Energy Frontier: Reflections from Granada

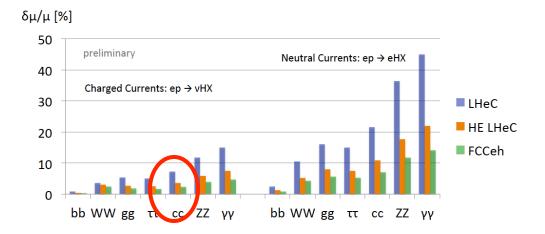
STFC Community Meeting, IOP 1st July 2019

Sinead Farrington University of Edinburgh

Reflections on the (UK) process

- Have read the recent UK group submissions for today.
- A lot of thought is going into this process
 - Many colleagues have also been engaged with putting options on the table for our future a lot longer than this strategy process
- There are several sound and self-consistent options each adding something to our knowledge of the fundamental scales
 - the difficult question is how to prioritise, as we must, and how to take forward our case
 - Make progress by setting the science questions at the centre.

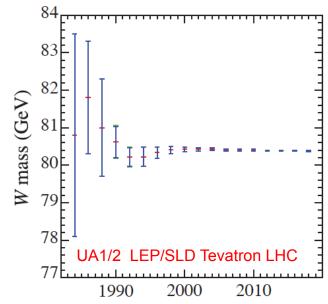
Granada Highlights (based on your input)


- Renewed excitement about muon colliders
 - and building excitement about plasma wakefield options
- Full HL-LHC exploitation is highest priority
- Call for CLiC TDR
- Calls for standalone hadron collider program to be evaluated
- Call for European/CERN support for e⁺e⁻ Asia programs
- Support for a strong non-collider program as a complement to the collider program
- Reading across all submissions for today's meeting, there is not a consensus. It is in our grasp to coalesce on several aspects, in several scenarios.

Issues raised in UK submissions

- (much subtle argument, I cannot do it justice here)
- Retain flexibility in strategy (international scene)
- Desire for an upgradeable facility
- Higgs sector exploration is fascinating and imperative
- Concerns over single-interaction-point facilities
- Funding concerns; the need to marshall arguments
- LHeC full exploration

Flavour session

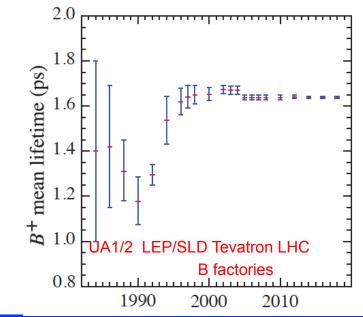


Proposal

- For the next collider we want (at least) an order of magnitude improvement in *something*
- Something = Precision OR New Physics reach

[or likelihood of surprises?! tautologous and hard to pin down]

- Seems reasonable based on the past?
 - UA1/UA2 to LEP/SLD
 - LEP to Tevatron/Babar/Belle
 - Tevatron to LHC



Proposal

- For the next collider we want (at least) an order of magnitude improvement in *something*
- Something = Precision OR New Physics reach

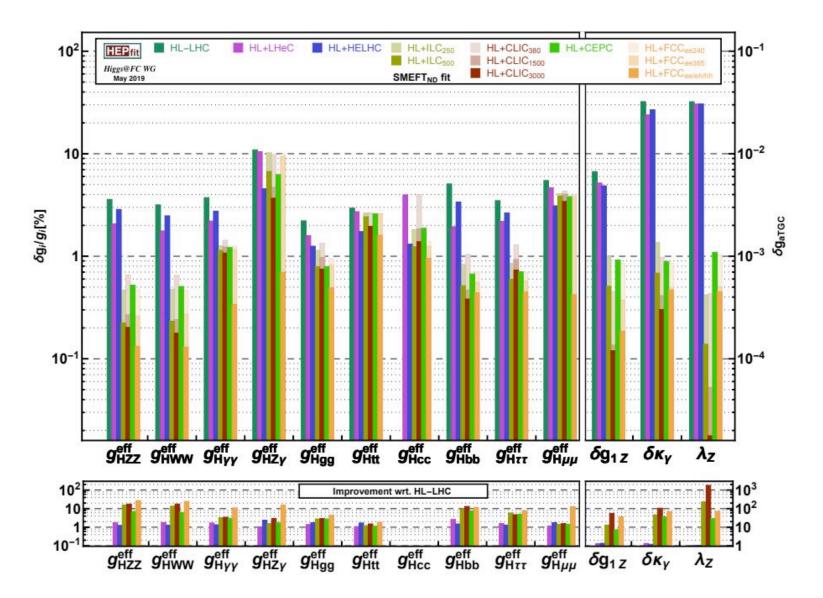
[or likelihood of surprises?! tautologous and hard to pin down]

- Seems reasonable based on the past?
 - UA1/UA2 to LEP/SLD
 - LEP to Tevatron/Babar/Belle
 - Tevatron to LHC

Proposal

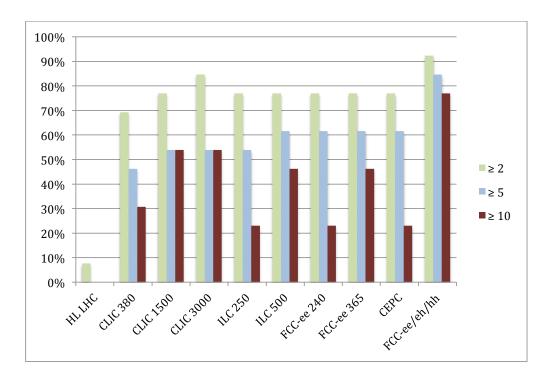
- For the next collider we want (at least) an order of magnitude improvement in *something*
- Something = Precision OR New Physics reach

[or likelihood of surprises?! tautologous and hard to pin down]

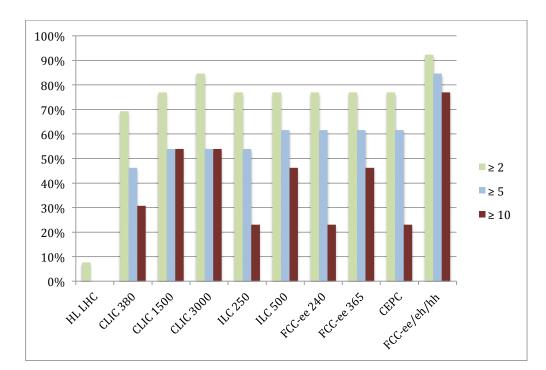

- Seems reasonable based on the past?
- Can this principle guide us now?
- Let's look at the options, trying to highlight key physics parameters
 - Aiming to be an honest broker, not affiliated to any future collider project.

Precision

Not covering top (e⁺e⁻ powerful if above 350 GeV, hh also powerful), QCD, flavour.


Time necessitates that I cannot do justice to all of the studies.

Higgs+aTGCs


Higgs/EW number of "largely improved" couplings

	Factor ≥ 2	Factor ≥ 5	Factor ≥ 10	
HL LHC	1/8%	0/0%	0/0%	
CLIC 380	9 / 69%	6 / 46%	4 / 31%	
CLIC 1500	10 / 77%	7 / 54%	7 / 54%	
CLIC 3000	11 / 85%	7 / 54%	7 / 54%	
ILC 250	10 / 77%	7 / 54%	3 / 23%	
ILC 500	10/ 77 %	8 / 62%	6 / 46%	
FCC-ee 240	10 / 77%	8 / 62%	3 / 23%	
FCC-ee 365	10 / 77%	8 / 62%	6 / 46%	
CEPC	10 / 77%	8 / 62%	3 / 23%	
FCC-ee/eh/hh	12 / 92%	11 / 85%	10 / 77%	

Higgs/EW number of "largely improved" couplings

	Factor ≥ 10
HL LHC	0/0%
CLIC 380	4/31%
CLIC 1500	7 / 54%
CLIC 3000	7 / 54%
ILC 250	3 / 23%
ILC 500	6 / 46%
FCC-ee 240	3 / 23%
FCC-ee 365	6 / 46%
CEPC	3 / 23%
FCC-ee/eh/hh	10 / 77%

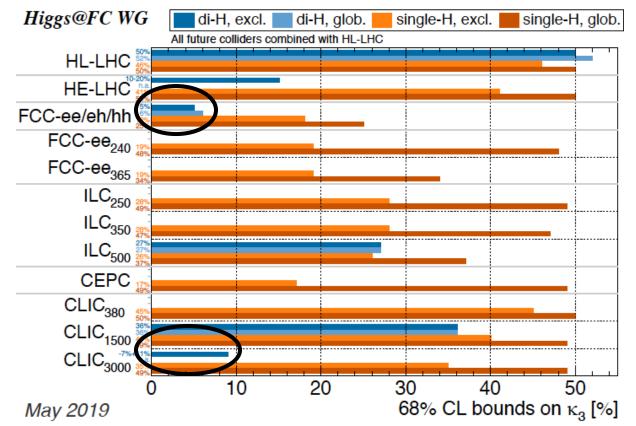
Definition of precision?

Note model dependencies

Must have FCC separated out.

Higgs Width in e⁺e⁻

B. Heinemann


Higgs width and/or untagged decays

Events/1 Unique feature of lepton-lepton colliders: 800 ILC: full simulation gqH(H→bb) ZZ→qqqq $\sqrt{s} = 250 \text{GeV}$ Detecting the Higgs boson without seeing 600 Z→qq decay: "recoil method" WW→qqqq 400 Measure ZH cross section with high precision without assumptions on decay 200 Often interpreted as guasi-direct measurement of width 90 100 140 150 110 120 130M_b [GeV] $\frac{\sigma(e^+e^- \to ZH)}{\mathrm{BR}(H \to ZZ^*)} = \frac{\sigma(e^+e^- \to ZH)}{\Gamma(H \to ZZ^*)/\Gamma_H} \simeq \left[\frac{\sigma(e^+e^- \to ZH)}{\Gamma(H \to ZZ^*)}\right]_{\mathrm{SM}} \times \Gamma_H$ Collider $\delta\Gamma_H$ (%) Extraction technique standalone result δΓ_H (%) from Ref. kappa-3 fit ILC250 EFT fit [3] 2.4 2.4In kappa-framework: $\Gamma_H = \frac{\Gamma_H^{\text{SM}} \cdot \kappa_H^2}{1 - (BR_{inv} + BR_{var})}$ ILC500 1.6 EFT fit [3, 11] 1.1 CLIC₃₅₀ 4.7 κ-framework [85] 2.6CLIC₁₅₀₀ 2.6κ-framework [85] 1.7 2.5 CLIC₃₀₀₀ κ-framework [85] 1.6 $\sigma(ZH, V\bar{V}H), BR(H \rightarrow Z, b\bar{b}, WW)$ [90] CEPC 3.1 1.8 => Will probe width with 1-2% precision FCC-ee240 2.7 κ-framework [1] 1.9 1.3 1.2 FCC-ee₃₆₅ κ-framework [1] arXiv:1905.03764

(HL-LHC will reach SM width sensitivity via indirect measurement that assumes off-shell μ = on-shell μ)

Higgs Self-Coupling

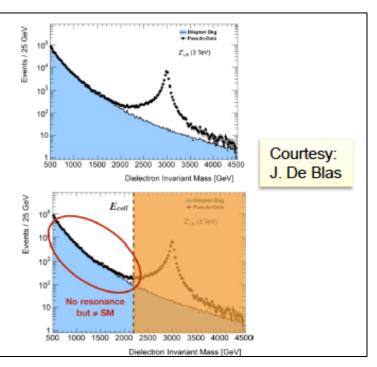
Arguably the singly most special of the Higgs' properties

FCCee/eh/hh or CLiC 3000 (di-Higgs) meet the order of magnitude criterion (can infer that FCChh is the driver for FCC)

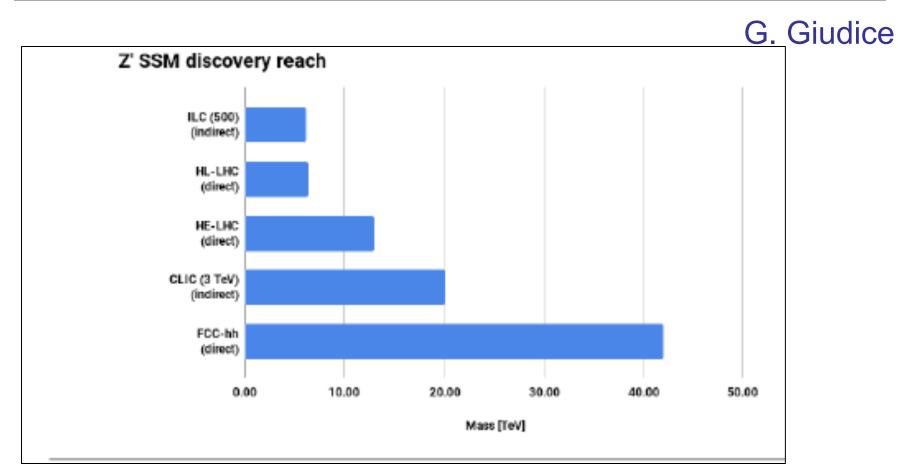
New Physics Reach

Bump-hunt Searches

G. Giudice

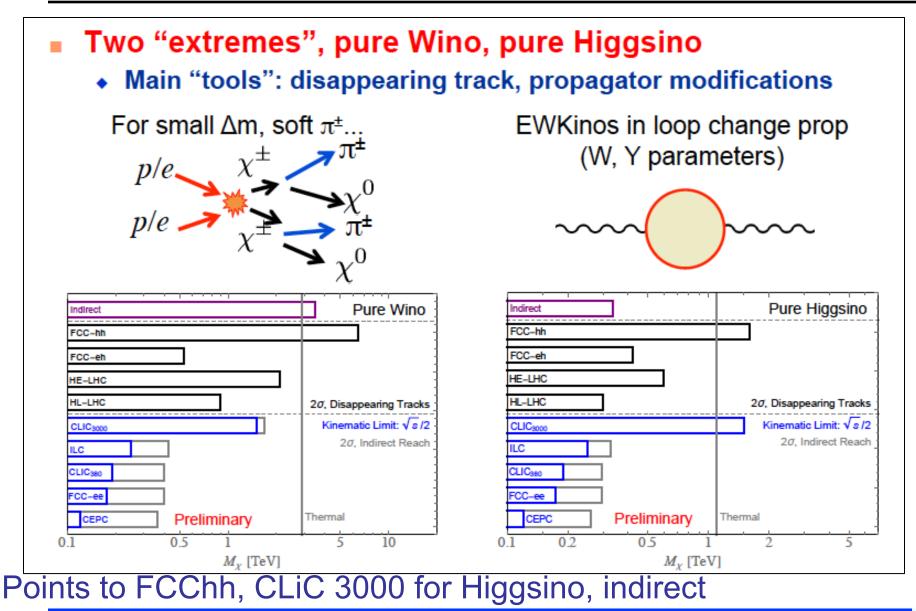

Seeing the peak. Reach:

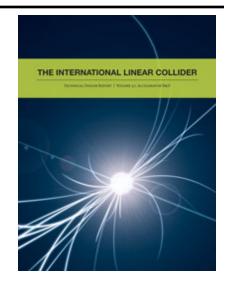
- $M < \sqrt{s}$ for lepton colliders
- M ≤ 0.3-0.5 √s in hadron colliders for couplings ~ weak couplings


Deviations in high-M tails:

- Better suited for lepton colliders; sensitive to [mass/coupling] ≫ √s
- Hadron colliders relevant for g_{Z'}>g_{SM} couplings: [mass/coupling] ≫ 0.5√s

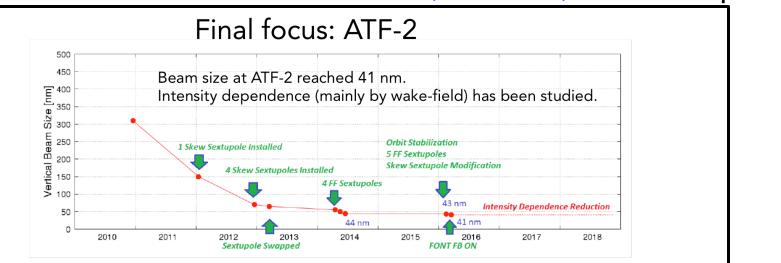
Z' SSM discovery reach


Bump-hunt Searches


Order of magnitude criterion implies FCChh (indirect not quoted, but factor ~2-4 higher than direct reach has been evaluated for HL-LHC) ...E=mc²

16

Dark Matter: WIMPs G. Giudice



• What can we build? - ILC has a TDR

What *might* we build?

CLiC with investment towards TDR (CDR done)
 S. Stapnes

ATF2 IP beam size of 41nm is comparable to ILC250 beam size of 7.7nm Intensity dependence effect is evaluated to a couple % of ILC250 IP beam size growth

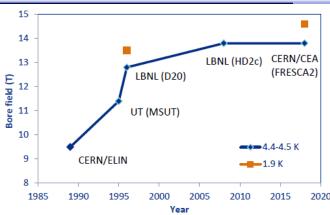
Work continues: wakefields, stability, ultra low beta options Common LC programme - also involving many European groups

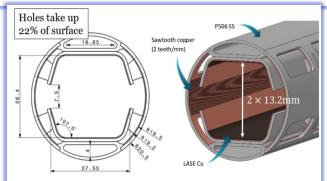
Steinar Stapnes

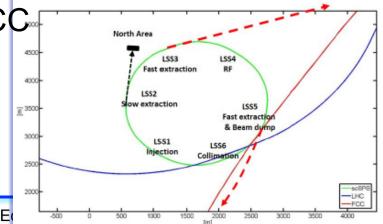
S. Farrington, University of Edinburgh

- What *might* we build?
 - FCC ee/eh/hh (CDR done)
 - ee with ~existing technology in 100km tunnel
 - hh needs magnet R&D

- What *might* we build?
 - FCC hh no standalone proposal/CDR. Called for at Granada.
 - Dependent on magnet technology sooner


Strategic R&D Ahead : V. Shiltsev


• High field dipoles:


- Nb3Sn 16 T / iron-based 12 T, wire
- (see also Akira's talk)
- Intercept of synchr radiation :
 - 5 MW FCC-hh / 1 MW CepC
- Collimation :
 - x7 LHC circulating beam power
- Optimal injector:
 - 1.3TeV scSPS, 3.3 TeV in LHC/FCC
- Overall machine design :
 - IRs, pileup, vacuum, etc
 - Power and cost reduction

•All that might take 12-18 years Iniversity of Ed

- What *might* we build?
 - Muon collider (timescale of "20 years" debated)
 - Threshold "no cooling" proposal generating interest

Physical Review Accelerators and Beams 21, 061005 (2018)

- Plasma wakefield accelerator
- LHeC (requires accelerator R&D)

The alternatives

- Support e⁺e⁻ in europe: fund R&D on CLiC TDR 2025, aim for a 30 year e⁺e⁻ program in Europe.
- Support e⁺e⁻ in Asia: fund magnet R&D, aim for FCChh (or highest doable energy hh) in Europe on 2040s timescale.
- 2a. What if no e+e- in Asia? Report based on hh alone should be provided for the ESU process.
- 3. Support the integrated FCCee/eh/hh program.

4. Invest in a new accelerator technology providing a solution for a multi-TeV collider and/or hope for new information that points the way.

How to decide?

1. Which parameters/new phase spaces do we most care about measuring?

2. What factor improvement is worth the investment of people/facilities/funds?

Extras

US-DOE /Europe/China engaged with High field magnets

A. Yamamoto

The U.S. Magnet Development Program Plan

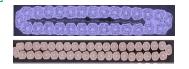
•MDP Goals:

- Explore Mb₃Sn magnet limit
 Demonstrate HTS magnet (5)
- Demonstrate HTS magnet (T – self fied)
- Investigate fundamentals for performance and cost reduction
- 4. Pursue Nb3Sn and HTS conductor R&D

Step 1: (we are here in 2019)

- Realize 14 T w/ mechanical design for 16 T
- Will be tested soon (2019).

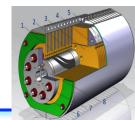
Step 2:


- Realize 15 T w/ pre-stress optimization
- Step 3:
 - Challenge to realize 16 T, with SC conductor satisfying 1,500 A/mm2 and sufficiently controlled mechanical design

Courtesy: S. Prestemon S. Belomstr

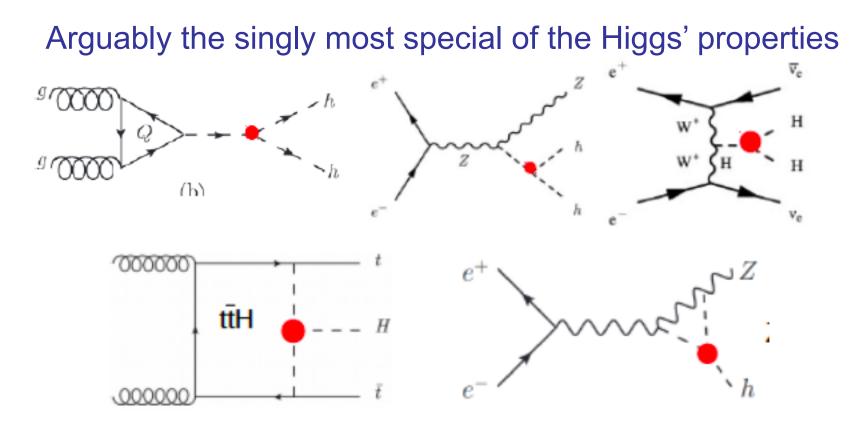
Florida State University and the National High Magnetic Field Laborato Tallahassee, FL 32310

JUNE 2016



•L1-L2: 28 strands, 1 mm RRP 150/169 •L3-L4: 40 strands, 0.7 mm RRP 108/127

S. Farrington, University of Edinburgh



<u>•Before test, at</u>Yamami 27 o, 190513

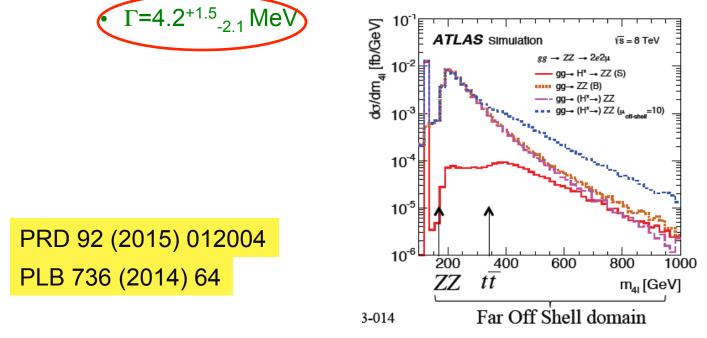
Higgs Self-Coupling

		HL-LHC	LH-eC	ILC	CLIC	CLIC (HE) [§]	FCC-ee	FCC-eh	СерС	FCC-hh / SppC	N. Wardle,
	E	13 TeV	e(60 GeV) p(7 TeV) /	250 GeV	350 GeV	1.4 / 3 TeV	240 (+350) GeV	e(60GeV) p(50TeV)	240-250 GeV	100 TeV	V. Martin,
	L	3 ab ⁻¹	p(14 TeV) 1 / 2 ab ⁻¹	2 ab ⁻¹	0.5 ab ⁻¹	1.5 / 2 ab ⁻¹	5 (+1.5) ab ⁻¹	2 ab ⁻¹	5 ab ⁻¹	20 ab ⁻¹	C. Englert,
	m _H	?	-	0.01	0.09	0.04 / 0.04	?	-	0.005	-	T. Scanlon
	Coupling	gs are 'mode	l-dependent'.	except for I	LC-EFT fits	; see remark %	below				
<	Г _н	50*	-	2.5-4	6.7	3.7 / 3.5 +	1.55	-	2.8	-	Width
	ĸZ	3.8-4.4	1.2/0.8	0.68	0.6	04/03+	0.16	0.43	0.16	1-2	VVIGUI
	ĸW	4.2-5.1	0.6 / 0.33	0.67	1.1	0.2 / 0.1 +	0.41	0.26	1.2		
	кg	5-9	3 / 1.6	1.7	3.0	1.5 / 1.1 +	1.23	1.17	1.5	-	
/	ĸү	4-5	7.1/3.2	1.2	-	5.6 / 3.1 +	2.18	2.35	4.7	1-2	
	кт	8.8-9.7	2.8 / 1.5	1.2	3.9	1.5 / 1.1 +	0.78	1.1	1.2	-	Couplings
	ĸЬ	10-12	1.5 / 0.9	1.1	1.8	0.4 / 0.2 +	0.58	0.7	1.3	-	
	ĸc	< 2.2**	3.8 / 1.9	1.9	5.8	2.1 / 1.7 +	1.05	1.35	1.6	-	
	кt	7.6-11	- / 5.5	-	-	4.1 / -	-	1.9	-	1	(see write-up
	ĸµ	~10		5.6 [#]	-	14.1 / 7.8 +	9.6	-	8.6	1-2	for footnotes)
	B(inv)	< 2.8 - 20	-	< 0.32 **	< 0.97 ^	-	< 0.63-0.92**	-	< 0.28 **	-	
<	λ ₃	< 1.37 - 1.44 **	-	-	-	40-54 / 19-26 ÷	28***	-	35***	5	Self-couplings

Higgs Factories

- ILC: 640000
- CLIC 380: 160000
- CLIC 3000: "millions"
- HL-LHC: >15 million
- FCChh: "billions"

- •iopscience.iop.org/article/ 10.1088/1674-1137/41/6/063102/pdf
- •CDR
- •CDR
- •arXiv:1902.10229

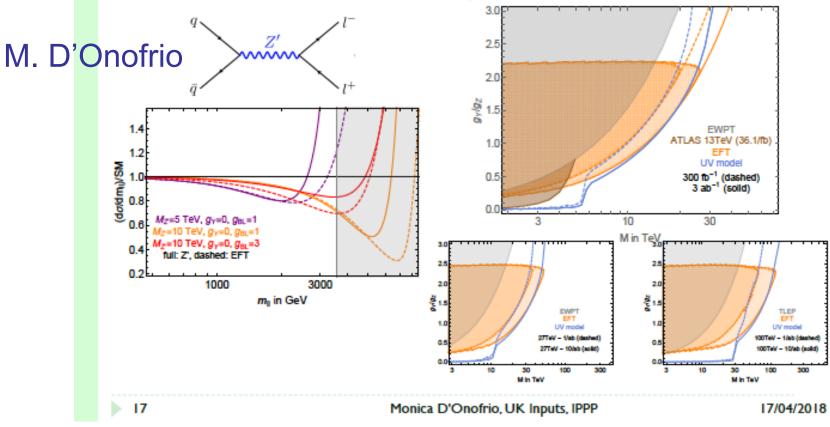

Higgs Width in hh collider

- Probe via off-shell couplings
 - Assume off-shell $\boldsymbol{\mu}$ is the same as on-shell

$$\sigma_{\rm gg \to H \to ZZ^*}^{\rm on-shell} \sim \frac{g_{\rm ggH}^2 g_{\rm HZZ}^2}{m_{\rm H} \Gamma_{\rm H}} \text{ and } \sigma_{\rm gg \to H^* \to ZZ}^{\rm off-shell} \sim \frac{g_{\rm ggH}^2 g_{\rm HZZ}^2}{(2m_Z)^2}$$

JHEP 08, 116 (2012), PRD 88, 054024 (2013), JHEP 04, 060 (2014)

• HL-LHC will bring sensitivity at SM-level:


Exotics

Indirect constraints on Z'

If mZ'>>5 TeV, main contributions from interference effects modifying DY

The precision of e⁺e⁻ colliders help but LHC (and HL-LHC) can do a lot

Alioli, Farina, Pappadopulo, JTR, Phys. Rev. Lett. 120, no. 10, 101801 (2018)

Higgs/EW

of "largely" improved H couplings (EFT)

	Factor ≥2	Factor ≥5	Factor ≥10	Years from T_0
CLIC380	9	6	4	7
FCC-ee240	10	8	3	9
CEPC	10	8	3	10
ILC250	10	7	3	11
FCC-ee365	10	8	6	15
CLIC1500	10	7	7	17
HE-LHC	1	0	0	20
ILC500	10	8	6	22
CLIC3000	11	7	7	28
FCC-ee/eh/hh	12	11	10	>50

13 quantities in total

Heinemann

<u>ш</u>

NB: number of seconds/year differs: ILC 1.6x107, FCC-ee & CLIC: 1.2x107, CEPC: 1.3x