu_i(c_j) = 1 + \sum_j A_j c_j + \sum_{jk} B_{jk} c_j c_k$$

- Scaling functions for stage 1 bins calc. previously: [LHCHXSWG-INT-2017-001]
 - use same approach to derive A_j/B_{jk} for stage 0, 1 & 1.1 bins
 - useful for validation: compare stage 1 coefficients
 - also provide decay channel parametrization: $\Gamma^{f}(c_{j})$

● Generate events per Higgs prod. mode (LO): MADGRAPH w/ PYTHIA showering

- Import HEL (UFO): reweight events for different points in HEL param space ⇒ SM: all c_j = 0
 - \Rightarrow vary c_j individually: ($c_j = w, 0, ..., 0$), (0, w, 0, ..., 0), ...
 - \Rightarrow pairwise to calc. B_{jk} cross terms ($j \neq k$): (w,w,0,...0), (w,0,w,0,...,0), ...
- Propagate events through <u>RIVET tool</u>: STXS classification (0, 1 and 1.1)

• Extract dependence of STXS bin, *i*, on c_j (or c_jc_k): $A_j \& B_{jk}$

 \Rightarrow comparing reweighted cross section to SM

WH Leptonic

$$p_T^V [0, 150] = 1 + 33 c_{WW} + 12 c_{HW} + 320 c_{WW}^2 + \dots$$

EFT parametrization: stage 0

• Varying c_j individually...

J. Langford

- EFT parametrization: stage 1.1 qqH
 - Beyond stage 0: account for shape effects as well as total rates

Total scaling functions

- Total scaling: product of STXS and decay parametrization
- For signal (i, f): $\mu_i^f(c_i) = \sigma_i^{\text{EFT}} / \sigma_i^{\text{SM}} \times \text{BR}^{\text{EFT}}(\text{H} \to f) / \text{BR}^{\text{SM}}(\text{H} \to f)$
 - production: calculated A_j/B_{jk} ourselves
 - ► decay: taken directly from [LHCHXSWG-INT-2017-001]

Constraining the EFT parameters: χ^2

• Construct χ^2 function: using <u>2016 combination</u> stage 0 measurements

$$\chi^2 = (\boldsymbol{x} - \boldsymbol{\mu})^T \boldsymbol{V}^{-1} (\boldsymbol{x} - \boldsymbol{\mu})$$

- x: vector of STXS measurements (cross-sections + ratios of BRs)
- μ : vector of respective EFT parametrizations (functions of c_j)
- $V_{ij} = \rho_{ij}\sigma_i\sigma_j$: covariance matrix of STXS measurements (symmetrized errors)
- Constraints: vary c_j and extract χ^2

Stage 0 combination: χ^2 results

• Consider variations in subset of HEL params:

 \Rightarrow c_G, c_A, c_u, c_d, c_I, c_{HW}, c_{WW} - c_B

- \blacktriangleright leading terms in measured processes + not tightly constrained by other data
- ► not including CP-odd operators: do not enter STXS observables at leading-order
- ▶ $S = c_{WW} + c_B$: precision EWK param, strong exp. constraint
- fix other $c_j = 0$
- Solid: profile other HEL params. Dashed: fix other HEL params to 0

• c_G constraint primarily from ggH, c_A from H $\rightarrow \gamma\gamma$

J. Langford

Stage 0 combination: χ^2 results

• Solid: profile other HEL params. Dashed: fix other HEL params to 0

 $\bullet~$ Both affect HVV vertices $\Rightarrow~$ constraints from VBF + VH

Stage 0 combination: χ^2 results

- Solid: profile other HEL params. Dashed: fix other HEL params to 0
- \mathcal{O}_u : affects Htt vertex \Rightarrow constraint from ttH

- Turning point in μ for ttH: two values of c_u give $\mu = 1$
- \bullet Leads to double minimum in χ^2 distribution
- Rest of χ^2 distributions + scaling functions in \bigodot

Stage 0 combination: summary

CMS Higgs Combination: EFT interpretation

- Run 2 Legacy: stage 1.1 combination of major H decay channels
 - direct XS measurements + interpretation
- Intermediate combinations: mixture of stage 0, 1 and 1.1 processes
 - ► binning schemes **not** backwards compatible: direct XS measurements not possible
 - EFT interpretation is: now have complete set of μ_i^f (HEL)
- \bullet For final results: $\chi^2 \Rightarrow$ full maximum-likelihood fit
 - confine signal process (i, f) to scale according to relevant $\mu_i^f(c_j)$
 - likelihood scan over $c_j \Rightarrow$ extract constraints
- Transition from HEL to SMEFT interpretation (SMEFTSIM model)
 - change of basis (SILH \rightarrow Warsaw)
 - ▶ permits combinations with other areas of HEP: VBS, top, SM

Summary

- Summarised status of STXS measurements in CMS
- EFT interpretation of STXS
 - derived $\mu_i(c_j)$: describe how XS scales as function of HEL parameters
- \bullet Presented results based on χ^2 analysis of CMS 2016 Higgs combination

Back-Up Slides

 χ^2 results: c_G

 χ^2 results: c_A

 χ^2 results: c_{HW}

 χ^2 results: $c_{WW} - c_B$

 χ^2 results: c_u

 χ^2 results: c_d

 χ^2 results: c_ℓ

