

Muon and electron g - 2 in a Z' model with vector-like fermions

A.E. Cárcamo¹, S. F. King², H. Lee² and S.J. Rowley²

¹Department of Physics, Universidad Tecnica Federico Santa Maria, Chile ²SHEP Group, School of Physics and Astronomy, University of Southampton, UK

18 Dec 2019

YTF12,	Durham
--------	--------

Sam Rowley

 $(g-2)_{\mu/e}$ in a Z' model with VLF

arXiv:1910.10734

18/12/2019 1 / 17

Outline

- Motivation
- ▶ Vector-like fermion and Z' model
- ► This work
- Predictions for Δa_{μ} and Δa_{e}
- Numerical analysis
- Conclusions and outlook

Motivation

Southampton

Leptons have magnetic moments along their spin direction

• Δa_{μ} : Longstanding tension between SM and BNL measurement^[1]

 $\Delta a_{\mu} = (26.1\pm8.0) imes10^{-10}\sim3.5\sigma$ from SM

• Δa_e : Tension between SM and recent measurement from Caesium^[2]

$$\Delta a_e = (-0.88 \pm 0.36) imes 10^{-12} \sim 2.5 \sigma$$
 from SM

• Attempt to simultaneously explain Δa_{μ} and Δa_{e}

 ${}^{[1]}G.$ W. Bennett et al. [Muon g-2 Collaboration], Phys. Rev. D 73, 072003 (2006) ${}^{[2]}R.$ H. Parker et. al., Science 360, 191 (2018)

Sam Rowley

Vector-like fermions

- Minimal idea: 4th chiral family of fermions e.g. e_{4L}, ν_{4L}
- ► !!! Problem !!! chiral gauge anomalies ⇒

Vector-like fermions

- Minimal idea: 4th chiral family of fermions e.g. e_{4L}, ν_{4L}
- ► !!! Problem !!! chiral gauge anomalies ⇒
- ► Need a further family e.g. *e*_{4L}, *v*_{4L} of opposite chirality
- Anomalies cancel if quantum numbers identical!
- Models with such vector-like fermions are **necessarily anomaly-free**

Vector-like fermions and U(1)'

Model gauge group:

$$SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)'$$

Field content:

	<i>SU</i> (3) _C	$SU(2)_L$	$U(1)_Y$	U(1)'
SM fermions	#	#	#	0
L _{L4}	1	2	-1/2	q_{L4}
e _{R4}	1	1	-1	q_{L4}
\widetilde{L}_{R4}	1	2	-1/2	q_{L4}
\widetilde{e}_{L4}	1	1	-1	q_{L4}
ϕ_L	1	1	0	$-q_{L4}$
ϕ_{e}	1	1	0	$-q_{L4}$

Vector-like fermions and U(1)'

Model gauge group:

$$SU(3)_C \times SU(2)_L \times U(1)_Y \times U(1)'$$

Field content:

	<i>SU</i> (3) _C	$SU(2)_L$	$U(1)_Y$	U(1)'
SM fermions	#	#	#	0
L _{L4}	1	2	-1/2	q_{L4}
e _{R4}	1	1	-1	q_{L4}
\widetilde{L}_{R4}	1	2	-1/2	q_{L4}
\widetilde{e}_{L4}	1	1	-1	q_{L4}
ϕ_L	1	1	0	$-q_{L4}$
ϕ_{e}	1	1	0	$-q_{L4}$

NB: In high-energy theory, SM fermions uncoupled from U(1)'

Sam Rowley

Vector-like fermions and U(1)'

Possible Lagrangian terms:

$$\mathcal{L} \supset y_4^{(e)} \overline{L}_{L4} H e_{R4} + \sum_{i=1}^3 x_i^{(L)} \phi_L \overline{L}_{Li} \widetilde{L}_{R4} + \sum_{i=1}^3 x_i^{(e)} \phi_e \overline{\widetilde{e}}_{L4} e_{Ri} + M_4^L \overline{L}_{L4} \widetilde{L}_{R4} + M_4^E \overline{\widetilde{e}}_{L4} e_{R4}$$

 $\phi {\rm s}$ acquire VEVs to break U(1)' at TeV scale. SM Higgs breaks EW symmetry as normal

$$\mathcal{L} \supset M_4^C \overline{L}_{L4} He_{R4} + M_4^L \overline{L}_{L4} \widetilde{L}_{R4} + M_4^E \overline{\widetilde{e}}_{L4} e_{R4} + mixing terms (\phi interactions)$$

Massive Z' couplings

Initially, SM fermions uncoupled from Z'

$$\mathcal{L} \supset g' Z'_{\mu} \Big(\overline{L}_L D_L \gamma^{\mu} L_L + \overline{E}_R D_E \gamma^{\mu} E_R \Big)$$

Interaction basis (pure flavour states):

$$L_L = \begin{pmatrix} (e_L, \nu_e) \\ (\mu_L, \nu_\mu) \\ (\tau_L, \nu_\tau) \\ (e_{L4}, \nu_{L4}) \end{pmatrix}, \qquad E_R = \begin{pmatrix} e_R \\ \mu_R \\ \tau_R \\ e_{R4} \end{pmatrix}, \qquad D_L = \operatorname{diag}(0, 0, 0, q_{L4})$$

Transform to mass basis \implies :

$$V_{L_{L},e_{R}} = \begin{pmatrix} \cos\theta_{14}^{L,R} & 0 & 0 & \sin\theta_{14}^{L,R} \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ -\sin\theta_{14}^{L,R} & 0 & 0 & \cos\theta_{14}^{L,R} \end{pmatrix} \begin{pmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos\theta_{24}^{L,R} & 0 & \sin\theta_{24}^{L,R} \\ 0 & 0 & 1 & 0 \\ 0 & -\sin\theta_{24}^{L,R} & 0 & \cos\theta_{24}^{L,R} \end{pmatrix}$$

Low-energy couplings

Southampton

$$(g_{L,R})_{Z'\mu\mu} = g' q_{L_4} (\sin \theta_{24L,R})^2$$

$$(g_{L,R})_{Z'ee} = g' q_{L_4} (\cos \theta_{24L,R} \sin \theta_{14L,R})^2$$

$$(g_{L,R})_{Z'\mue} = g' q_{L_4} (\cos^2 \theta_{24L,R} \sin \theta_{14L,R})$$

$$(g_{L,R})_{Z'\muE} = g' q_{L_4} (\cos \theta_{24L,R} \cos \theta_{14L,R} \sin \theta_{24L,R})$$

$$(g_{L,R})_{Z'eE} = g' q_{L_4} (\cos \theta_{14L,R} \cos^2 \theta_{24L,R} \sin \theta_{14L,R})$$

For simplicity, set $g'q_{L4} = 1$

Couplings can be expressed in terms of $\sin^2 \theta_{24L,R}$ and $\sin^2 \theta_{14L,R}$

This Work

Southampton

- Attempt to simultaneously explain Δa_{μ} and Δa_{e}
- Restricted by decays $\mu \to e\gamma$ and $\nu_{\mu}\gamma^{\star} \to \nu_{\mu}\mu^{+}\mu^{-}$:

$$\mathsf{BR}(\mu
ightarrow e\gamma) < 4.2 imes 10^{-13}$$

Non-observation at MEG $experiment^{[3]}$

$$rac{(g_L)_{\mu\mu}^2}{M_{Z'}^2} \lesssim rac{1}{(370 {
m GeV})^2}$$

SMEFT global fit analysis^[4]

Minimal Parameter Space

 $M_{Z'}$, M_{A}^{L} , M_{A}^{C} , $\sin^2\theta_{24L,R}$, $\sin^2\theta_{14L}$

[3] MEG Collaboration (A.M. Baldini et. al.) Eur.Phys.J. C76 (2016) no.8, 434
 [4] A. Falkowski, M. González-Alonso, K.Mimouni JHEP 1708 (2017) 123

Predictions for observables

Southampton

Predictions for observables

Neutrino trident production:

Direct constraint on $(g_L)_{\mu\mu}/M_{Z'}$ from SMEFT

 $\mu \rightarrow e\gamma$: e_{41} e_{4R} $\mathsf{BR}(\mu \to e\gamma) = \frac{\alpha}{1024\pi^4} \frac{m_\mu^5}{M_{z'}^4 \Gamma_{\mu}} \bigg|$ $\frac{M_4^C}{m_{\mu\nu}}(g_R)_{eE}(g_L)_{\mu E}G(\left(\frac{M_4^L}{m_{\mu\nu}}\right)^2) + \dots$

This Work (2)

Southampton

- Attempt to simultaneously explain Δa_{μ} and Δa_{e}
- Restricted by decays $\mu \to e\gamma$ and $\nu_{\mu}\gamma^{\star} \to \nu_{\mu}\mu^{+}\mu^{-}$:

Minimal Parameter Space

$$M_{Z'}$$
, M_4^L , M_4^C , $sin^2\theta_{24L,R}$, $sin^2\theta_{14L}$

- ► Have expressions for phenomena ...
- Fix some parameters \implies find allowed/excluded regions
- Full parameter space \implies random scan, examine points

This Work (2)

Southampton

- Attempt to simultaneously explain Δa_{μ} and Δa_{e}
- Restricted by decays $\mu \to e\gamma$ and $\nu_{\mu}\gamma^{\star} \to \nu_{\mu}\mu^{+}\mu^{-}$:

Minimal Parameter Space

$$M_{Z'}$$
, M_4^L , M_4^C , $sin^2\theta_{24L,R}$, $sin^2\theta_{14L}$

► Have expressions for phenomena ...

• Fix some parameters \implies find allowed/excluded regions

Full parameter space \implies random scan, examine points

Analysis: Large M_4^C

Southampton

• Terms with M_4^C enhancement dominate

Analysis: Small M_4^C

Southampton

Points look good, seems to be overlap, but...

Viable points (low $\sin^2 \theta_{24L}$)

Southampton

Parameter		Observable		
$\sin^2 \theta_{24L}$	$\sin^2 \theta_{24R}$	$BR(\mu \to e\gamma)$	Δa_e	Δa_{μ}
0.12	0.04	$1.44 imes10^{-13}$	$-3.27 imes 10^{-13}$	$-5.09 imes10^{-10}$
0.08	0.08	$2.95 imes10^{-13}$	$-5.08 imes10^{-13}$	$-1.32 imes10^{-9}$
0.08	0.08	$4.73 imes10^{-14}$	$-3.24 imes10^{-13}$	$-7.90 imes10^{-10}$
0.06	0.008	$1.81 imes 10^{-13}$	$-3.85 imes10^{-13}$	$-1.60 imes10^{-10}$
0.10	0.18	$4.93 imes10^{-16}$	$-2.02 imes10^{-13}$	$-1.13 imes10^{-9}$
0.12	0.04	3.51×10^{-13}	$-2.06 imes10^{-13}$	$-2.95 imes10^{-10}$
0.11	0.02	$1.01 imes 10^{-13}$	$-2.19 imes10^{-13}$	$-2.11 imes10^{-10}$
0.04	0.10	4.72×10^{-13}	$-3.15 imes10^{-13}$	$-8.63 imes10^{-10}$
0.04	0.004	$8.78 imes10^{-14}$	$-3.27 imes10^{-13}$	$-7.88 imes10^{-11}$
0.05	0.02	$4.56 imes10^{-14}$	$-1.88 imes10^{-13}$	$-1.20 imes10^{-10}$
0.13	0.04	$5.63 imes10^{-14}$	$-1.63 imes10^{-13}$	$-2.67 imes10^{-10}$
0.13	0.17	4.52×10^{-16}	-1.91×10^{-13}	$-1.09 imes10^{-9}$

Viable points (low $\sin^2 \theta_{24L}$)

Southampton

Parameter		Observable		
$\sin^2 \theta_{24L}$	$\sin^2 \theta_{24R}$	$BR(\mu \to e\gamma)$	Δa_e	Δa_{μ}
0.12	0.04	$1.44 imes10^{-13}$	$-3.27 imes 10^{-13}$	$-5.09 imes 10^{-10}$
0.08	0.08	2.95×10^{-13}	-5.08×10^{-13}	$-1.32 imes 10^{-9}$
0.08	0.08	$4.73 imes10^{-14}$	$-3.24 imes10^{-13}$	-7.90×10^{-10}
0.06	0.008	$1.81 imes 10^{-13}$	$-3.85 imes10^{-13}$	-1.60×10^{-10}
0.10	0.18	$4.93 imes10^{-16}$	$-2.02 imes10^{-13}$	$-1.13 imes10^{-9}$
0.12	0.04	3.51×10^{-13}	-2.06×10^{-13}	-2.95×10^{-10}
0.11	0.02	$1.01 imes 10^{-13}$	$-2.19 imes10^{-13}$	-2.11×10^{-10}
0.04	0.10	4.72×10^{-13}	$-3.15 imes10^{-13}$	-8.63×10^{-10}
0.04	0.004	$8.78 imes10^{-14}$	$-3.27 imes10^{-13}$	-7.88×10^{-11}
0.05	0.02	$4.56 imes10^{-14}$	$-1.88 imes10^{-13}$	-1.20×10^{-10}
0.13	0.04	$5.63 imes10^{-14}$	$-1.63 imes10^{-13}$	-2.67×10^{-10}
0.13	0.17	4.52×10^{-16}	-1.91×10^{-13}	$-1.09 imes10^{-9}$

Conclusions and Outlook

Summary:

- VLF and U(1)' model can explain either Δa_μ or Δa_e, but not both simultaneously (at 95% CL)
- Remains good candidate for other lepton phenomena look forward to new results and theory update

Future work:

- Extension of current work ightarrow (g-2) calculation with additional scalars
- Collider phenomenology and search for 'smoking gun' signatures

Conclusions and Outlook

Summary:

- VLF and U(1)' model can explain either Δa_μ or Δa_e, but not both simultaneously (at 95% CL)
- Remains good candidate for other lepton phenomena look forward to new results and theory update

Future work:

- Extension of current work ightarrow (g-2) calculation with additional scalars
- Collider phenomenology and search for 'smoking gun' signatures

Thanks for your attention