LHC experimental status and prospects

Andreas Hoecker (CERN)

Pushing the Boundaries — Standard Model and Beyond at LHC, Durham, 18 Sep 2019

LHC experimental status and prospects

Andreas Hoecker (CERN)

Pushing the Boundaries — Standard Model and Beyond at LHC, Durham, 18 Sep 2019

LHC experimental status and prospects

A few preliminary remarks on this talk:

- Focus on newest results and full Run-2 data analyses
- ATLAS heavy mostly due to convenience (apologies for this!): in most cases equivalent results from CMS
- Only brief coverage of heavy ion results, where relevant for particle physics

LHC Run-2 (2015–2018) √s = 13 TeV

Integrated pp luminosity during Run-2

Also collected 2.3 nb⁻¹ of 5 TeV Pb-Pb data, and p-Pb & Xe-Xe data

High-luminosity comes with a challenge

Exceptional data taking (94%) and data quality (95%) efficiencies, similar for CMS and ATLAS. Integrated luminosity in Run-2 measured to 1.7% precision (ATLAS) ATLAS-CONF-2019-021

LHC Run-2 (2015–2018) $\sqrt{s} = 13 \text{ TeV}$

The LHC is an **everything** factory

Particle	Produced in 140 fb ⁻¹ at $\sqrt{s} = 13$ TeV
Higgs boson	7.7 million
Top quark	275 million
Z boson	2.8 billion $(\rightarrow \ell \ell, 290 \text{ million})$
W boson	12 billion $(\rightarrow \ell \nu, 3.7 \text{ billion})$
Bottom quark	\sim 40 trillion (significantly reduced by acceptance)

Broad physics potential by probing with high-precision Higgs and other Standard Model processes, detecting very rare processes, and exploring new physics via direct and indirect measurements

LHC Run-2 (2015–2018) √s = 13 TeV

Excellent reconstruction performance, validated in data up to very large pileup values (> 60, design was 25)

Coherent data and MC sample for all of Run-2

Widespread use of machine learning techniques for particle reconstruction & identification

Dedicated improvements and calibrations of lowmomentum leptons, hadronic taus, low & high momentum b-tagging, boosted hadronic objects, Data-driven energy calibration of standard particle flow jets.

Data-driven energy calibration of b-jet tagging efficiency

Percent precision reached for both hadronic objects

LHC Run-2 (2015–2018) √s = 13 TeV

Excellent reconstruction performance, validated in data up to very large pileup values (> 60, design was 25)

Coherent data and MC sample for all of Run-2

Widespread use of machine learning techniques for particle reconstruction & identification

Dedicated improvements and calibrations of lowmomentum leptons, hadronic taus, low & high momentum b-tagging, boosted hadronic objects, Data-driven energy calibration o standard particle flow jets.

Percent-level precision also for data-driven calibration of large-R jets

Theory so far agrees with all measured cross sections

Across widely different processes

8

Harvest of CMS & ATLAS cross section measurements confirms the predictive power of the Standard Model

Also huge progress on theoretical calculations (NNLO revolution)

Many more detailed fiducial and differential cross section measurements

Theory so far agrees with all measured cross sections

...and across centre-of-mass energies

Precise measurements of boson production

Exploring differential spectra

arXiv:1909.04133

CMS 35.9 fb⁻¹ (13 TeV) CMS 35.9 fb⁻¹ (13 TeV) aMC@NLO/Data aMC@NLO/Data <u>d</u>σ $|\eta| < 2.4, p_{-} > 25 \text{ GeV}$ dσ $Z/\gamma \rightarrow \mu^+\mu^-, e^+e^$ lηl < 2.4, p_ > 25 GeV Z/γ $\rightarrow \mu^+\mu^-, e^+e^ \overline{\sigma}$ dp_{-}^{Z} σ 1.2 1.2 1.0 1.0 0.8 0.8 POWHEG/Data POWHEG/Data 1.2 1.2 $0 < |y^{Z}| < 0.4$ $.6 < |y^{Z}| < 2.4$ 1.0 1.0 0.8 0.8 ТП MINLO/Data MINLO/Data 1.2 1.2 1.0 1.0 0.8 0.8 10³ 10² 10² 10³ 10 10 1 p_T^Z [GeV] p_{τ}^{Z} [GeV]

High-precision study of Z production at 13 TeV compared to state-of-the-art predictions

Also comparisons with resummed & FO predictions. None provides fully satisfying agreement yet. Understanding of $p_T(V)$ spectrum and W–Z correlation important for W mass measurement

High-statistics probes of diboson production

Exploring differential spectra

New high-precision measurement of differential W⁺W⁻ (left) and Z γ (right) diboson cross sections, probing EW gauge structure of SM and tests QCD

Top-antitop production measurements

Huge ttbar statistics at LHC allows to measure multidimensional differential cross sections

Top-antitop production measurements

Huge ttbar statistics at LHC allows to measure multidimensional differential cross sections

Detailed differential cross-section measurements exhibit known modelling problems, examples below

Top production measurements

Differential cross section versus ttbar mass can be exploited to probe running top mass

Interpret measurement in eµ channel in terms of running MS mass

• m(tt) derived at parton level from fit to event kinematics

- Observed running is compatible with scale dependence predicted by RGE at NLO
- p-value of 2.6σ for no-running hypothesis

Top decay width

Top quark, shortest-lived matter known (~5×10⁻²⁵ s)

Top much broader than QCD bound states, width governed by weak decay:

$$\Gamma_t = \frac{G_F m_t^3}{8\pi\sqrt{2}} \left(1 - \frac{M_W^2}{m_t^2}\right)^2 \left(1 + 2\frac{M_W^2}{m_t^2}\right) \left[1 - \frac{2\alpha_s}{3\pi} \left(\frac{2\pi^2}{3} - \frac{5}{2}\right)\right] \sim 1.32 \text{ GeV (for } m_t = 172.5 \text{ GeV)}$$

New measurement from ATLAS in dilepton channel (280k candidates) using full Run-2 dataset

High-statistics probes of top-quark charge asymmetry

Higher order QCD effects in qq and qg collisions generate charge asymmetry (gg symmetric)

Charge asymmetry measurement in top-antitop system using resolved and boosted top-quark decays in lepton+jets events

$$A_{C}^{t\bar{t}} = \frac{N(\Delta|y| > 0) - N(\Delta|y| < 0)}{N(\Delta|y| > 0) + N(\Delta|y| < 0)} = 0.0060 \pm 0.0011_{\text{stat}} \pm 0.0010_{\text{sys}} \qquad \frac{\text{Non-zero at } 4\sigma - M_{\text{first evidence at LHC}}}{\text{first evidence at LHC}}$$

Consistent description in NNLO QCD with NLO EW corrections

Associated production of ttbar with bosons

ttZ cleanest channel, allows differential cross section measurements

Very interesting measurement from CMS using 78/fb in 3 and 4-lepton channels

Very clean signal regions. Total cross section measured:

 $\sigma(ttZ) = 0.95 \pm 0.05_{stat} \pm 0.06_{syst} \text{ pb}$

SM(NLO): 0.84 ± 0.10 pb

Associated production of ttbar with bosons

ttZ cleanest channel, allows differential cross section measurements

Very interesting measurement from CMS using 78/fb in 3 and 4-lepton channels

Used differential cross sections to constrain anomalous top-Z vector/axial-vector couplings and electroweak magnetic and electric dipole interaction couplings (the latter are only radiatively present in SM, ie, very small)

Alternative interpretation in SMEFT (constraints on effective Wilson coefficients)

Observation of light-bylight scattering in 5.02 TeV ultraperipheral Pb+Pb collisions taken in 2018

[arXiv:1904.03536]

Field strength of up to 10^{25} V/m $\gamma\gamma$ luminosity ~ Z⁴ ~ 5×10⁷

Look for low-energy back-to-back photon pair with no additional activity in detector

59 $\gamma \gamma \rightarrow \gamma \gamma$ events observed for 12 ± 3 expected background (8.2 σ)

This opens the door to new studies and searches using the interaction of quasireal photons in Pb-Pb collisions

Ultraperipheral PbPb collisions are rich source of photons

Look for two-particle correlations in γ +Pb scattering (selected by dedicated photo-nuclear trigger)

Two-particle correlations observed in non-UPC Pb+Pb, p+Pb in pp collisions:

• Long-range azimuthal correlations ("ridge") due to collective behavior in "quark-gluon plasma", quantified via Fourier decomposition of yields in ϕ (v₂ is the leading term, called elliptic flow)

Can such an effect occur in photo-nuclear collisions?

• Vector-meson dominance: photon fluctuates to vector meson γ +Pb $\Leftrightarrow \rho$ +Pb

The Higgs boson

The LHC's magnum opus

Discovery allows to access new sector of SM Lagrangian:

- Yukawa couplings (new types of interaction)
- Gauge-scalar boson interactions
- Higgs potential (incl. self coupling)

http://www.shardcore.org/shardpress

At the LHC, the Higgs boson is dominantly produced via gluon fusion for $\sigma_{H,total} = 56 \text{ pb}$ at $\sqrt{s} = 13 \text{ TeV}$ for $m_H = 125 \text{ GeV}$

 $\sigma_{H,ggF} \sim 49 \text{ pb at } 13 \text{ TeV}$ Yukawa coupling: y_t = v / (m_t $\sqrt{2}$) ~ 1 Weak boson fusion — VBF ($\sigma_{VBF} \sim 3.8 \text{ pb}$):

All major Higgs production modes observed at LHC

Total production of almost 8 million Higgs bosons expected in each CMS & ATLAS during Run-2 — that's huge, but ...

Channel	Produced	S	Selected	Mass resolution
$H \rightarrow \gamma \gamma$	18,200	and the first	6,500	1–2%
$H \rightarrow ZZ^*$	210,000	$(\rightarrow 4\ell)$	210	1–2%
$H \rightarrow WW^*$	1,680,000	$(\rightarrow 2\ell 2\nu)$	5,880	20%
$H \rightarrow \tau \tau$	490,000		2,380	15%
$H \rightarrow bb$	4,480,000		9,240	10%

H(125 GeV) — approximate numbers

Our goal is to measure the couplings of the Higgs boson to all particles and their dependence of the event kinematics and topology as precisely as possible

After the combined multichannel observation of ttH with 6.3σ in 2018, ATLAS observes ttH in single diphoton channel at 4.9σ using full Run-2 dataset

"ttH" production

 $(\sigma_{ttH} \sim \sigma_{bbH} \sim 0.5 \text{ pb})$:

9 10000

9 JODGOD

H

 $\sigma_{ttH} \cdot B_{H \to \gamma\gamma} = 1.59 \,{}^{+0.43}_{-0.39} \,\text{fb}$ = 1.59 $\,{}^{+0.38}_{-0.36}(\text{stat}) \,{}^{+0.15}_{-0.12}(\text{exp}) \,{}^{+0.15}_{-0.11}(\text{theo}) \,\text{fb}$

In agreement with SM prediction of 1.15 ± 0.10 fb

Cross section measurements in 4-lepton channel

Find ~210 pp \rightarrow H \rightarrow ZZ^{*} \rightarrow 4 ℓ signal events within 115 < $m_{4\ell}$ < 130 GeV in full Run-2 dataset Clean separation in production channels using NNs. Main ZZ background from sideband fit

Overall $\sigma(\text{obs}) / \sigma(\text{SM}) = 1.04^{+0.09}_{-0.08}(\text{stat.})^{+0.04}_{-0.03}(\text{exp.})^{+0.06}_{-0.05}(\text{th.}) = 1.04^{+0.12}_{-0.10}$

...and since it is so beautiful

...and since it is so beautiful

Display of a tt(\rightarrow e+jets)+H(\rightarrow µµµµ) candidate recorded in 2017 Expected S/B of ~ 30

Find 6550 pp \rightarrow H $\rightarrow \gamma\gamma$ signal events in full Run-2 dataset Rich sample to study details of Higgs production and constrain new physics

Raw spectrum, no categories, no weighting — beautiful Higgs boson signal

Differential cross section measurement. Results used to constrain EFT parameters and charm Yukawa coupling

Fiducial cross section $\sigma_{fid} = 65.2 \pm 4.5_{stat} \pm 5.6_{syst} \pm 0.3_{theo}$ fb (SM: 63.6 ± 3.3 fb)

Statistical combination for total and differential cross section measurements

 $\sigma(pp \rightarrow H) = 56.7^{+6.4}_{-6.2}(\gamma\gamma), 54.4^{+5.6}_{-5.4}(4\ell), 55.4^{+4.3}_{-4.2}(\text{comb}) \text{ pb}$

SM: 55.6 \pm 2.5 pb (NLO–3NLO QCD, NLO EW)

(7.8%)

arXiv:1909.02845

Combined measurement of simplified template cross sections (STXS)

STXS allow to combine different channels in well defined phase space regions* with reduced theory input

*incl. regions sensitive to new physics (such as high p_T) that might not manifest itself in total cross-section

Definition of "Stage-1" STXS used in the analysis

Note: 36–80/fb analyses here and next page !

Strong constraints on new physics via loops

• Coupling modifiers: $\kappa = \kappa(exp) / \kappa(SM)$, modifier ratios: $\lambda_{ab} = \kappa_a / \kappa_b$

Couplings to massless particles mediated by loops involving heavy particles

Powerful test for new physics (eg, strongly excludes SM-like heavy 4th fermion generation)

Higgs boson coupling to (lighter) 2nd generation fermions

Search for VH(\rightarrow cc), new result from CMS, significantly improved over previous ATLAS limit

BR: 2.9% \rightarrow 20 times smaller than bb, so need to worry about H \rightarrow bb background

Challenging due to low cross section and need for c-tagging

- Categorisation according to charged-lepton multiplicity of V decays (0,1,2L)
- Use and combination of of resolved (2c) and merged (1 large-R cc) jets
- Use of ML and jet substructure for tagging and classification

More promising than charm: $H \rightarrow \mu\mu$, but challenging due to huge $Z/\gamma^* \rightarrow \mu\mu$ background

Analysis strongly exploits expected features of signal and background via specific categories and BDTs **Robust empirical background modelling, "spurious signal" systematics using huge MC samples**

Higgs is narrow: 4.1 MeV

For comparison:

 $\Gamma_W = 2.1 \text{ GeV}$ $\Gamma_Z = 2.5 \text{ GeV}$ $\Gamma_{\text{top}} = 1.3 \text{ GeV}$

Even small couplings to new light states can measurably distort branching fractions

Search for dark matter through invisibly decaying Higgs

Sensitivity to WIMP mass $< m_H / 2$, complementary to direct dark matter searches

ATLAS Run 1+2 combination:

Di-Higgs production

HH ggF cross section predicted to 34 fb at 13 TeV, >1000 times smaller than single Higgs production

Sophisticated analyses needed, room for innovation Best channels: bbyy (BR = 0.26%), bb $\tau\tau$ (7.3%), bbbb (34%) \rightarrow combination

ATLAS combination using 36 fb⁻¹ analyses:

LO diagrams contributing with negative interference to SM HH production

Box diagram dominates inclusive production Sensitivity to H self-coupling rises at low $m_{\rm HH}$

Combined fit yields 95% CL allowed range:

$$-5.0 < \frac{\lambda_{HHH}(\text{obs})}{\lambda_{HHH}(\text{SM})} < 12.1$$

Higgs self coupling also occurs in electroweak loops contributing to Higgs production

41

Constraining the VVHH coupling

Both CMS and ATLAS have constrained the Higgs off-shell coupling and through this obtained upper limits on the Higgs total width $\Gamma_{\rm H}$.

The method uses the independence of off-shell cross section on Γ_H and relies on identical on-shell and off-shell Higgs couplings. One can then determine Γ_H from measurements of $\mu_{off-shell}$ and $\mu_{on-shell}$

$$\mu_{\text{off-shell}}(\hat{s}) \equiv \frac{\sigma_{\text{off-shell}}^{gg \to H^* \to VV}(\hat{s})}{\sigma_{\text{off-shell}, \text{SM}}^{gg \to H^* \to VV}(\hat{s})} = \kappa_{g, \text{off-shell}}^2(\hat{s}) \cdot \kappa_{V, \text{off-shell}}^2(\hat{s})$$

$$\mu_{\text{on-shell}} = \frac{\sigma_{\text{on-shell}}^{gg \to H \to ZZ}}{\sigma_{\text{on-shell}, SM}^{gg \to H \to ZZ}} = \frac{\kappa_{g,\text{on-shell}}^2 \cdot \kappa_{Z,\text{on-shell}}^2}{\Gamma_H / \Gamma_H^{SM}}$$

Newest result from CMS using 80/fb and exploiting matrix element techniques to separate production modes yields: arXiv:1901.00174

$$\label{eq:rescaled} \begin{split} \Gamma_{H} &< 9.2 \text{ MeV at 95\% CL} \ (\Gamma_{H,SM} = 4.1 \text{ MeV}) \\ \text{Best fit: } \Gamma_{H} &= 3.2 \, {}^{+2.8}_{-2.2} \ \text{MeV} \end{split}$$

Theory uncertainty from $gg \rightarrow ZZ$ prediction

The Brout-Englert-Higgs mechanism is real !

The scalar sector is directly connected with profound questions: naturalness, vacuum stability & energy, flavour

$$V(\phi) = \mu_{<0}^{2} \left|\phi\right|^{2} + \lambda \left|\phi\right|^{4} + Y^{ij} \psi_{L}^{i} \psi_{R}^{j} \phi$$

The Higgs boson discovery allows us to directly study this sector, requiring a broad experimental programme that will extend over decades

And the Higgs boson does more ...

The electroweak sector needs the Higgs boson

Higgs boson acts as "moderator" to unitarise high-energy longitudinal vector boson scattering

Unitarity: if only Z and W are exchanged, the amplitude of (longitudinal) $W_L W_L$ scattering violates unitarity

$$A_{Z,\gamma}\left(W^{+}W^{-} \rightarrow W^{+}W^{-}\right) \propto \frac{1}{\upsilon^{2}}(s+t)$$

Higgs boson restores unitarity of total amplitude:

$$A_{H}\left(W^{+}W^{-} \rightarrow W^{+}W^{-}\right) \propto -\frac{m_{H}^{2}}{\upsilon^{2}} \left(\frac{s}{s-m_{H}^{2}} + \frac{t}{t-m_{H}^{2}}\right)$$

Same-sign WW selection greatly reduces background from strong production and removes s-channel Higgs process:

Look for VBS scattering in high dijet invariant mass distributions

The electroweak sector needs the Higgs boson

Higgs boson acts as "moderator" to unitarise high-energy longitudinal vector boson scattering

Unitarity: if only Z and W are exchanged, the amplitude of (longitudinal) $W_L W_L$ scattering violates unitarity

$$A_{Z,\gamma}\left(W^{+}W^{-} \rightarrow W^{+}W^{-}\right) \propto \frac{1}{\nu^{2}}(s+t)$$

Higgs boson restores unitarity of total amplitude:

$$A_{H}\left(W^{+}W^{-} \rightarrow W^{+}W^{-}\right) \propto -\frac{m_{H}^{2}}{\upsilon^{2}}\left(\frac{s}{s-m_{H}^{2}}+\frac{t}{t-m_{H}^{2}}\right)$$

Same-sign WW selection greatly reduces background from strong production and removes s-channel Higgs process:

Look for VBS scattering in high dijet invariant mass distributions

CMS & ATLAS observed vector boson scattering in WWjj at > 5σ (ATLAS also in WZ channel)

arXiv:1906.03203, arXiv:1812.09740

Observation of Electroweak ZZ+jj production

This completes observation of weak boson scattering, and sparks new ways to test EWSB

Very rare but clean mode using Z decays to charged leptons; exploit also $Z \rightarrow \nu\nu$ decay

Multivariate analysis to separate EW signal from strong interaction background

Observed (expected) significances for EW production: 5.5σ (4.3 σ), dominated by 4 ℓ channel

 $\sigma_{fid}(EW) = 0.82 \pm 0.21 \text{ fb}$

SM: 0.61 ± 0.03 fb

CMS observes electroweak $Z\gamma$ + 2jets production in 36/fb with 4.7 σ (5.5 σ expected)

CMS-PAS-SMP-18-007 ATLAS-CONF-2019-039

The electroweak sector needs the Higgs boson

Global electroweak fit was masterpiece of LEP/SLD (e+e-) era

Flavour physics

Extremely rich spectrum of results from LHC — will not discuss spectroscopy here

agreement with SM predictions (for B_s : 3.6 ± 0.2 × 10⁻⁹)

Dimuon invariant mass [MeV]

Flavour physics

Extremely rich spectrum of results from LHC — will not discuss spectroscopy here

Recent ATLAS result on ϕ_s from $B_s \rightarrow J/\psi \phi$ (80/fb)

SM prediction: $\phi_s = -0.036 \pm 0.002$ rad

Also: beautiful observation of CP violation in charm by LHCb, but hard to interpret (cf. ϵ'/ϵ)

Status of flavour anomalies:

$$R_{D^{(*)}} = \frac{B(B \to D^{(*)}\tau\nu)}{B(B \to D^{(*)}\ell\nu)}$$

(possible NP in charged current in tree diagram)

Anomaly reduced after recent Belle result [1904.08794] in agreement with SM

Remaining tension (HFLAV): 3.1o

Corresponding $R_{J/\psi|\tau/\mu} \sim 2\sigma$ above SM [LHCb: 1711.05623]

$$R_{K^{(*)}} = \frac{B(B \to K^{(*)}\mu\mu)}{B(B \to K^{(*)}ee)} \cong 1$$

Exps measure double ratio involving J/ ψ

 R_K : LHCb most precise, Run-2 ~SM, combination with Run-1: 2.5 σ < SM

 R_{K^*} : LHCb somewhat low at low q^2

Searches for new physics

Cover all areas: high mass, electroweak production, long-lived particles, forbidden decays, ...

only u^* and d^* , $\Lambda = m(q^*)$

 $m(W_R) = 4.1 \text{ TeV}, g_L = g_R$

DY production, |q| = 5e

DY production, $|g| = 1g_D$.

DY production DY production, $\mathcal{B}(H_{l}^{\pm\pm} \rightarrow \ell\tau) = 1$

Mass scale [TeV]

 $\Lambda = 3.0 \text{ TeV}$

 $\Lambda = 1.6 \; \text{TeV}$

10

1709.10440 1805.09299

1411.2921

1411.2921 ATLAS-CONF-2018-020

1809.11105

1710.09748 1411.2921

1812.03673

1905.10130

Theory-agnostic, signature based searches, as well as highly targeted model-dependent ones

ATLAS Exotics Searches* - 95% CL Upper Exclusion Limits

Status: N	lay 2019
-----------	----------

		Model	ℓ,γ	Jets†	$\mathbf{E}_{\mathrm{T}}^{\mathrm{miss}}$	∫£ dt[fb	-1]	Limit		n. squa	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_$
	SL	ADD $G_{KK} + g/q$ ADD non-resonant $\gamma\gamma$	0 e, μ 2 γ	1 – 4 j –	Yes -	36.1 36.7	Mp Ms			3 rd gel	$\tilde{t}_{1}\tilde{t}_{1}$, $\tilde{t}_{1}\tilde{t}_{1}$,
	ensio	ADD QBH ADD BH high $\sum p_T$ ADD BH multijet	$\geq 1 e, \mu$	2j ≥2j ≥3i	_	37.0 3.2	M _{th} M _{th}				$\tilde{t}_2 \tilde{t}_2$,
	dim	RS1 $G_{KK} \rightarrow \gamma\gamma$	2γ		-	36.7	G _{KK} mass				$\tilde{t}_2 \tilde{t}_2$,
	xtra	Bulk RS $G_{KK} \rightarrow WW/ZZ$ Bulk RS $G_{KK} \rightarrow WW \rightarrow qq$	multi-channe qq 0 e, μ	al 2 J	-	36.1 139	G _{KK} mass G _{KK} mass		2.3 TeV 1.6 TeV		$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^{0}$
	ш	Bulk RS $g_{KK} \rightarrow tt$	1 e, µ	$\geq 1 \text{ b}, \geq 1 \text{J}/$	2j Yes	36.1	gkk mass				$\tilde{\chi}_{1}^{\pm}\tilde{\chi}_{1}^{\pm}$
	_	2UED / RPP	1 e, µ	≥ 2 b, ≥ 3	j Yes	36.1	KK mass		1.8 TeV	~	$\tilde{\chi}_1^* \tilde{\chi}_1$
		$SSM Z' \rightarrow \ell\ell$	2 e, µ	-	-	139	Z' mass		0.40 Tel	I'ec	$\tilde{X}_1^{\pm}\tilde{X}_1$
	S	Lentophobic $Z' \rightarrow bb$	21	2 h	_	36.1	Z mass		2.42 TeV	- 2	77,7
	So	Leptophobic $Z' \rightarrow tt$	1 e, µ	≥ 1 b, ≥ 1J/	2i Yes	36.1	Z' mass		3.0		eL,Re
	q	SSM $W' \rightarrow \ell v$	1 e, µ	-	Yes	139	W' mass				ĤĤ
	ge	SSM $W' \rightarrow \tau v$	1 τ	-	Yes	36.1	W' mass				,
	au	HVT $V' \rightarrow WZ \rightarrow qqqq$ mo	del B 0 e, µ	2 J	-	139	V' mass			7	
	G	$HVI V' \rightarrow WH/2H \mod E$	3 multi-channe	el .		36.1	V' mass		2.93	Vec	Dire
		LESM $W_R \rightarrow uN_0$	multi-channe	31 1 1	-	36.1	We mass		3.2	d-li tic	Stab
	_			10			- R mass			par	Met
	5	Cliffag		2]	-	37.0	Λ Α			~	
	Ŭ	Cl tttt	>1 e u	>1 h >1 i	Voc	36.1	Δ		2 57 Te		LEV
	_	A del control d									$x_1 x_1$
	~	Axial-vector mediator (Dirac	DM) 0 e,μ	1-4j	Yes	36.1	mmed	1.	55 TeV	>	88, 8
	D	VVVVV FET (Dirac DM)	0 e µ	1.J<1i	Yes	36.1	M	700 GoV	1.67 Tev	5	<i>77</i> 7
		Scalar reson. $\phi \rightarrow t\chi$ (Dirac	DM) 0-1 e, µ	1 b, 0-1 J	Yes	36.1	mø	700 000	1	-	$\tilde{I}_1 \tilde{I}_1$,
		Scalar I O 1 st gon	120	> 2 i	Vee	26.1	LO mare		TeV		$\tilde{t}_1 \tilde{t}_1$,
	a	Scalar LQ 2 nd gen	1.2 u	> 2 i	Yes	36.1	LQ mass	1.	56 TeV		
	1	Scalar LQ 3rd gen	2 τ	2 b	-	36.1	LQ ^a mass	1.03 TeV			
		Scalar LQ 3 rd gen	0-1 e,µ	2 b	Yes	36.1	LO ^d mass	970 GeV			
1		VLQ $TT \rightarrow Ht/Zt/Wb + X$	multi-channe	əl		36.1	T mass	1.37	TeV	*Only a	a sel
	> S	$VLQ BB \rightarrow Wt/Zb + X$	multi-channe	əl		36.1	B mass	1.34	TeV	phén	omei
	arka	VLQ $T_{5/3}T_{5/3} T_{5/3} \rightarrow Wt +$	X 2(SS)/≥3 e,µ	u ≥1 b, ≥1 j	Yes	36.1	T _{5/3} mass	1	.64 TeV	simpi	itiea
	포랑	$VLQ Y \rightarrow Wb + X$	1 e, µ	$\geq 1 b, \geq 1$	i Yes	36.1	Y mass		1.85 TeV		
		$VLQ B \rightarrow HD + X$ $VLQ O Q \rightarrow W/aW/a$	0 e,μ, 2 γ	210, 21	J Yes	79.8	B mass	1.21 I	eV		
- 1	_	vica qiq → viqiiq	1 e, µ	2.41	res	20.3	Q mass	690 GEV			
	pa	Excited quark $q^* \rightarrow qg$	-	2 j	-	139	q' mass			6.7	TeV
	i i i	Excited quark $q^* \rightarrow q\gamma$ Excited quark $b^* \rightarrow b\sigma$	1.7	16.11	-	36.7	q mass		0.6 TeV	5.3 IEV	
	EXE EXE	Excited lepton l*	3 e, µ	-	-	20.3	C* mass		3.0 TeV		
	1	Excited lepton v*	3 e, μ, τ	-	-	20.3	v* mass		1.6 TeV		
		Type III Seesaw	1 e. u	> 2 i	Yes	79.8	N ⁰ mass	560 GeV			
		LRSM Majorana v	2 μ	2 j	-	36.1	N _R mass		3.2 TeV		
	er	Higgs triplet $H^{\pm\pm} \rightarrow \ell \ell$	2,3,4 e, µ (SS	S) –	-	36.1	H## mass	870 GeV			
	Sth	Higgs triplet $H^{\pm\pm} \rightarrow \ell \tau$	3 e, μ, τ	-	-	20.3	H ^{±±} mass	400 GeV			
	0	Multi-charged particles	-	-	-	36.1	multi-charged particle mass	1.22 T	eV		
		waynetic monopoles		-	-	34.4	monopole mass		2.37 lev		
		$\sqrt{s} = 8 \text{ TeV}$	Vs = 13 TeV	√s = 13	3 TeV		10-1				
			partial uata	D IUI	ata		10				

4		SUSY Sea	rches	* - 95%	% CI	L Lo	wer L	imits									ATLAS Preliminary
J	Model	I		Signatur	re ∫	<i>L dt</i> [fb ⁻	-1]		Mas	s limit							$\sqrt{s} = 13$ lev Reference
	$\tilde{q}\tilde{q}, \tilde{q} \rightarrow q \tilde{\chi}_1^0$		0 e, μ mono-je	2-6 jets at 1-3 jets	E_T^{miss} E_T^{miss}	36.1 36.1	q [2x, 8: q [1x, 8:]	× Degen.] × Degen.]		0.43	0.7	0.9	1.55		r m(ž	m(k ⁰ ₁)<100 GeV))-m(k ⁰ ₁)=5 GeV	1712.02332 1711.03301
e Searches	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q \tilde{q} \tilde{\chi}_1^0$		0 e, µ	2-6 jets	E_T^{miss}	36.1	Ř Ř				Fe	orbidden	0.95-1.6	2.0	r	m(\bar{k}_1^0)<200 GeV m(\bar{k}_1^0)=900 GeV	1712.02332 1712.02332
	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow q\tilde{q}(\ell l$	$\Im \tilde{x}_1^0$	3 e, μ ee, μμ	4 jets 2 jets	E_T^{miss}	36.1 36.1	ğ ğ						1.2	1.85	r m(ĝ)	n(x̃1)<800 GeV -m(x̃1)=50 GeV	1706.03731 1805.11381
clusiv	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow qqW$	$Z \tilde{\chi}_1^0$	0 e,μ SS e,μ	7-11 jets 6 jets	$E_T^{\rm miss}$	36.1 139	Ř Ř						1.15	1.8	п m(ğ)-r	n(${ ilde{k}_1^0})$ <400 GeV n(${ ilde{k}_1^0})$ =200 GeV	1708.02794 ATLAS-CONF-2019-015
ri Li	$\tilde{g}\tilde{g}, \tilde{g} \rightarrow t\tilde{t}\tilde{\chi}_1^0$		0-1 e,μ SS e,μ	3 b 6 jets	E_T^{miss}	79.8 139	ğ ğ						1.25	2.3	25 r m(g)-r	n(k̃_1)<200 GeV n(k̃_1)=300 GeV	ATLAS-CONF-2018-041 ATLAS-CONF-2019-015
	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{b}_1$	$\tilde{k}_1^0/\iota \tilde{k}_1^{\pm}$		Multiple Multiple Multiple		36.1 36.1 139	$egin{array}{c} eta_1\ eba_1\ eba$	Foi	rbidden	Forbidden Forbidden	0.58	0.9 I-0.82 74		m(\bar{k}_{1}^{l}	m($\tilde{\chi}_1^0$)=300 G m($\tilde{\chi}_1^0$)=300 GeV, BR($b\tilde{\chi}_1^0$)=200 GeV, m($\tilde{\chi}_1^0$)=300 G	BeV, BR($b\tilde{\chi}_1^0)$ =1 =BR($t\tilde{\chi}_1^\pm$)=0.5 BeV, BR($t\tilde{\chi}_1^\pm$)=1	1708.09266, 1711.03301 1708.09266 ATLAS-CONF-2019-015
arks	$\tilde{b}_1 \tilde{b}_1, \tilde{b}_1 \rightarrow b \tilde{b}_1$	$\tilde{\chi}_2^0 \rightarrow bh \tilde{\chi}_1^0$	0 e, µ	6 <i>b</i>	E_T^{miss}	139	${ar b_1 \ ar b_1}$	Forbidden		0.23-0.48			0.23-1.35		$\Delta m(\hat{k}_{2}^{0}, \hat{k}_{1}^{0}) = 130 \text{ GeV}, n$ $\Delta m(\hat{k}_{2}^{0}, \hat{k}_{1}^{0}) = 130 \text{ GeV}$	m($ ilde{k}_1^0$)=100 GeV V, m($ ilde{k}_1^0$)=0 GeV	SUSY-2018-31 SUSY-2018-31
3 rd gen. squa direct product	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow W b$ $\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow \tilde{\tau}_1 b$	\tilde{x}_{1}^{0} or $t\tilde{x}_{1}^{0}$ \tilde{x}_{1}^{0} $w, \tilde{\tau}_{1} \rightarrow \tau \tilde{G}$	0-2 e, μ 0-2 jots/1-2 b E_T^{miss} 1 e, μ 3 jots/1 b E_T^{miss} 1 τ + 1 e, μ , τ 2 jots/1 b E_T^{miss}		36.1 139 36.1	ī ₁ ī ₁ ī ₁			1.0		1.16		:	m(\tilde{x}_{1}^{0})=1 GeV m(\tilde{x}_{1}^{0})=400 GeV m(\tilde{r}_{1})=800 GeV	1506.08616, 1709.04183, 1711.11520 ATLAS-CONF-2019-017 1803.10178		
	$I_1I_1, I_1 \rightarrow cX_1$	$/cc, c \rightarrow c \chi_1$	0 e,μ	z c mono-jet	E_T E_T^{miss}	36.1				0.46 0.43		0.85			m(t ₁ , ĉ) m(t ₁ , ĉ	m(λ ₁)=0 GeV -m(λ ₁ ⁰)=50 GeV t)-m(λ ₁ ⁰)=5 GeV	1805.01649 1711.03301
	$\tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + \tilde{t}_{2}\tilde{t}_{2}, \tilde{t}_{2} \rightarrow \tilde{t}_{1} + \tilde{t}_{2}\tilde{t}_{2}$	- h - Z	1-2 e,μ 3 e,μ	4 b 1 b	E_T^{miss} E_T^{miss}	36.1 139	ī ₂ ī ₂			Forbidden	0.	32-0.88 0.86			$m(\tilde{t}_1^0)=0 \text{ GeV}, m(\tilde{t}_1)-m$ $m(\tilde{t}_1^0)=360 \text{ GeV}, m(\tilde{t}_1)-m$	n(μ̂1)= 180 GeV m(μ̂1)= 40 GeV	1706.03986 ATLAS-CONF-2019-016
	$\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via W2	z	2-3 e, μ ee, μμ	r ≥ 1	E_T^{miss} E_T^{miss}	36.1 139	$\begin{array}{c} \tilde{\chi}_1^{\pm} / \tilde{\chi}_2^{\pm} \\ \tilde{\chi}_1^{\pm} / \tilde{\chi}_2^{\pm} \end{array}$	0.205			0.6				$m(\tilde{x}_1^{\pm})$	m($\tilde{\chi}_1^0$)=0)-m($\tilde{\chi}_1^0$)=5 GeV	1403.5294, 1806.02293 ATLAS-CONF-2019-014
V	$\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via W $\tilde{\chi}_1^{\pm} \tilde{\chi}_2^0$ via W $\tilde{\chi}_1^{\pm} \tilde{\chi}_1^{\mp}$ via $\tilde{\ell}_1$	W 1 19	2 e, μ 0-1 e, μ 2 e, μ	2 b/2 γ	E_T^{miss} E_T^{miss} E_T^{miss}	139 139 139		orbidden		0.42	0.1	74			m(Ž,Ÿ)=0.5	m($\hat{\ell}_1^0$)=0 m($\hat{\ell}_1^0$)=70 GeV 5(m($\hat{\ell}_1^+$)+m($\hat{\ell}_1^0$))	ATLAS-CONF-2019-008 ATLAS-CONF-2019-019, ATLAS-CONF-2019-XYZ ATLAS-CONF-2019-008
E sije	$\tilde{\tau}\tilde{\tau}, \tilde{\tau} \rightarrow \tau \tilde{\chi}_{1}^{0}$ $\tilde{\ell}_{L,R} \tilde{\ell}_{L,R}, \tilde{\ell} \rightarrow$	$\delta \tilde{\chi}_1^0$	2 τ 2 e, μ 2 e, μ	0 jets ≥ 1	E_T^{miss} E_T^{miss} E_T^{miss}	139 139 139	τ (τ _L , τ _J 7 7	R,L] 0 0.2	0.16-0.3 0	.12-0.39	0.7	7			m(č)	$m(\tilde{\ell}_{1}^{0})=0$ $m(\tilde{\ell}_{1}^{0})=0$ $m(\tilde{\ell}_{1}^{0})=10 \text{ GeV}$	ATLAS-CONF-2019-018 ATLAS-CONF-2019-008 ATLAS-CONF-2019-014
	ĤĤ, Ĥ→hĜ	ZĜ	0 e,μ 4 e,μ	$\ge 3 b$ 0 jets	E_T^{miss} E_T^{miss}	36.1 36.1	Ĥ Ĥ	0.13-0.23	0.3		0.	29-0.88			E	$BR(\tilde{\ell}_1^0 \rightarrow h\bar{G})=1$ $BR(\tilde{\ell}_1^0 \rightarrow Z\bar{G})=1$	1806.04030 1804.03602
lived	Direct $\tilde{\chi}_1^+ \tilde{\chi}_1^-$	prod., long-lived $\tilde{\chi}_1^{\pm}$	Disapp.	trk 1 jet	$E_T^{\rm miss}$	36.1		5		0.46						Pure Wino Pure Higgsino	1712.02118 ATL-PHYS-PUB-2017-019
Long-	Stable g R-h Metastable	nadron ğ R-hadron, ğ→qqℓ̃1		Multiple Multiple		36.1 36.1	ğ ğ [τ(ğ) :	=10 ns, 0.2 ns]						2.0 2.05	2.4	n(\hat{k}_{1}^{0})=100 GeV	1902.01636,1808.04095 1710.04901,1808.04095
>	LFV $pp \rightarrow \tilde{v}_{\tau}$ $\tilde{\chi}_{1}^{\pm} \tilde{\chi}_{1}^{\mp} / \tilde{\chi}_{2}^{0} \rightarrow$ $\tilde{g}\tilde{g}, \tilde{g} \rightarrow qq \tilde{\chi}_{1}^{0}$	$+ X, \tilde{\nu}_{\tau} \rightarrow e\mu/e\tau/\mu\tau$ $WW/Z\ell\ell\ell\ell\nu\nu$ $, \tilde{\chi}_1^0 \rightarrow qqq$	εμ,ετ,μ 4 ε, μ	r 0 jets 4-5 large- <i>R</i> j Multiple	E_T^{miss} ets	3.2 36.1 36.1 36.1	$\begin{array}{c} \widetilde{\mathbf{v}}_{\tau} \\ \widetilde{\mathbf{X}}_{1}^{\pm} / \widetilde{\mathbf{X}}_{2}^{0} & [i \\ \widetilde{\mathbf{x}} & [m(\widetilde{\mathbf{X}}_{1}^{0}) \\ \widetilde{\mathbf{x}} & [\mathcal{X}_{112}^{0}] = i \end{array}$	λ ₍₃₃ ≠ 0, λ _{12k} ≠ 0] =200 GeV, 1100 0 2e-4, 2e-5]	GeV]			0.82	1.33 1.3 5	1.9 1.9 2.0	$\lambda'_{311}=0.11, \lambda'$ m $(\tilde{\chi}^0_1)=201$	$k_{132/133/233}=0.07$ $m(\tilde{\chi}_1^0)=100 \text{ GeV}$ Large λ_{112}''' 0 GeV, bino-like	1607.08079 1804.03602 1804.03568 ATLAS-CONF-2018-003
ЯP	$\tilde{t}\tilde{t}, \tilde{t} \rightarrow t \tilde{\chi}_{1}^{0}, \tilde{\chi}_{1}^{0}$ $\tilde{t}_{1}\tilde{t}_{1}, \tilde{t}_{1} \rightarrow bs$	$\rightarrow tbs$		Multiple 2 jets + 2 i	Ь	36.1 36.7	$\tilde{g} = [\lambda_{323}''] = \tilde{t}_1 = [qq, b]$	2e-4, 1e-2] s]		0.42	0.61	1.0	5		m(x10)=201	0 GeV, bino-like	ATLAS-CONF-2018-003 1710.07171
	$\tilde{t}_1 \tilde{t}_1, \tilde{t}_1 \rightarrow q\ell$		2 e,μ 1 μ	2 b DV		36.1 136	$\bar{t}_1 = \bar{t}_1 = [1e-10]$)< X' _{23k} <1e−8, 3e	9-10< ∛ _{23k} <	:3e-9]		1.0	0.4-1.45 1.6	i	$BR(\tilde{t}_1 \rightarrow g\mu) =$	1→be/bµ)>20% 100%, cos∂ _i =1	1710.05544 ATLAS-CONF-2019-006
													1				
*Only phe simj	a selection nomena is s plified model	of the available ma hown. Many of the Is, c.f. refs. for the a	ss limits o limits are l Issumption	n new state based on ns made.	es or	1	10 ⁻¹						1		Mass sca	ale [TeV]	
		$\kappa_B = 0.5$		ATLAS-CONF 1509.0	F-2018-02 4261	24											
6.		only u^* and $d^* \Lambda = m($	a*)	ATLAS.CONF	E-2010-00	17											

*Only a selection of the available mass limits on new states or phenomena is shown.

+Small-radius (large-radius) jets are denoted by the letter j (J).

Highest-mass central dijet event of 8.0 TeV selected in resonance search

EXPERIMENT Run: 305777

Event: 4144227629 2016-08-08 08:51:15 CEST

Dark Matter (DM)

If produced at the LHC, DM interactions will be mediated by particles that can also be directly searched for

- complementarity

ATLAS released combination of $E_{T,miss}$ based DM searches involving $E_{T,miss}$ + X, X = jet, γ , W, Z, H, b(b), t(t) using large number of models

arXiv:1903.01400, up to 37 fb⁻¹

Interpretation in WIMP-nucleon cross section plane highly model dependent

Very diverse signatures. Missing- E_T based searches for scenarios with R-parity conservation, Exotics-like signatures otherwise

Limits on gluinos reach up to >2 TeV, focus on naturalness-driven searches for early analyses of full Run-2 dataset. More complex approaches (MVA, multi-binned fits)

New search addresses specific soft ("3-body") region of stop-pair production

Very diverse signatures. Missing- E_T based searches for scenarios with R-parity conservation, Exotics-like signatures otherwise

Limits on gluinos reach up to >2 TeV, focus on naturalness-driven searches for early analyses of full Run-2 dataset. More complex approaches (MVA, multi-binned fits)

CMS full Run-2 search for direct stop production

Electroweak SUSY production, not because it is easy ...

Stau pair production

Most favorable case: EWk-ino production with decays through light sleptons not shown: exclusion reaches up to 1.1 TeV

Direct slepton production excluded up to 700 GeV mass ATLAS-CONF-2019-008 And what if new physics is all different? For example long-lived?

Long-lived particles can occur in case of weak couplings, small phase space (mass degeneracy), high virtuality (scale suppression)

And what if new physics is all different? For example long-lived?

Search for a long-lived particle with displaced vertex and muon

Clean signature of large track multiplicity and vertex mass

R-parity violating signature with long-lived stop

 $m(\tilde{t}) = 1.5 \text{ TeV}, \ \tau(\tilde{t}) = 1 \text{ ns}$ $\tilde{t} \to \mu j$

And what if new physics is all different? For example long-lived?

Search for a long-lived neutralinos with delayed photons

SPS8 benchmark: for neutralino decay lengths of 101, 102, 103, 104 cm, masses below 320, 525, 360, 215 GeV are excluded at 95% CL

LHC / HL-LHC Plan

14 TeV proton–proton centre-of-mass energy

14 TeV / 13 TeV inclusive pp cross-section ratio

Expected integrated luminosity of LHC & HL-LHC

Expected integrated luminosity of LHC & HL-LHC

Expected integrated luminosity of LHC & HL-LHC

Challenges and opportunities

LHC experiments are in full swing analysing their (up to) 140 fb⁻¹ Run-2 datasets

- High-precision measurements of multi-boson and top properties. Limitation by theoretical modelling uncertainties — needs theoretical guidance.
- Observation of all WWjj, WZjj, ZZjj electroweak (incl. vector boson scattering) processes.
- Precise Higgs cross-section measurements, progress in rare decay searches, first constraint on VVHH coupling.
 None of the properties of the scalar sector can be taken as granted and must thus be measured.
- New physics searches continue to improve their sensitivity and probe new signatures. We do not know the next new physics scale. Naturalness has been a successful guiding principle, but it is challenged by the data from the LHC (and elsewhere). However, there are still unexplored scenarios and parameter regions that must be studied.

We live in data-driven times, experiment must guide us to the next stage. This requires a broad and diverse particle physics research programme.

The LHC and its experiments represent the flagship of particle physics for decades to come. The huge Run-2 data sample offers the opportunity to study particle interactions in unprecedented detail and diversity. Reserved slides ...

Higgs physics programme at the HL-LHC in a nutshell

Higgs properties:

- mass (well known, expect to improve to ~33 MeV in $H\rightarrow 4\mu$), width (through interference measurements)
- spin (0+ established), CP (odd admixture possible) not discussed today

Rare Higgs decays:

- Observation of $H \rightarrow \mu\mu$, $H \rightarrow Z\gamma$, HH production (constraint on Higgs self coupling)
- Search for very rare (eg, $H \rightarrow M\gamma$, $M=J/\psi$, ϕ , ρ), difficult ($H \rightarrow cc$) or anomalous decays (invisible or new particles, or flavour violating)

Higgs couplings:

- Study of Higgs production and anomalous couplings by differential cross-section measurements
- Global and partially global coupling fits: experiments moving from "kappa" interpretation to EFT

New physics in Higgs production or other scalar states

- Search for anomalous FCNC through top decays, Higgs production via SUSY cascades, etc.
- Search for additional scalar particles

Luminosity — single most important quantity

• Luminosity drives our ability to detect low cross-section processes

$$N_{\text{events}}^{\text{obs}} = \text{cross section} \times \text{efficiency} \times \int L \cdot dt$$

"Cross section" given by Nature "Efficiency" of detection optimised by experimentalist Integrated luminosity delivered by LHC

• Luminosity is a function of the LHC beam parameters

$$L = \frac{f_{\text{rev}} n_{\text{bunch}} N_p^2}{4\pi \sigma_x \sigma_y} \cdot R(\theta_c, \varepsilon, \beta^*, \sigma_z)$$

Reduction factor

Crossing angle (0.3 mrad) and

"hourglass effect" ($\sigma_z \sim 4-6 \text{ cm}$)

Crossing angle (0.3 mrad) and

Reaching to low cross section electroweak processes

Sensitive to anomalous triple and quartic gauge couplings

arXiv:1903.10415

Evidence for production of WVV, V = W, Z

- Requires combination of many different final states involving 2-4 leptons
- Use BDT to suppress large backgrounds ٠
- 4.0σ (3.1 σ) observed (expected) sensitivity ٠

78

Ultimate precision is possible at the LHC

W boson mass to 0.02% and top quark mass to 0.3% precision

Measurement uses W $\rightarrow e\nu$, $\mu\nu$ events Excellent agreement of results among e / μ channels, W⁺ / W⁻ and $p_{T,\ell}$ / m_T

 $m_{\rm W}$ (ATLAS) = 80370 ± 7 stat ± 11 exp syst ± 14 mod syst MeV

= 80370 ± 19 MeV

New ATLAS Higgs combination, including data up to 80 fb⁻¹

New ATLAS combination establishes observation of all major production modes

Not yet including latest ttH($\gamma\gamma$) result

- Includes $\gamma\gamma$, ZZ^{*}, $\mu\mu$, VH(bb), ttH($\gamma\gamma$) with 80 fb⁻¹
- All other channels using 36 fb⁻¹

Higgs production processes, assuming decays to follow SM

Overall $\sigma(exp) / \sigma(SM) = 1.11^{+0.09}_{-0.08} = 1.11 \pm 0.05 \text{ (stat.)}^{+0.05}_{-0.04} \text{ (exp.)}^{+0.05}_{-0.04} \text{ (sig. th.)} \pm 0.03 \text{ (bkg. th.)}$

Several future e⁺e⁻ collider options: linear (ILC, CLIC), circular (FCC-ee, CEPC)

Dominant production mechanisms: $e^+e^- \rightarrow ZH$ (Higgsstrahlung), $\nu\nu H$ (W fusion), eeH (Z fusion)

Future e+e- collider

Several future e⁺e⁻ collider options: linear (ILC, CLIC), circular (FCC-ee, CEPC)

Run plan for FCC-ee
baseline configuration
with two experiments

2	Phase	Run duration	Centre-of-mass	Integrated	Event
5		(years)	Energies (GeV)	Luminosity (ab^{-1})	$> 10^{\circ} \times LEP$ Statistics
	FCC-ee-Z	4	88-95	150	3×10^{12} visible Z decays
	FCC-ee-W	2	158-162	12	10^8 WW events
	FCC-ee-H	3	240	5	10^6 ZH events
	FCC-ee-tt	5	345-365	1.5	$10^6 ext{ t}\overline{ ext{t}}$ events

Numbers taken from Nov 2018 FCC CDR (Physics case)

Uncertainties in %

Coupling	HL-LHC	ILC 240 GeV, 2 ab-1	FCC-ee 240 GeV, 5 ab ⁻¹	FCC-ee → 365 GeV, 6.5 ab-1	Comments	
κ_{γ}	1.8	6.4	4.7	3.8	All e⁺e⁻ uncertainties are statistical only	
κ_W	1.7	1.7	1.3	0.5	Experimental systematic	
κ_Z	1.5	0.35	0.25	0.22	uncertainties expected to be small, unlike at LHC	
κ_g	2.5	2.2	1.7	1.0	BR _{inv} sensitivity ten times	
<i>κ</i> _t 3.4		~5% @ ILC-500	-	-	better at lepton colliders than LHC	
κ_b	3.7	1.8	1.4	0.7	FCC-ee numbers taken from	
κ _c	UL	2.3	1.8	1.2	recent CDR	
$\kappa_{ au}$	1.9	1.9	1.4	0.8	CEPC numbers similar to FCC-ee[240]	
κ_{μ}	4.3	13	10	9		
$\kappa_{Z\gamma}$	9.8	-	-	-		
$\Gamma_{\!H}$	~50% (model dep.)	3.8	1.8	1.6		
λ_{HHH}	~60%	~30% @ ILC-500	~40% through loops + EFT		FCC-hh: ~5%, CLIC: 10~15%	