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Linear regression in a nutshell



Linear regression in a nutshell

Linear systems in a nutshell

Solving y=AzeR™ A e R™*"

Determined (m = n): z=A"1y A ><

Over-determined (m >n):  min |Az — y|?
o =| A least squares
z=(ATA)TIATy = Ay xH

Under-determined (m < n): min {lz| ; Az =y} least norm
I
z=AT(AAT) Ly < A%y wx problem
A ill-posed and/or noise:  min |Az — y|2 + A|z|? I
= (ATA + )\Id")_lATy =ty Aty XEI modified from Gabriel Peyré

= AT(AAT + M\dm) "'y (Woodbury identity)



Least squares problem

Least squares problem: choose x to minimise f(x) = |Ax — b||§
where A € R™*" with m > n, and b € R™ are problem data.

m X n matrix A is tall, so Ax = b is over-determined.

For most choices of b, there is no x that satisfies Ax = b.
Residual: r = Ax — b.

Idea: make residual as small as possible, if not 0.

Assume that the columns of A are independent (the Gram matrix

AT A is invertible), the least-squares approximation problem has the
unique solution:

[ x=(ATA) AT b. (1)}
@ Compare with the solution of the square invertible system Ax = b:

x=A"1h (2)




Regularised approximation

how well the data agrees with the model Ax=b
minimise  (||Ax — b||, ||x]]) 3)
[

how large are your model parameters

@ Ac R™ " is a matrix of n predictors;
@ x € R" are the parameters;

@ b€ R™ is a vector of responses.

Idea:

@ We want a good fit of Ax = b, but we want to do it efficiently,
i.e., with small ||x

, so we add to the objective a term that penalises
large x.

@ Regularisation avoids large x.



The Lasso

Lasso (least absolute shrinkage and selection operator)

[ minimise || Ax — b||3 + X [|x| (4) }

@ Standardise A, so that each column has zero mean and unit variance.

@ Solution for A > 0 traces out optimal trade-off curve (sweep A from
0 to o0).

@ Convex problem, so we know how to solve it efficiently.

Can also be written as:

n intercept p

2
P
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j=1 J=1

i=1
|

Residual Sum of Squares



Understanding the energy
consumption of electric vehicle
charging stations



o Electric Vehicle (EV) charging
e ELAAD
@ Socio-economic, demographic, built environment and land use

o Population cores.

o Ambient population grid 1000m x 1000m, Landscan 2012.
o Corine Land Use and Land Cover.

e Neighbourhoods data.

Energy Atlas
o Traffic flows
o OSM amenities



ELAAD raw dataset

ElaadNL: Dutch research organisation involved in the development
and deployment of EV charging technologies.

1,747 georeferenced charging stations.

54,000 users, each identified by a unique id.

1,060, 763 charging events.

Data collected between January 2012 and March 2016.



ELAAD: spatial data
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Figure 1: Public charging stations in the ElaadNL data set in 2015 (triangles) shown together with the Charging stations 2015 dataset
(crosses). In the year 2015, 17 786 publicly available connectors for slow charging were operational in the NL. We identified 8 400 unique

positions of charging stations, i.e. considering the distribution of connectors at charging stations observed in the ElaadL dataset, this data

covers 78.3% of all stations. In panel (B), we estimated the spatial representativeness of the ElaadNL data sets by calculating the ratio

between the number of station in ELaadNL and in Charging stations 2015 located in squared cells of a regular grid. In the largest cities, 7
Amsterdam and Rotterdam, the data contains a small percentage of all charging stations.



Predictors: GIS data

o Vector data
o Polygon data

population cores,
neighbourhoods data,
energy atlas,

liveability,
@ land use and land cover (urban atlas, CBS land cover).
o Polyline data
o traffic flow data.
o Point data
@ OSM amenities,
o OpenChargeMap.
o Raster data

e LandScan - ambient population.



Vector polygon data: Population cores (2168 cores)

Figure 2: Population cores are continuous spatial units with at least 25 homes or 50 inhabitants
(102 predictors). Source: Statistics Netherlands https://opendata.cbs.nl/



Polygon data: Population cores (2168 cores, 84 attributes)

number of persons in private household,

number of persons in private households, 0 to 15 years,
number of persons in private households, 15 to 25 years,
number of persons in private households 25 to 45 years,
number of persons in private households, 45 to 65 years,
number of persons in private households 65 years or older,
number of persons in one-person households,

number of people in multi-person household with children,
number of people in multi-person household without children,
nercentage of working population, 15-24 years old,
number of households of two persons,

number of households of three persons,

the number of residential units,
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Coefficients
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CV Mean-Squared Error
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Lasso fit

@ Lasso does variable selection on 240 predictors.

@ At the optimal A, we reduce the number of predictors to 79 (about
1/3 of the original predictors).

e R? =0.362 at optimum value (R?(adjusted) = 0.316).

@ The A, is the one which minimises the error in cross-validation.
The A1, is the X value within 1 standard error of \,.

Coefficient Meaning

-27.8627 The percentage of working population working in Mining, Manufacturing and Construction.

20.3313 The percentage of working population employed in commercial services

18.169 The percentage working population engaged in agriculture, forestry and fisheries, industry, commercial and non-commercial services
-0.1884 The percentage of the number of multi-person households without children

4.1384 Number of business Services

14.5717 Property unknown (no link between the addresses of the Key Registers Addresses and the housing register Cadaster).

57.8468 Average income per inhabitant

-0.9093 Average distance of all residents in an area to the nearest shops for groceries.
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Data-driven discovery of
dynamical systems




Data-driven discovery of dynamical systems

Goal of computationally-oriented scientists:

Inferring a (typically nonlinear) model from observations that both correctly iden-
tifies the underlying dynamics and generalises qualitatively and quantitatively to
unmeasured parts of the phase, parameter, or application space.

@ ODE or PDE system described by
parameter

ur = N(u, x, t;ﬂ) (7)
@ Our objective is to discover N(.) given only time-series measurements of the
system.

@ A key assumption (prior) is that the true N(.) is comprised of only a few terms,
making the model sparse in the space of all possible combinations of functions.

@ For example, Burgers' equation
N = —uuy + pus (8)
and the harmonic oscillator
N = —ipx?u — ihithe /2 (9)

each have only two terms. 14



Identifying Dynamical Systems
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Extracting governing equations from data is a central challenge in
many diverse areas of science and engineering. Data are abundant
whereas models often remain elusive, as in climate science, neurosci-
ence, ecology, finance, and epidemiology, to name only a few
examples. In this work, we combine sparsity-promoting techniques
and machine leaming with nonlinear dynamical systems to discover
from noisy data. The only as-
sumption about the structure of the model is that there are only a few
important terms that govern the dynamics, so that the equations are
sparse in the space of possible functions; this assumption holds for
many physical systems in an appropriate basis. In particular, we use
sparse regresslon to determine the fewest terms in the dynamic
tions required to represent the data. This
results in parsimonious models that balance accuracy with model
ity to avoid We the algorithm on a
wide range of problems, from simple canonical systems, including
linear and nonlinear tors and the chaotic Lorenz system, to the
fluid vortex shedding behind an obstacle. The fluid example illustrates
the ability of this method to discover the underlying dynamics of a
system that took experts in the community nearly 30 years to resolve.
We also show that this method generalizes to parameterized systems
and systems that are time-varying or have external forcing.

dynamical systems | machine learning | sparse regression |
system identification | optimization

dynamical systems from data. However, symbolic regression is
expensive, does not scale well to large systems of interest, and
may be prone to overfitting unless care is taken to explicitly
balance model complexity with predictive power. In ref. 4, the
Pareto front is used to find parsimonious models. There are
other techniques that address various aspects of the dynamical
system discovery problem. These include methods to discover
governing equations from time-series data (6), equation-free
modeling (7), empirical dynamic modeling (8, 9), modeling
emergent behavior (10), and automated inference of dynamics
(11-13); ref. 12 provides an excellent review.

Sparse Identification of Nonlinear Dynamics (SINDy)

In this work, we reenvision the dynamical system discovery
problem from the perspective of sparse regression (14-16) and
compressed sensing (17-22). In particular, we leverage the fact
that most physical systems have only a few relevant terms that
define the dynamics, making the governing equations sparse in a
high-dimensional nonlinear function space. The combination of
sparsity methods in dynamical systems is quite recent (23-30).
Here, we consider dynamical systems (31) of the form

4w =10x00). m

The vector x(r) € R" denotes the state of a system at time 7, and
the function f(x(r)) represents the dynamic constraints that de-
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Data-driven discovery of dynamical systems: method

Method:

o Construct a library ©(U) of candidate linear, nonlinear, and partial
derivative terms for the right-hand side.

@ Each column of ©(U) contains the values of a candidate term
evaluated using the collected data.

@ In this library, one can write the dynamics as

U, = O(U)¢ (10)

where

e U is a vector of time derivatives of the measurement data.

e £ is a sparse vector, with each nonzero entry corresponding to a

functional term to be included in the dynamics.
@ Finding the sparsest vector £ consistent with the measurement data

is now feasible with advanced methods in sparse regression, which
makes it possible to find the most parsimonious model while
circumventing a combinatorial search. 16



Identifying the Lorenz Equations
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Fig. 1. Schematic of the SINDy algorithm, demonstrated on the Lorenz equations. Data are collected from the system, including a time history of the states X
and derivatives X; the assumption of having X is relaxed later. Next, a library of nonlinear functions of the states, ®(X), is constructed. This nonlinear feature
library is used to find the fewest terms needed to satisfy X =@(X)E. The few entries in the vectors of Z, solved for by sparse regression, denote the relevant
terms in the right-hand side of the dynamics. Parameter values are o= 10, #=8/3, p=28, (X, Y0, 20)” =(~8,7,27)". The trajectory on the Lorenz attractor is
colored by the adaptive time step required, with red indicating a smaller time step.

17



	Linear regression in a nutshell
	Understanding the energy consumption of electric vehicle charging stations
	Data-driven discovery of dynamical systems

