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Linear systems in a nutshell
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Least squares problem

Least squares problem: choose x to minimise f (x) = ‖Ax − b‖2
2

where A ∈ Rm×n with m ≥ n, and b ∈ Rm are problem data.

m × n matrix A is tall, so Ax = b is over-determined.

For most choices of b, there is no x that satisfies Ax = b.

Residual: r = Ax − b.

Idea: make residual as small as possible, if not 0.

Assume that the columns of A are independent (the Gram matrix

ATA is invertible), the least-squares approximation problem has the

unique solution:

x = (ATA)−1ATb. (1)

Compare with the solution of the square invertible system Ax = b:

x = A−1b (2)
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Regularised approximation

minimise (

how well the data agrees with the model Ax=b

‖Ax − b‖, ‖x‖
how large are your model parameters

) (3)

A ∈ Rm×n is a matrix of n predictors;

x ∈ Rn are the parameters;

b ∈ Rm is a vector of responses.

Idea:

We want a good fit of Ax = b, but we want to do it efficiently,

i.e., with small ‖x‖, so we add to the objective a term that penalises

large x .

Regularisation avoids large x .
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The Lasso

Lasso (least absolute shrinkage and selection operator)

minimise ‖Ax − b‖2
2 + λ ‖x‖1 (4)

Standardise A, so that each column has zero mean and unit variance.

Solution for λ > 0 traces out optimal trade-off curve (sweep λ from

0 to ∞).

Convex problem, so we know how to solve it efficiently.

Can also be written as:

n∑
i=1

yi −
intercept

β0−
p∑

j=1

βjxij

2

Residual Sum of Squares

+λ

p∑
j=1

|βj | (5)
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Electric Vehicle (EV) charging

ELAAD

Socio-economic, demographic, built environment and land use

Population cores.

Ambient population grid 1000m × 1000m, Landscan 2012.

Corine Land Use and Land Cover.

Neighbourhoods data.

Energy Atlas

Traffic flows

OSM amenities
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ELAAD raw dataset

ElaadNL: Dutch research organisation involved in the development

and deployment of EV charging technologies.

1, 747 georeferenced charging stations.

54, 000 users, each identified by a unique id.

1, 060, 763 charging events.

Data collected between January 2012 and March 2016.
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ELAAD: spatial data

Coverage
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Legend
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Charging stations 2015

0.0 to 0.1
0.1 to 0.2
0.2 to 0.3
0.3 to 0.4
0.4 to 0.5
0.5 to 0.6
0.6 to 0.7
0.7 to 0.8
0.8 to 0.9
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Figure 1: Public charging stations in the ElaadNL data set in 2015 (triangles) shown together with the Charging stations 2015 dataset

(crosses). In the year 2015, 17 786 publicly available connectors for slow charging were operational in the NL. We identified 8 400 unique

positions of charging stations, i.e. considering the distribution of connectors at charging stations observed in the ElaadL dataset, this data

covers 78.3% of all stations. In panel (B), we estimated the spatial representativeness of the ElaadNL data sets by calculating the ratio

between the number of station in ELaadNL and in Charging stations 2015 located in squared cells of a regular grid. In the largest cities,

Amsterdam and Rotterdam, the data contains a small percentage of all charging stations.
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Predictors: GIS data

Vector data

Polygon data

population cores,

neighbourhoods data,

energy atlas,

liveability,

land use and land cover (urban atlas, CBS land cover).

Polyline data

traffic flow data.

Point data

OSM amenities,

OpenChargeMap.

Raster data

LandScan - ambient population.
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Vector polygon data: Population cores (2168 cores)

Figure 2: Population cores are continuous spatial units with at least 25 homes or 50 inhabitants

(102 predictors). Source: Statistics Netherlands https://opendata.cbs.nl/
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Polygon data: Population cores (2168 cores, 84 attributes)

number of persons in private household,

number of persons in private households, 0 to 15 years,

number of persons in private households, 15 to 25 years,

number of persons in private households 25 to 45 years,

number of persons in private households, 45 to 65 years,

number of persons in private households 65 years or older,

number of persons in one-person households,

number of people in multi-person household with children,

number of people in multi-person household without children,

nercentage of working population, 15-24 years old,

number of households of two persons,

number of households of three persons,

the number of residential units,

...
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Lasso

Figure 3: Lasso

n∑
i=1

yi −
intercept

β0−
p∑

j=1

βjxij

2

Residual Sum of Squares

+λ

p∑
j=1

|βj | (6)
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Lasso

Figure 4: Lasso
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Lasso fit

Lasso does variable selection on 240 predictors.

At the optimal λ, we reduce the number of predictors to 79 (about

1/3 of the original predictors).

R2 = 0.362 at optimum value (R2(adjusted) = 0.316).

The λmin is the one which minimises the error in cross-validation.

The λ1σ is the λ value within 1 standard error of λmin.

Coefficient Meaning

-27.8627 The percentage of working population working in Mining, Manufacturing and Construction.

20.3313 The percentage of working population employed in commercial services

18.169 The percentage working population engaged in agriculture, forestry and fisheries, industry, commercial and non-commercial services

-0.1884 The percentage of the number of multi-person households without children

4.1384 Number of business Services

14.5717 Property unknown (no link between the addresses of the Key Registers Addresses and the housing register Cadaster).

57.8468 Average income per inhabitant

-0.9093 Average distance of all residents in an area to the nearest shops for groceries.

13



Data-driven discovery of

dynamical systems



Linear regression in a nutshell Understanding the energy consumption of electric vehicle charging stations Data-driven discovery of dynamical systems

Data-driven discovery of dynamical systems

Goal of computationally-oriented scientists:

Inferring a (typically nonlinear) model from observations that both correctly iden-

tifies the underlying dynamics and generalises qualitatively and quantitatively to

unmeasured parts of the phase, parameter, or application space.

ODE or PDE system described by

ut = N(u, x , t;
parameter

µ) (7)

Our objective is to discover N(.) given only time-series measurements of the

system.

A key assumption (prior) is that the true N(.) is comprised of only a few terms,

making the model sparse in the space of all possible combinations of functions.

For example, Burgers’ equation

N = −uux + µuxx (8)

and the harmonic oscillator

N = −iµx2u − i~uxx/2 (9)

each have only two terms.
14



Linear regression in a nutshell Understanding the energy consumption of electric vehicle charging stations Data-driven discovery of dynamical systems

Identifying Dynamical Systems

Discovering governing equations from data by sparse
identification of nonlinear dynamical systems
Steven L. Bruntona,1, Joshua L. Proctorb, and J. Nathan Kutzc
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Extracting governing equations from data is a central challenge in
many diverse areas of science and engineering. Data are abundant
whereas models often remain elusive, as in climate science, neurosci-
ence, ecology, finance, and epidemiology, to name only a few
examples. In this work, we combine sparsity-promoting techniques
and machine learning with nonlinear dynamical systems to discover
governing equations from noisy measurement data. The only as-
sumption about the structure of themodel is that there are only a few
important terms that govern the dynamics, so that the equations are
sparse in the space of possible functions; this assumption holds for
many physical systems in an appropriate basis. In particular, we use
sparse regression to determine the fewest terms in the dynamic
governing equations required to accurately represent the data. This
results in parsimonious models that balance accuracy with model
complexity to avoid overfitting. We demonstrate the algorithm on a
wide range of problems, from simple canonical systems, including
linear and nonlinear oscillators and the chaotic Lorenz system, to the
fluid vortex shedding behind an obstacle. The fluid example illustrates
the ability of this method to discover the underlying dynamics of a
system that took experts in the community nearly 30 years to resolve.
We also show that this method generalizes to parameterized systems
and systems that are time-varying or have external forcing.

dynamical systems | machine learning | sparse regression |
system identification | optimization

Advances in machine learning (1) and data science (2) have
promised a renaissance in the analysis and understanding of

complex data, extracting patterns in vast multimodal data that are
beyond the ability of humans to grasp. However, despite the rapid
development of tools to understand static data based on statistical
relationships, there has been slow progress in distilling physical
models of dynamic processes from big data. This has limited the
ability of data science models to extrapolate the dynamics beyond
the attractor where they were sampled and constructed.
An analogy may be drawn with the discoveries of Kepler and

Newton. Kepler, equipped with the most extensive and accurate
planetary data of the era, developed a data-driven model for plan-
etary motion, resulting in his famous elliptic orbits. However, this
was an attractor-based view of the world, and it did not explain the
fundamental dynamic relationships that give rise to planetary orbits,
or provide a model for how these bodies react when perturbed.
Newton, in contrast, discovered a dynamic relationship between
momentum and energy that described the underlying processes re-
sponsible for these elliptic orbits. This dynamic model may be
generalized to predict behavior in regimes where no data were
collected. Newton’s model has proven remarkably robust for engi-
neering design, making it possible to land a spacecraft on the moon,
which would not have been possible using Kepler’s model alone.
A seminal breakthrough by Bongard and Lipson (3) and Schmidt

and Lipson (4) has resulted in a new approach to determine the
underlying structure of a nonlinear dynamical system from data.
This method uses symbolic regression [i.e., genetic programming
(5)] to find nonlinear differential equations, and it balances com-
plexity of the model, measured in the number of terms, with model
accuracy. The resulting model identification realizes a long-sought
goal of the physics and engineering communities to discover

dynamical systems from data. However, symbolic regression is
expensive, does not scale well to large systems of interest, and
may be prone to overfitting unless care is taken to explicitly
balance model complexity with predictive power. In ref. 4, the
Pareto front is used to find parsimonious models. There are
other techniques that address various aspects of the dynamical
system discovery problem. These include methods to discover
governing equations from time-series data (6), equation-free
modeling (7), empirical dynamic modeling (8, 9), modeling
emergent behavior (10), and automated inference of dynamics
(11–13); ref. 12 provides an excellent review.

Sparse Identification of Nonlinear Dynamics (SINDy)
In this work, we reenvision the dynamical system discovery
problem from the perspective of sparse regression (14–16) and
compressed sensing (17–22). In particular, we leverage the fact
that most physical systems have only a few relevant terms that
define the dynamics, making the governing equations sparse in a
high-dimensional nonlinear function space. The combination of
sparsity methods in dynamical systems is quite recent (23–30).
Here, we consider dynamical systems (31) of the form

d
dt
xðtÞ= fðxðtÞÞ. [1]

The vector xðtÞ∈Rn denotes the state of a system at time t, and
the function fðxðtÞÞ represents the dynamic constraints that de-
fine the equations of motion of the system, such as Newton’s
second law. Later, the dynamics will be generalized to include
parameterization, time dependence, and forcing.

Significance

Understanding dynamic constraints and balances in nature has
facilitated rapid development of knowledge and enabled
technology, including aircraft, combustion engines, satellites,
and electrical power. This work develops a novel framework to
discover governing equations underlying a dynamical system
simply from data measurements, leveraging advances in spar-
sity techniques and machine learning. The resulting models are
parsimonious, balancing model complexity with descriptive
ability while avoiding overfitting. There are many critical data-
driven problems, such as understanding cognition from neural
recordings, inferring climate patterns, determining stability of
financial markets, predicting and suppressing the spread of
disease, and controlling turbulence for greener transportation
and energy. With abundant data and elusive laws, data-driven
discovery of dynamics will continue to play an important role
in these efforts.
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Data-driven discovery of dynamical systems: method

Method:

Construct a library Θ(U) of candidate linear, nonlinear, and partial

derivative terms for the right-hand side.

Each column of Θ(U) contains the values of a candidate term

evaluated using the collected data.

In this library, one can write the dynamics as

Ut = Θ(U)ξ (10)

where

Ut is a vector of time derivatives of the measurement data.

ξ is a sparse vector, with each nonzero entry corresponding to a

functional term to be included in the dynamics.

Finding the sparsest vector ξ consistent with the measurement data

is now feasible with advanced methods in sparse regression, which

makes it possible to find the most parsimonious model while

circumventing a combinatorial search. 16
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Identifying the Lorenz Equations

and Appendixes A and B. However, it may be difficult to know
the correct variables a priori. Fortunately, time-delay coordi-
nates may provide useful variables from a time series (9, 12, 38).
The ability to reconstruct sparse attractor dynamics using time-
delay coordinates is demonstrated in SI Appendix, section 4.5
using a single variable of the Lorenz system.
The choice of coordinates and the sparsifying basis are in-

timately related, and the best choice is not always clear. However,
basic knowledge of the physics (e.g., Navier–Stokes equations have
quadratic nonlinearities, and the Schrödinger equation has jxj2 x
terms) may provide a reasonable choice of nonlinear functions and
measurement coordinates. In fact, the sparsity and accuracy of the
proposed sparse identified model may provide valuable diagnostic
information about the correct measurement coordinates and basis
in which to represent the dynamics. Choosing the right coordinates
to simplify dynamics has always been important, as exemplified by
Lagrangian and Hamiltonian mechanics (39). There is still a need
for experts to find and exploit symmetry in the system, and the
proposed methods should be complemented by advanced algo-
rithms in machine learning to extract useful features.

Results
We demonstrate the algorithm on canonical systems*, ranging
from linear and nonlinear oscillators (SI Appendix, section 4.1),
to noisy measurements of the chaotic Lorenz system, to the
unsteady fluid wake behind a cylinder, extending this method to
nonlinear PDEs and high-dimensional data. Finally, we show
that bifurcation parameters may be included in the models,

recovering the parameterized logistic map and the Hopf normal
form from noisy measurements. In each example, we explore the
ability to identify the dynamics from state measurements alone,
without access to derivatives.
It is important to reiterate that the sparse identification

method relies on a fortunate choice of coordinates and function
basis that facilitate sparse representation of the dynamics. In SI
Appendix, Appendix B, we explore the limitations of the method
for examples where these assumptions break down: the Lorenz
system transformed into nonlinear coordinates and the glycolytic
oscillator model (11–13).

Chaotic Lorenz System. As a first example, consider a canonical
model for chaotic dynamics, the Lorenz system (40):

_x= σðy− xÞ, [7a]

_y= xðρ− zÞ− y, [7b]

_z= xy− βz. [7c]

Although these equations give rise to rich and chaotic dynamics
that evolve on an attractor, there are only a few terms in the
right-hand side of the equations. Fig. 1 shows a schematic of how
data are collected for this example, and how sparse dynamics are
identified in a space of possible right-hand-side functions using
convex ℓ1 minimization.
For this example, data are collected for the Lorenz system, and

stacked into two large data matrices X and _X, where each row of X
is a snapshot of the state x in time, and each row of _X is a snapshot

Fig. 1. Schematic of the SINDy algorithm, demonstrated on the Lorenz equations. Data are collected from the system, including a time history of the states X
and derivatives _X; the assumption of having _X is relaxed later. Next, a library of nonlinear functions of the states, ΘðXÞ, is constructed. This nonlinear feature
library is used to find the fewest terms needed to satisfy _X=ΘðXÞΞ. The few entries in the vectors of Ξ, solved for by sparse regression, denote the relevant
terms in the right-hand side of the dynamics. Parameter values are σ = 10, β= 8=3, ρ= 28, ðx0, y0, z0ÞT = ð−8,7,27ÞT . The trajectory on the Lorenz attractor is
colored by the adaptive time step required, with red indicating a smaller time step.

*Code is available at faculty.washington.edu/sbrunton/sparsedynamics.zip.

3934 | www.pnas.org/cgi/doi/10.1073/pnas.1517384113 Brunton et al.
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