Emulation of computer models when multi-fidelity data are available

Georgios Karagiannis

Group of Statistics Department of Mathematical sciences, Durham University

September, 2019

IDAS Launch Event

Georgios Karagiannis (Group of StatisticsEmulation of computer models when mul

September, 2019

My research...

- Bayesian statistical modeling
 - Emulation of computer models
 - Calibration of computer models
- Bayesian computations
 - Markov chain Monte Carlo
 - Approximate Bayesian Computations
- Applications:
 - WRF climate model
 - ADCIRC storm surge model
 - PSU-3D ice model

Georgios Karagiannis (Group of StatisticsEmulation of computer models when mul

September, 2019

2/10

Computer models, multifidelity, & Emulation

- Computer model (CM)
 - aim to reproduce the real system's behavior with high accuracy.

for
$$x \in \mathcal{X}$$
 and $y \in \mathbb{R}$ $x \stackrel{S(x)}{\Longrightarrow} y$

- is software running on computers (or super-computers)
- Expensive: only a limited number of simulations is performed.
- Emulators:
 - A cheap probabilistic approximation of the input-output mapping
 - run CM at different levels of fidelity, sophistication, or resolution $\{(y_t, \mathfrak{X}_t\}.$
 - Fit a Gaussian process regression

$$x \mapsto y(x)$$

The ADCIRC model

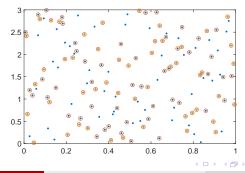
- ADCIRC:
 - ADvanced CIRCulation storm surge model
 - it takes weeks to run
- Output y:
 - pick surge elevation for the landfalling hurricane
- Input x:
 - six parameters characterizing the storm
 - central pressure deficit of the storm (mb)
 - scale pressure radius in nautical miles
 - storm's forward speed (m/s)
 - storm's heading in degrees clockwise from north
 - Holland's B parameter (unitless)
 - landfall location in latitude and longitude
- Different fidelity levels:
 - ADCIRC
 - ADCIRC+SWAN (Simulating WAves Nearshore)

AR co-kriging (ARCK) model by K&O

• The output $\{y_t(\cdot)\}$ is modeled as

$$y_t(x) = \xi_{t-1}(\cdot)y_{t-1}(x) + \delta_t(x)$$
 for $x \in \mathcal{X}, t = 2, ..., S$

where


$$y_1(\cdot) \sim \mathsf{GP}(\mu_1(\cdot|\beta_1), c_1(\cdot, \cdot|\phi_1));$$

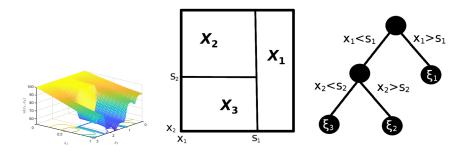
$$\delta_t(\cdot) \sim \mathsf{GP}(\mu_t(\cdot|\beta_t), c_t(\cdot, \cdot|\phi_t)),$$

• $\{\delta_t(\cdot)\}\$ and $\{\xi_t\}$, account for 'missing' physical properties in \mathcal{C}_{t-1} w.r.t. \mathcal{C}_t .

- 本語 医 本 臣 医 一 臣

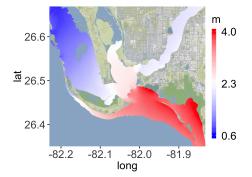
Challenge: Non-nested designs

- \bullet Challenge: requires data-sets to be nested $\mathfrak{X}_1 \subseteq \mathfrak{X}_2 \subseteq ...$
- Create artificially nested data by imputing the data $\{y_t, \hat{\mathfrak{X}}_t\}$ with missing data $\{\mathring{y}_t, \mathring{\mathfrak{X}}_t\}$


Georgios Karagiannis (Group of StatisticsEmulation of computer models when mul

Co-kriging model

Challenge: Discontinuity/non-stationarity in the output


Introduce a Bayesian treed partitioning such as:

$$y_{k,t}(x) = \xi_{k,t-1}(\cdot)y_{k,t-1}(x) + \delta_{k,t}(x) \quad \text{for } x \in \mathcal{X}_k$$

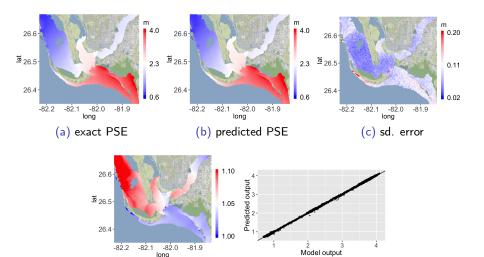
Challenge: High-dimensional output

Consider the output of ADCIRC model at certain input values

For the *j*-th coordinate, the following cokriging model is assumed:

$$y_{t,j}(\cdot) = \gamma_{t-1,j}(\cdot)y_{t-1,j}(\cdot) + \delta_{t,j}(\cdot)$$

 $y_{1,j}(\cdot) \sim \mathsf{GP}(\mu_{1,j}(\cdot|\beta_{1,j}), c_1(\cdot, \cdot|\phi_1)); \quad \delta_{t,j}(\cdot) \sim \mathsf{GP}(\mu_{t,j}(\cdot|\beta_{t,j}), c_{t,j}(\cdot, \cdot|\phi_t)),$


where ϕ_{\star} are common.

Georgios Karagiannis (Group of Statistics<mark>Emulation of computer models when mul</mark>

Co-kriging model

(e) cross validation

Emulating the ADCIRC model

(d) scale discrepancy Georgios Karagiannis (Group of StatisticsEmulation of computer models when mul

long

September, 2019

10/10

My research...

- Bayesian statistical modeling
 - Emulation of computer models
 - Calibration of computer models
- Bayesian computations
 - Markov chain Monte Carlo
 - Approximate Bayesian Computations
- Applications:
 - WRF climate model
 - ADCIRC storm surge model
 - PSU-3D ice model

Georgios Karagiannis (Group of StatisticsEmulation of computer models when mul