

The data movement challenge and a communication-avoiding mindset

IDAS Launch T. Weinzierl

... what scientific computing is

... which challenges hide around the corner

... why I think we are well-prepared (or not)

Leaning Tower

The virtualisation of science

C. Johnson (SCI): Before the great discovery was the creation of a new tool!

(from the movie "The Golden Age of Computing")

The two facets of "better tools"

H. Sutter: The Free Lunch Is Over: A Fundamental Turn Toward Concurrency in Software, 2005 (left) D. Keyes: SCaLeS Report, Vol. 2, 2004 (right)

The Good, ...

The Good, ...

We had to rewrite all of our software!

The Good, the Bad, ...

We will have to rewrite all of our software!

8 / 18

The Good, the Bad and the Ugly

We don't know yet how to rewrite all of our software!

Vision: Allow groups with decent computational background to write an exascale solver for

$$\boldsymbol{M}\frac{\partial}{\partial t}\boldsymbol{Q} + \boldsymbol{\nabla}\cdot\boldsymbol{F}(\boldsymbol{Q}) + \sum_{i}\boldsymbol{\mathcal{B}}_{i}\frac{\partial\boldsymbol{Q}}{\partial\boldsymbol{x}_{i}} = \boldsymbol{S} + \sum_{i}\boldsymbol{\delta}$$

within a year.

www.youtube.com: hpcsoftware

The ADER-DG algorithm pattern

- 1. Predictor Weak space-time ansatz
 - span full space-time polynomial (locally)
 - yields/amplifies jumps in solution
- 2. Riemann
 - Riemann on interfaces
- 3. Corrector
 - Sophisticated sum of two results
 - Includes CFL/admissibility checks

HPC's lingua franca: ADER-DG as task graph

Observations:

- ADER-DG describes a task pattern
- Mesh instantiates task graph from pattern

Actions:

- Identify tasks
- Characterise tasks
- Find independent tasks

A really fast wave equation solver

We have **not** written the fastest code. We have created a code combining a set of features that no other code provides (functional level). And this code is fast (non-functional).

Shifted tasking: be optimistic and anarchic

For the time being: assume Δt is known and there's no need to reduce it

Shifted algorithm:

- First read of face: trigger Riemann
- Enter cell: correct solution (all 2d faces are read already)
- Trigger subsequent STP immediately

Observations:

- Shifted execution model brings tasks optimistically forward
- \Rightarrow Eliminate synchronisation
- Only two (logical) steps (task fusion)
- \Rightarrow Increase AI
- Amortised single-touch semantics
- \Rightarrow Eliminate multiple reads
- Parallel traversal intermixes steps
- \Rightarrow Memory access homogenisation

A really fast wave equation solver (again)

x-axis: number of cores; SuperMUC-NG (no. 2 in Europe)

The virtualisation of science continues

C. Johnson (SCI): Before the great discovery was the creation of a new tool!

(from the movie "The Golden Age of Computing")

Sutter, Dongarra, many more: Our tools will fail us!

(prediction more than 15 years old)

The Unholy Three

Scientific Comput-Machine Learning ing Concurrency Omnipresent Reason for sucexplosion cess Widening Somehow ignored memory CA techniques (work in progress) gap Reduced precision Open (unless in lin-Reason for sucear algebra) cess